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ABSTRACT

Background: The utilization of technologies such as artificial intelligence (AI) and
machine learning (ML) in industrial sectors has become a crucial requirement to
enhance the efficiency and stability of production processes. Regular maintenance of
machines and early detection of faults play a critical role in ensuring uninterrupted
production and business continuity. Predictive maintenance practices, combined
with sensors and data analysis methods, enable the collection, analysis, and
transformation of machine-related data into meaningful insights. As a result, the
anticipation of potential machine failures, the execution of planned maintenance
activities, and the prevention of unexpected downtime become possible. These
methods not only improve productivity in production processes but also contribute
to reducing maintenance costs.

Methods: This study aims to predict machine faults using data analysis methods and
enhance the accuracy performance of these predictions for an industrial company
that produces braking components. Comprehensive examination and analysis of data
were conducted to understand the symptoms and relationships of machine failures.
ML classification methods were employed in the relevant study.

Results: Challenges such as the imbalance of class distributions in the dataset, the
presence of missing and outlier values, and the high costs of necessary equipment and
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INTRODUCTION

Industry 4.0, with its emphasis on smart factories and advanced technologies such as
artificial intelligence (AI) and Internet of Things (IoT), forms the foundation for
implementing predictive maintenance in modern production systems (Zhong et al., 2023;
Aldahiri, Alrashed ¢ Hussain, 2021). The use of Industry 4.0 technologies offers many
benefits, such as making industries more efficient, faster, flexible, and scalable. Besides,
they aid in optimizing production processes, reducing errors in production lines and
facilities, and decreasing energy and resource consumption, thereby enhancing
environmental sustainability (Cinaroglu, 2017). These benefits increase the competitive
structure of the industry and allow for more effective meeting of the organization’s and
customer’s needs. One critical area within Industry 4.0 is fault detection and predictive
maintenance, where machine learning (ML) and data-driven techniques have proven
indispensable (Dogan ¢ Baloglu, 2020). In this study, predictive maintenance is applied to
computer numerical control (CNC) machines used in braking component production,
focusing on utilizing ML methods to predict faults and enhance maintenance accuracy
(Bogehoj, 2016). This aligns with the broader goals of Industry 4.0, where such data-driven
maintenance strategies are essential for ensuring uninterrupted operations and minimizing
downtime.

Fault detection and predictive maintenance focuses on preventing unexpected
equipment failures through advanced data-driven techniques. One of the fault detection
tools which is reactive maintenance involves intervening when a failure occurs, preventive
maintenance aims to prevent failures through regular checks at specified intervals.
However, these traditional approaches can lead to either costly unplanned downtime or
excessive maintenance expenses. Predictive maintenance uses ML and big data analytics to
predict failures, ensuring that maintenance is only carried out when necessary (Ozkat,
2021; Sindhu, 2020; Thessen, 2016; Tong et al., 2023). This reduces unplanned downtime,
optimises maintenance costs and significantly increases operational efficiency.

Sensor technologies play a critical role in this process. Data such as temperature,
vibration, pressure, oil levels, efc. collected from machines in real time are analyzed and
potential failures are detected before they occur. By processing sensor data, maintenance
teams can make data-driven decisions instead of traditional manual controls, reducing
both inaccurate predictions and ensuring production continuity.

Despite the increasing adoption of predictive maintenance strategies across industrial
sectors, a review of the current literature reveals several methodological and practical
limitations that hinder the broader applicability and effectiveness of such approaches
(Bektas, 2020; Bousdekis et al., 2019; Kane et al., 2022). To better understand these
limitations and define the specific contributions of the present study, the following section
critically examines prior research on predictive maintenance, with a particular focus on
data characteristics, modeling practices, and system integration.
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Gaps in the literature

Conspicuous by the lack of data diversity and widespread applicability, most studies use
narrow datasets based on a single site or facility, leading to uncertainty of performance in
new conditions (Abbas, Al-haideri ¢ Bashikh, 2019; Gougam et al., 2024; Amihai et al.,
2018; Borgi et al., 2017; Tambake et al., 2024; Paszkiewicz et al., 2023; Merkt, 2019). Most
existing IoT prototypes and ML studies use only a single model (e.g., artificial neural
networks (ANN) or simple regression) and lack comprehensive benchmark and
hyperparameter optimization (Justus ¢» Kanagachidambaresan, 2022; Kannadaguli, 2020;
Gougam et al., 2024; Abbas, Al-haideri & Bashikh, 2019; Tas, 2018). Many studies use only
training accuracy or a single hold-out split, while cross-validation, discrete test set and
comprehensive metric comparisons are often neglected (Aydin ¢» Guldamlasioglu, 2017;
Abbas, Al-haideri & Bashikh, 2019; Selvaraj ¢ Min, 2023; Aydin et al., 2021). The
developed prognostic curves and classification results often remain in laboratory
conditions and are not integrated into real-time systems (Amihai et al., 2018; Amruthnath
& Gupta, 2018; Cekik ¢ Turan, 2025; Soylemezoglu, Jagannathan & Saygin, 2010; Abu-
Samah et al., 2015; Kannadaguli, 2020; Shearer, 2000). Most studies only report technical
performance and do not provide infrastructure recommendations for the integration of
results into decision support modules or similar platforms and active use by maintenance
teams (Kasiviswanathan et al., 2024; Cekik & Turan, 2025; Selvaraj ¢ Min, 2023). Existing
studies mostly collect data using different IoT-based sensors and methods (Nikfar,
Bitencourt & Mykoniatis, 2022; Soylu et al., 2022; Yeardley et al., 2022), but rarely present a
unified, standardized protocol or end-to-end data flow infrastructure. There has been no
comprehensive study focusing on changes in model performance results by comparing ML
models with changing ratios of learning and test data in existing research. Following the
research, the question “Can the efficiency of predictive maintenance applications be
increased by using different ML algorithms based on sensor data?” was determined as the
research question.

In this work, we collect 30,622 CNC sensor and operating system records in real-time
with the MTConnect protocol and generate a balanced and meaningful feature set with
undersampling and SelectKBest after extensive preprocessing steps such as missing data
cleaning, outlier suppression, and categorical transformations. We maximize the
generalizability and reliability of the models by benchmarking nine classical machine
learning algorithms (decision tree (DT), naive Bayes (NB), k-nearest neighbors (KNN),
support vector machine (SVM), Adaptive Boosting (AdaBoost), random forest (RF),
Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost) and Light
Gradient Boosting Machine (LightGBM)) and an artificial neural network with manual
hyperparameter optimization, both with 80-20% holdout and 10-fold cross-validation.
Finally, by streaming live data with MTConnect Agent and integrating the results into the
decision support module, we not only provide a highly accurate classification, but also an
end-to-end solution that supports real-time maintenance decisions.

Amihai et al. (2018) and Borgi et al. (2017) each worked with limited data from a single
plant or 155 profiles, which posed a risk of generalizability. This study used a richer and
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more diverse database with 30,622 samples collected from different sensor types
(temperature, oil levels, spindle speed data, axis load, efc.) and strengthened the data
quality with outlier removal and feature selection steps.

In conclusion, this study highlights how ML, feature engineering and advanced learning
paradigms can directly contribute to Industry 4.0 goals. By transforming the brake
component production line into a data-driven maintenance environment, the study
provides practical insights into the integration of these technologies into smart factories.

In conclusion, this study highlights how ML, feature engineering and advanced learning
paradigms can directly contribute to Industry 4.0 goals. By transforming the brake
component production line into a data-driven maintenance environment, the study
provides practical insights into the integration of these technologies into smart factories.

MATERIALS AND METHODS

In the “Methodology” section of the study, predictive maintenance was implemented using
ML algorithms to predict the maintenance status of CNC machines used in braking
component production at Ege Fren Sanayi ve Ticaret A.S. The study adopts a data-driven
approach to identify repair needs and optimize maintenance activities, aiming to improve
the accuracy of predictive models for detecting equipment failures.

The methodology outlines key steps in a data science process, as shown in Fig. 1. These
include handling missing data through imputation or removal, noise elimination,
converting categorical variables to numerical formats, feature selection, and splitting the
dataset into training and testing subsets. To address class imbalance, undersampling
methods were applied, and hyperparameter tuning was used to optimize model
performance. Robustness was evaluated using holdout and cross-validation techniques,
with multiple ML algorithms, including a deep learning-based multilayer perceptron
(MLP), compared based on metrics like accuracy, precision, recall, F1-score, area under the
curve (AUC) score, Cohen’s Kappa, and Matthew’s correlation coefficient (MCC). The
best-performing model was selected, and findings were documented.

The use of ML is justified by its ability to outperform traditional fault detection methods
in handling complex, data-rich environments. CNC machines generate large volumes of
sensor data, which ML models efficiently analyze to predict faults and enable data-driven
maintenance decisions. This study applies ML techniques to improve the precision and
reliability of fault detection processes in braking component production.

Understanding the business

The Mazak CNC machine is used for high-precision brake lifting part production. It
operates through automated processes including design, material placement, and precise
cutting, leveraging advanced motion systems.

The production begins with part design using CAD software and G-code programming.
Raw materials are securely placed for machining, and the CNC machine follows
programmed paths with precision, ensuring optimal speed, depth, and accuracy. After
machining, quality inspections are conducted before shipment.
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Figure 1 Overall proposed methodology. Full-size Ka] DOT: 10.7717/peerj-cs.2999/fig-1

The machine is equipped with sensors that monitor critical parameters like oil and
coolant levels, motor temperatures, and X, Y, Z positions, recording data in real-time for

performance optimization.
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Data collection
The MTConnect data collection process integrates multiple components to standardize
and transmit data from Mazak CNC machines:

Mazatrol is the control system of Mazak CNC machines that creates processing
programs, controls machine movements, and performs CNC operations. Adapter serves as
an intermediary, connecting the Mazatrol control system to an MTConnect-compatible
data collection system. MTConnect Agent receives data from the adapter, processes it into
an MTConnect-compatible XML format, and facilitates data transfer to other systems.
Client Software allows users, such as operators and managers, to access and monitor
real-time MTConnect data. The data flow starts with Mazatrol operations transmitted via
an API to the adapter using TCP. The adapter collects this data and forwards it to the
MTConnect Agent, where it is converted into a standardized XML format. Finally, the data
are transmitted to a user-accessible environment via HTTP. The MTConnect data transfer
process is shown in Fig. 2.

Data set

Data recording from Mazak CNC machines occurs from two different areas. One method
consists of data automatically generated from the operating system. The other data
recording method involves sensors connected to the device. Table 1 lists the variables
associated with the operating system and their explanations.

Table 2 shows the variables recorded by the sensors and their descriptions. The relevant
sensor parts consist of level measurement and temperature sensors. These sensors were
installed in the device by the company.

The data collected through MTConnect is used in comma-seperated values (CSV)
format. The dataset consists of 22 variables, including 16 continuous variables, six
categorical variables, one time variable and 30,622 records in the CSV document created.
Continuous variables represent sensor readings such as grease oil level, spindle speed, and
electric panel temperature. Categorical variables include descriptors such as System Status
(the target variable), Spindle Condition, and Emergency Status. The time variable,
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Table 1 Operating system dependent variables.

Feature name

Description

Grease oil level
Datetime

x axis loading

y axis loading

z axis loading
Spindle loading
Spindle speed
Spindle temperature
Spindle temperature status
Servo status

Spindle condition
Emergency status

System status

The amount of grease in the lubrication system of the equipment or machine

The time the data is saved.

Measurement value of the mechanical load on the horizontal axis of the machine.
Measurement value of the mechanical load on the vertical axis of the machine.
Measurement value of the mechanical load on the reciprocating axis of the machine.
It is the mechanical load measurement value on the rotating shaft of the machine.
It refers to the rotation speed on the rotating shaft of the machine.

It refers to the temperature value on the rotating shaft of the machine.

It refers to the overheating condition on the rotating shaft of the machine.

Refers to the functionality of the current state of the servo motor.

Spindle motor refers to the functionality of the current state of the component.

It expresses the value of pressing the emergency stop button on the machine.

It indicates the operating status of the system with instant data.

Table 2 Variables depending on sensors.

Feature name

Description

Anamil coolant oil level
Anamil coolant oil temperature
Apparatus hydraulic oil level

Apparatus hydraulic oil
temperature

Electric panel temperature
Hydraulic oil level
Hydraulic oil temperature
M51 motor temperature

Bench transformer temperature

It refers to the oil level connected to the cooling system of the main shaft that enables the engine to run.
It refers to the oil temperature connected to the cooling system of the main shaft that enables the engine to run.
It expresses the oil level used in the hydraulic working system of the machine apparatus.

It refers to the oil temperature used in the hydraulic working system of the machine apparatus.

It refers to the internal temperature of the transformer unit connected to the machine.
Refers to the oil level in the overall hydraulic system of the machine.

It refers to the oil temperature in the general hydraulic system of the machine.

Refers to the temperature of the machine engine.

It refers to the temperature of the transformer connected to the bench.

DateTime, provides timestamps for each observation. This data is instrumental in

capturing real-time operational details like temperature, oil levels, load conditions on axes,
and overall machine status. The dataset records 18 distinct system states under the system
status variable, which reflect the operational conditions of the machinery. These states are
categorized into two main groups: normal state and faults or warnings. The normal state
accounts for 16,201 observations, representing approximately 65% of the dataset, and
indicates the machine is functioning without any issues. Faults and warnings are
categorized based on their frequency and type. Frequent faults include Warning: Memory
Protection, observed in 193 records (~0.78%), and Warning: Invalid Format, appearing in
176 records (~0.71%). Rare faults, such as Fault: Overload, Warning: Soft Limit, and
Warning: Collision Warning, occur in fewer than 10 observations each. Fault types are
further classified into overloads, memory-related faults, invalid format errors, and
emergency status warnings. The relevant records consist of data between 27.02.2023 and
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Table 3 Data set variable types and count of filled data.

Feature name Count of filled data Data type
Grease oil level 25,317 Float
DateTime 30,622 Object
X axis loading 21,959 Float
Y axis loading 21,958 Float
Z axis loading 21,958 Float
Spindle loading 21,956 Float
Spindle speed 21,956 Float
Spindle temperature 21,885 Float
Spindle temperature status 21,365 Object
Servo status 21,365 Object
Spindle condition 21,365 Object
Emergency status 21,357 Object
System status 21,956 Object
Anamil coolant oil level 23,459 Float
Anamil coolant oil temperature 23,460 Float
Apparatus hydraulic oil level 25,317 Float
Apparatus hydraulic oil temperature 25,317 Float
Electric panel temperature 23,459 Float
Hydraulic oil level 25,317 Float
Hydraulic oil temperature 25,317 Float
M51 motor temperature 25,317 Float
Bench transformer temperature 25,317 Float

05.05.2023. As can be seen in Table 3, there are two types of data structures in the data
set: categorical and numerical. Table 4 also shows the number of filled values in each
data set.

The variable representing the system status is designated as the target variable and
represents the main element that the model is trying to predict. This critical parameter
describes the system’s current or future performance or state. All other variables are
considered independent variables that influence the target variable.

Correlation analysis was conducted to examine the relationship between the variables,
and the results are visualized in Fig. 3. Dark red indicates negative correlation, while dark
blue represents a positive correlation, with darker the colors signifying stronger
relationships. For example, a strong positive correlation is observed between M51 Motor
Temperature and Bench Transformer Temperature, shown by a dark blue shade in the
Fig. 3.

The results of the correlation analysis between the numerical variables in the dataset are
visualized in a heat map. Correlation coefficients range between —1 and 1; where values
near 1 indicate a strong positive correlation, and values near —1 indicate strong negative
correlation. Variables with a coefficient of 0 have no significant relationship.
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Table 4 Frequency values of target variable.

Values of target variable Frequency
Normal 21,413
Warning: Memory protection 193
Warning: Invalid format 176
Warning: Memory protection (Auto Operation) 54
Warning: No Mdi data 39
Warning: Have the same program 23
Fault: Cutting block start locked 12
Warning: Cutting feed overload 9
Warning: Invalid address entry 8
Warning: Data cannot be renewed 7
Warning: Automatic calculation impossible 6
Fault: Overload 5
Warning: Cursor position is wrong 5
Warning: Mazatrol programming selected 2
Warning: Collision 1
Warning: Cannot change unit 1
Warning: Data missing 1
Warning: Soft limit 1

The analysis revealsa moderate positive correlation between axis loading (e.g., X Axis
Loading, Y Axis Loading) and Spindle Temperature and Spindle Speed (e.g., 0.64 between
Y Axis Loading and Spindle Temperature). This indicates that an increase in axis loading
can have an impact on spindle temperature and speed. However, low or non-significant
correlations were found between some variables.

In particular, Anamil Coolant Oil Level, Apparatus Hydraulic Oil Level and Hydraulic
Oil Level were left blank in the correlation matrix because these variables contain constant
values and therefore their correlations cannot be calculated. It is foreseen that these fixed
variables will make a limited contribution to the modeling process.

Following the correlation table indicating elevated values among most entities, a deeper
analysis of the underlying causes and consequences of these findings was conducted. The
correlation table derived from the dataset reveals that the correlation coefficients among
the majority of items are 1.00, signifying perfect linear relationships. The outcome was
further investigated to ascertain its underlying reasons.

Initially, variables including X Axis Loading, Y Axis Loading, and Z Axis Loading
demonstrate substantial correlations owing to their restricted variability and analogous
patterns across data. These variables probably denote interconnected physical processes or
quantify overlapping phenomena, leading to markedly comparable behavior. Furthermore,
it was noted that variables such as Spindle Loading and Spindle Speed exhibit a substantial
correlation with axis loads, indicating a functional or deterministic relationship intrinsic to
the examined system. This is anticipated in systems where mechanical or physical
interdependencies link variables.
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Figure 3 Correlation analysis. Full-size K&l DOT: 10.7717/peerj-cs.2999/fig-3

These relationships were also revealed by preprocessing. All missing values were
removed during data purification, removing imputation artifacts. This method improved
data integrity but may have increased predictable patterns by reducing noise and
variability. Despite perfect correlations, similarity measures like cosine similarity may vary
due to magnitude or distribution differences. Variables with similar trends but different
magnitudes can have high correlation but low similarity. This shows that correlation
measures linear relationships, while similarity indices measure other data patterns.

Data preprocessing

To ensure accurate and trustworthy ML models, the dataset was preprocessed to treat

missing values, manage outliers, and resolve class imbalance, a major concern in this work.
As shown in Table 5, missing values occurred primarily due to internet outages during

data recording. The Emergency Status variable had the highest number of missing entries.

After identifying rows with missing values, the dataset was reduced from 30,622 to 19,472
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Table 5 Missing data check.

Feature name Empty value
Grease oil level 5,305
DateTime 0

X axis loading 8,663
Y axis loading 8,664
Z axis loading 8,664
Spindle loading 8,666
Spindle speed 8,666
Spindle temperature 8,737
Spindle temperature status 9,257
Servo status 9,257
Spindle condition 9,257
Emergency status 9,265
System status 8,666
Anamil coolant oil level 7,163
Anamil coolant oil temperature 7,162
Apparatus hydraulic oil level 5,305
Apparatus hydraulic oil temperature 5,305
Electric panel temperature 7,163
Hydraulic oil level 5,305
Hydraulic oil temperature 5,305
M51 motor temperature 5,305
Bench transformer temperature 5,305

records by removing 11,150 incomplete rows. Following this process, all columns were
verified to contain no missing values.

Certain variables, such as Grease Oil Level, Anamil Coolant Qil Level, Apparatus
Hydraulic Oil Level, and Hydraulic Oil Level, consistently contained only zero values. This
issue was communicated to the relevant company.

Outliers, which can distort model performance, were identified and corrected to ensure
data reliability. Figure 4 illustrates the distributions of numerical variables prior to outlier
processing.

For outlier detection, values outside the 0.05 and 0.95 range of each variable’s
distribution were identified and adjusted to the nearest limit. This process effectively
eliminated all outliers in the dataset.

The system state, used as the target variable, represent the class frequencies, constitutes
the target variable in the data set used. The class frequencies, which are detailed in Table 4.
In line with the discussions with the company, normal values represent the optimal
operating conditions of the machine, while other values indicate the need for maintenance.
Two models were created: one for all system frequencies and another grouping system

status as 1 for normal values and 0 for others, using feature engineering.
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Data normalization uniformizes information with different scales, reducing model

accuracy issues in ML and statistical analysis. This study used min-max normalization to

adjust data to 0-1. This method normalized all dataset values.

The dataset used in this study has a class imbalance, with 16,201 “Normal” observations

and 8,648 “Fault” observations. This discrepancy could prejudice ML algorithms, lowering

minority class performance. We randomly selected 8,648 “Normal” observations to equal

the “Fault” class count using undersampling. This change ensured fair class representation,

improving model learning. The goal variable was divided into two groups: “Normal”

(1, optimal operation) and “Fault” (0, fault conditions). This binary classification

optimized modeling by distinguishing normal and incorrect scenarios. The final balanced

dataset has 8,648 observations per class after these modifications, providing a solid training

and assessment base.

Feature selection was performed to eliminate unnecessary or ineffective variables and

identify those that improve model performance. The feature selection process was

completed by selecting five variables to be modeled with the SelectKBest method. Related

variables are DateTime, Spindle Temperature, Animal Coolant Oil Temperature,

M51 Motor Temperature, Bench Transformer Temperature.
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Data preprocessing steps, including missing data analysis, normalization, and outlier
managementwere applied to optimize the data set for ML algorithms. Various algorithm
were used and compared during modeling, including DT, NB, kNN, SVM, Adaptive
Boosting (AdaBoost), RF, CatBoost, XGBoost and LightGBM.

During the training and evaluation of the model, train-test split and k-fold
cross-validation methods were used to improve model performance. Cross-validation
played a critical role in evaluating the overall performance of the model and minimizing
problems such as overfitting.

A two-stage approach was adopted for the target variable. In the first stage, the model
treated the target variable was simplified into two categories: “Normal” values (1) and
“Abnormal” values (0), redefining the problem as binary classification. This dual approach
was used to evaluate classification challenges at different levels and determine the most
effective strategy.

The examination of the dataset indicated a substantial class imbalance: 16,201 instances
in the “Normal” class and 8,648 in the “Abnormal” class. To rectify this, undersampling
was implemented, decreasing the “Normal” class to 8,648 observations to align with the
“Abnormal” class count. This produced a balanced dataset including 8,648 observations
per class, so ensuring rigorous training and assessment.

RESULTS

Since the target variable is categorical, classification metrics such as accuracy, precision,
recall and F1-score were used to evaluate model performance.

The discrimination approach was first applied to all class frequencies of the system state
variable. The target variable was subsequently categorized into two groups: normal values
and erroneous values. The performance of the model was subsequently assessed for both
scenarios. The dataset was divided into 80% for training and 20% for testing in the
separation procedure. Table 6 displays the performance metrics for all class frequencies,
whereas Table 7 encapsulates the outcomes for the binary classification framework of the
target variable.

In the k-layer cross-validation method, k was set as 10 and model building was
performed. Due to the dataset’s imbalance, partitioning could not be applied using all class
values of the target variable. As a result, this method was only used with the binary
structure of the target variable, which included normal and erroneous conditions. Table 8
presents the performance metrics for the binary classification structure.

Hyperparameters were utilized during the model building process to enhance the
learning and testing capabilities of the algorithms. Table 9 lists the algorithms and the
manually tuned hyperparameters used to achieve optimal performance.

The hyperparameters shown in Table 9 were applied to the relevant algorithms and the
model performance values are shown in Table 10.

Table 11 presents the confusion matrices of the models on the dataset before the
undersampling process was applied.

The performance metrics following the undersampling process are shown in Table 12.
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Table 6 Achievement performances of the model evaluating whole class frequencies created using
the separation method.

Algorithm Accuracy Precision Recall Fl1-score
DT 0.906 0.907 0.909 0.908
NB 0.882 0.882 0.900 0.896
kNN 0.906 0.906 0.909 0.908
SVM 0.885 0.885 0.900 0.890
AdaBoost 0.904 0.903 0.910 0.907
RF 0.906 0.907 0.909 0.908
CatBoost 0.901 0.901 0.910 0.906
XGBoost 0.902 0.901 0.915 0.906
LightGBM 0.904 0.906 0.907 0.907
MLP 0.902 0.903 0.905 0.904

Table 7 Achievement performance of the model evaluating the binary class frequencies formed
using the separation method.

Algorithm Accuracy Precision Recall F1-score
DT 0.950 0.950 0.950 0.950
NB 0.922 0.922 0.950 0.936
kNN 0.946 0.946 0.949 0.948
SVM 0.925 0.925 0.950 0.937
AdaBoost 0.944 0.945 0.950 0.947
RF 0.946 0.947 0.949 0.948
CatBoost 0.941 0.941 0.950 0.946
XGBoost 0.947 0.946 0.950 0.948
LightGBM 0.944 0.946 0.947 0.947
MLP 0.945 0.944 0.949 0.946

Table 8 Model success performances evaluating binary class frequencies generated using K-layer
cross-validation method.

Algorithm Accuracy Precision Recall F1-score
DT 0.655 0.993 0.651 0.767
NB 0.968 0.972 0.996 0.984
kNN 0.663 0.990 0.659 0.772
SVM 0.972 0.972 1.0 0.980
AdaBoost 0.912 0.992 0.917 0.937
RF 0.732 0.993 0.722 0.814
CatBoost 0.853 0.993 0.855 0.910
XGBoost 0.740 0.993 0.738 0.825
LightGBM 0.817 0.989 0.821 0.888
MLP 0.958 0.960 0.965 0.962
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Table 9 Hyperparameters used in models.

Algorithm

Hyperparameters

DT

NB

kNN

SVM

AdaBoost
RF

CatBoost

XGBoost

LightGBM

MLP

Criterion: gini, entropy, log_loss

No changes were made as there was no need for hyperparameters.

N_neighbors: 2, 5, 10, 100,
Weights: uniform, distance,
Algorithm: ball_tree, kd_tree, brute,

Metric: euclidean, manhattan, chebyshev, minkowski,

P:1,2

C1,

Kernel: linear, poly, rbf, sigmoid,
Degree: 3, 5

Random_state : 1

N_estimators: 10, 50, 100,
Critesion: gini, entropy, log_loss,
Max_features: sqrt, log2

Learning_rate: 0.03, 0.1,
Depth: 4, 6, 8,
12_leaf reg: 1,3,5,7,9

Min_child_weight: 1, 5, 10,
Gamma: 0.5, 1, 1.5, 2, 5,
Subsample: 0.6, 0.8, 1.0,
Colsample_bytree: 0.6, 0.8, 1.0,
Max_depth: 3, 4, 5

Num_leaves: 20, 40, 60, 80, 100,
Min_child_samples: 5, 10, 15,
Max_depth: -1, 5, 10, 20,
Learning_rate: 0.05, 0.1, 0.1,
Reg_alpha: 0, 0.01, 0.03
Hidden_layer_sizes: (100),
Activation: relu,

Solver: adam,
Learning_rate_init: 0.01

Table 10 Performance of models built using hyperparameters.

Algorithm Accuracy Precision Recall F1-score
DT 0.997 0.997 0.999 0.999
NB 0.998 0.998 0.999 0.998
kNN 0.995 0.996 0.998 0.997
SVM 0.995 0.996 0.996 0.996
AdaBoost 0.993 0.992 1.0 0.996
RF 0.993 0.995 0.997 0.996
CatBoost 0.991 0.995 0.996 0.996
XGBoost 0.992 0.995 0.991 0.993
LightGBM 0.999 0.999 1.0 0.998
MLP 0.985 0.986 0.984 0.985
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Table 11 Confusion matrix results of all models built using hyperparameters.

Model Train confusion matrix Test confusion matrix
AdaBoost [[6627, 287], [58, 12907]] [[1662, 72], [19, 3217]]
Decision tree [[6903, 11], [7, 12958]] [[1729, 5], [14, 3222]]
K-Neighbors [[6914, 0], [0, 12965]] [[1705, 29], [22, 3214]]
Random forest [[6900, 14], [4, 12961]] [[1727, 7], [5, 3231]]
Naive Bayes [[6478, 436], [73, 12892]] [[1620, 114], [21, 3215]]
Gradient boosting [[6839, 75], [7, 12958]] [[1711, 23], [1, 3235]]
LGBMClassifier [[6905, 9], [7, 12958]] [[1730, 4], [1, 3235]]
XGBClassifier [[6839, 75], [7, 12958]] [[1711, 23], [1, 3235]]
CatBoost [[6839, 75], [7, 12958]] [[1711, 23], [1, 3235]]
MLP [[6875, 39], [12, 12953]] [[1712, 22], [10, 3225]]

Table 12 Performance values after undersampling.

Algorithm Accuracy Precision Recall F1-score
DT 0.875 0.874 0.874 0.874
NB 0.887 0.886 0.899 0.891
kNN 0.884 0.882 0.885 0.883
SVM 0.881 0.881 0.879 0.879
AdaBoost 0.875 0.895 0.910 0.902
RF 0.875 0.875 0.872 0.873
CatBoost 0.871 0.875 0.875 0.875
XGBoost 0.874 0.875 0.874 0.874
LightGBM 0.901 0.905 0.912 0.908
MLP 0.887 0.890 0.885 0.887

Subsequent to the undersampling procedure, diverse hyperparameters were
implemented across all algorithms, and their performance metrics were assessed. The
hyperparameters have been implemented in the algorithms, and the ideal values have been
identified to maximize performance for each model.

The hyperparameters for the AdaBoost model consist of param_n_estimators, denoting
the quantity of decision trees, and param_learning_rate, which regulates the learning rate.
The optimal outcomes for this model were attained with param_n_estimators configured
at 200 and param_learning rate established at 1.0.

The essential hyperparameters for the DT model include param_criterion, which
specifies the splitting criterion; param_max_depth, which establishes the maximum depth
of the tree; param_min_samples_split, which denotes the minimum number of samples
necessary to split a node; and param_min_samples_leaf, which indicates the minimum
number of samples required in a leaf node. The optimal outcomes for this model were
attained with param_criterion configured to entropy, param_max_depth established at 20,
param_min_samples_split set to 10, and param_min_samples_leaf defined as 1.
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The param_var_smoothing hyperparameter in the Naive Bayes algorithm
modifies the variance smoothing value. The optimal outcomes were attained with
param_var_smoothing configured to 0.1.

The LightGBM model’s main hyperparameters are param_num_leaves, which sets the
maximum number of leaf nodes, param_learning rate, which controls learning,
param_n_estimators, which specifies the number of decision trees, param_max_depth,
which sets tree depth, and param_min_child_samples, which sets leaf node sample depth.
With param_num_leaves set to 10.0, learning_rate to 0.1, n_estimators to 50.0, max_depth
to —1.0 (meaning infinite depth), and min_child_samples to 10.0, this model performed
best.

The CatBoost algorithm’s key hyperparameters are param_iterations, which controls
the number of trees, param_learning_rate, which controls learning rate, param_depth,
which controls tree depth, and param_I2_leaf reg, which controls leaf value L2
regularization. The best parameters for this model were 200.0 iterations, 0.1 learning rate,
4.0 depth, and 3.0 12 leaf reg.

The support vector machine (SVM) model’s main hyperparameters are param_C,
which controls regularization strength, param_gamma, which controls training instance
impact, and param_kernel, which determines the kernel function. Optimal results were
attained with param_C configured to 0.1, param_gamma designated as Scale, and
param_Kkernel specified as RBF.

The KNN algorithm has essential hyperparameters: param_n_neighbors, which
determines the count of neighbors for classification; param_weights, which outlines the
weighting approach for the neighbors; and param_metric, which indicates the distance
measurement technique employed. The optimal outcomes for this model were achieved
with param_n_neighbors configured to 3, param_weights designated as uniform, and
param_metric specified as euclidean.

The essential hyperparameters for the Random Forest model are param_n_estimators,
indicating the number of trees; param_max_depth, regulating the maximum depth of each
tree; param_min_samples_split, defining the minimum number of samples necessary to
split a node; param_min_samples_leaf, specifying the minimum number of samples in a
leaf node; and param_criterion, determining the splitting criterion. The optimal outcomes
for this model were achieved with param_n_estimators configured to 100,
param_max_depth set to 10, param_min_samples_split established at 5,
param_min_samples_leaf fixed at 1, and param_criterion designated as gini.

There were a number of hyperparameters utilized for MLP model. The
hidden_layer_sizes parameter specifies the size and number of hidden layers in the
network; the best setup was one layer with 100 neurons. The activation parameter specifies
the activation function employed by neurons; the best performance was achieved with the
Rectified Linear Unit (ReLU) function. The solver parameter determines the optimization
algorithm employed during training; adaptive moment estimation (Adam) was chosen due
to its effectiveness at dealing with sparse gradients. Finally, learning rate_init specifies the
initial learning rate, with 0.01 producing the most precise and stable convergence in this
study.
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Table 13 Best performance metrics across all algorithms.

Algorithm Accuracy Precision Recall F1-score
AdaBoost 0.901662 0.856985 0.964426 0.907508
Decision tree 0.936017 0.932504 0.940700 0.936201
(KNN) 0.909939 0.918637 0.900588 0.909151
Random forest 0.958524 0.935297 0.985770 0.959741
Naive Bayes 0.707389 0.760575 0.604230 0.672788
LightGBM 0.949049 0.922337 0.981036 0.950705
CatBoost 0.954952 0.934732 0.978655 0.956103
(SVM) 0.899152 0.874732 0.908655 0.896103
MLP 0.922663 0.903454 0.944564 0.923766

Table 14 AUC, Cohen’s Kappa, and MCC scores after undersampling.

Model AUC score Cohen’s Kappa MCC
AdaBoost 0.943 0.750 0.750
Decision Tree 0.874 0.749 0.750
KNN 0.902 0.693 0.695
Random Forest 0.977 0.842 0.842
Naive Bayes 0.804 0.267 0.288
SVM 0.959 0.791 0.792
LGBM 0.84 0.815 0.801
XGBoost 0.966 0.775 0.778
CatBoost 0.834 0.801 0.806
MLP 0.954 0.740 0.741

Each method underwent testing with 10 distinct hyperparameter combinations, and
Table 13 presents the accuracy, precision, recall, and F1 scores attained with the optimal
hyperparameters.

Although conventional performance measures like accuracy, precision, recall, and F1-
score are typically used to measure the success of classification models, this research added
other measures—AUC, Cohen’s Kappa, and MCC—to also determine the predictive
capability of each model. Each of these metrics gives distinct information: AUC assesses
the ability of the model to distinguish between positive and negative cases, Cohen’s Kappa
adjusts for chance agreement, and MCC gives a balanced metric by considering all the
components in the confusion matrix. As can be seen in Table 14, models such as random
forest (AUC: 0.977), XGBoost (0.966), SVM (0.935), and MLP (0.954) performed well with
high scores across AUC, Cohen’s Kappa, and MCC, indicating robust and reliable
classification performance. Notably, Random Forest achieved the highest AUC score
(0.977) followed by the others, all of which recorded relatively stable performance as
reflective of applicability to real-life predictive maintenance applications.

The categorization, data balancing, and hyperparameter tuning methods showed
significant model performance differences. Figure 5 compares binary vs multiclass
classification, imbalanced vs balanced data, and standard vs optimized models.
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Figure 5 Accuracy curves for different scenarios.
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Binary vs multiclass classification

Binary classification distinguishes between “Normal” and “Others,” whereas multiclass
classification encompasses all error classes. Training accuracy stabilizes about epoch 30,
with validation accuracy soon thereafter, indicating that binary classification acquires
knowledge rapidly and generalizes effectively. Multiclass classification initially exhibits
lower accuracy and a more significant disparity between training and validation accuracy,
suggesting generalization challenges associated with task complexity.
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Imbalanced vs balanced data

Class imbalance significantly impacts model efficacy. The model rapidly memorizes the
majority class in the presence of imbalanced data, resulting in diminished validation
accuracy. Conversely, balanced data consistently enhances training and validation
accuracy, hence boosting generalization and mitigating the limitations of unbalanced
datasets.

Standard vs optimized model

Standard models with default hyperparameters exhibit overfitting and demonstrate
sluggish learning, resulting in a disparity between training and validation accuracy. As the
validation accuracy aligns with the training accuracy, improved models exhibit accelerated
learning and enhanced generalization. This demonstrates how hyperparameter tuning
enhances model performance.

DISCUSSION AND CONCLUSION

This study performed a comparative comparison of ML methods to improve the efficacy of
predictive maintenance applications on CNC machines within the brake sector. The use of
many algorithms, including AdaBoost, random forest, LightGBM, CatBoost, and support
vector machine, together with precise performance measures for accuracy, precision,
recall, and F1 score, has enhanced the results, offering a thorough review. The findings
indicate that employing the undersampling technique to tackle class imbalance has
markedly enhanced the attainment of more balanced and consistent results.
Undersampling mitigated the predominance of majority class samples in the training
dataset, enabling the algorithms to concentrate equally on both classes, thus enhancing
overall performance, particularly in recall and F1 measures.

Of the evaluated models, random forest proved to be the most efficacious algorithm,
attaining the highest accuracy of 95.85%, accompanied by significant precision, recall, and
F1 scores of 93.52%, 98.58%, and 95.97%, respectively. This highlights the ensemble
structure’s capacity to manage complex and varied datasets efficiently. Likewise,
LightGBM and CatBoost achieved impressive results, with accuracies of 94.90% and
95.50%, respectively, demonstrating their efficacy in predictive maintenance applications.
Although SVM exhibited commendable performance with an accuracy of 89.92%, its little
inferior recall score (90.87%) suggests possible avenues for enhancement relative to
ensemble-based models. These findings validate the effectiveness of ensemble methods and
hyperparameter tuning in predictive maintenance procedures. The undersampling
technique was essential in enabling these algorithms to properly manage unbalanced input,
hence enhancing their reliability.

The model performances, evaluated by accuracy, precision, recall, and F1-score, were
compared. Additionally, to ensure sound decision-making in high-stakes systems, this
study emphasizes the use of enhanced evaluation metrics such as AUC, Cohen’s Kappa,
and MCC, which offer a more informative statistical insight into classification goodness
than traditional accuracy-based measures. The model performances were evaluated using a
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comprehensive set of metrics including accuracy, precision, recall, F1-score, AUC, Cohen’s
Kappa, and MCC to ensure a robust comparison.

This study emphasizes the essential function of digitalization and decision support
systems within operational contexts from a management information systems (MIS)
viewpoint. Predictive maintenance applications, particularly in manufacturing industries,
diminish downtime, improve operational efficiency, and minimize maintenance expenses
by preemptively recognizing machine faults. The incorporation of ML algorithms
enhances data-driven decision-making, allowing organizations to optimize resource
allocation and improve strategic interventions. Undersampling exemplifies how data
preparation techniques can be effectively employed to tackle real-world issues, such as
imbalanced datasets in operational contexts.

Furthermore, the implementation of techniques such as hyperparameter optimization,
undersampling, and k-fold cross-validation has been confirmed as effective methods to
enhance the accuracy and dependability of systems employed in MIS. This study highlights
the significance of utilizing ML models for predictive maintenance and diverse
organizational activities, including supply chain optimization, financial analysis, and
customer relationship management (CRM). These transdisciplinary applications establish
a robust basis for data-driven change throughout business units.

This study demonstrates that ML technologies, particularly ensemble methods such as
random forest, LightGBM, and CatBoost, are essential for improving organizational
efficiency and decision-making. The remarkable effectiveness of ensemble models,
together with the fair results achieved through undersampling, highlights the strategic
ability of data science to align operational needs with managerial perspectives. These
findings establish a robust foundation for future study and highlight the importance of
integrating data science techniques with Management Information Systems to promote
sustainable growth and competitive advantage in a digital economy. Addressing data
imbalances using methods like undersampling ensures that ML solutions are equitable,
robust, and highly effective across various business environments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Can Aydin conceived and designed the experiments, performed the computation work,
authored or reviewed drafts of the article, and approved the final draft.

e Burak Evrentug performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.

Aydin and Evrentug (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2999 21/24


http://dx.doi.org/10.7717/peerj-cs.2999
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:
The code and data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2999#supplemental-information.

REFERENCES

Abbas AK, Al-haideri NA, Bashikh AA. 2019. Implementing artificial neural networks and
support vector machines to predict lost circulation. Egyptian Journal of Petroleum 28(4):339-
347 DOI 10.1016/j.ejpe.2019.06.006.

Abu-Samah A, Shahzad MK, Zamai E, Said AB. 2015. Failure prediction methodology for
improved proactive maintenance using Bayesian approach. IFAC-PapersOnLine 48(21):844-851
DOI 10.1016/j.ifacol.2015.09.632.

Aldahiri A, Alrashed B, Hussain W. 2021. Trends in using IoT with machine learning in health
prediction system. Forecasting 3(1):181-207 DOI 10.3390/forecast3010012.

Amihai I, Gitzel R, Kotriwala AM, Pareschi D, Subbiah S, Sosale G. 2018. An industrial case
study using vibration data and machine learning to predict asset health. In: Proceedings of the
2018 IEEE 20th Conference on Business Informatics (CBI). Vol. 1. Piscataway: IEEE, 178-185.

Amruthnath N, Gupta T. 2018. A research study on unsupervised machine learning algorithms for
early fault detection in predictive maintenance. In: Proceedings of the 2018 5th International
Conference on Industrial Engineering and Applications (ICIEA). Piscataway: IEEE, 355-361.

Aydin O, Kuru N, Ozdemir MT, Aslan S. 2021. Investigation of digital twin applications in
industry 4.0 based production systems and predictive maintenance approaches. Gazi University
Journal of Science Part A: Engineering and Innovation 33(3):679-689 [In Turkish].

Aydin O, Guldamlasioglu S. 2017. Using LSTM networks to predict engine condition on large
scale data processing framework. In: Proceedings of the 2017 4th International Conference on
Electrical and Electronic Engineering (ICEEE). Piscataway: IEEE, 281-285.

Bektas O. 2020. Defining rotary mechanism deterioration curve for predictive maintenance.
European Journal of Science and Technology 19:420-428 [In Turkish]
DOI 10.31590/ejosat.708257.

Bogehoj L. 2016. Artificial intelligence vs. human intelligence (Man vs. Machine). Discussion
Paper. Available at https://www.researchgate.net/publication/318745237_Artificial_Intelligence_
vs_Human_Intelligence_Man_vs_Machine_2016.

Borgi T, Hidri A, Neef B, Naceur MS. 2017. Data analytics for predictive maintenance of
industrial robots. In: 2017 International Conference on Advanced Systems and Electric
Technologies (IC_ASET). Piscataway: IEEE, 412-417.

Bousdekis A, Lepenioti K, Apostolou D, Mentzas G. 2019. Decision making in predictive
maintenance: literature review and research Agenda for industry 4.0. IFAC-PapersOnLine
52(13):607-612 DOI 10.1016/j.ifacol.2019.11.226.

Cekik R, Turan A. 2025. Deep learning for anomaly detection in CNC machine vibration data: a
RoughLSTM-based approach. Applied Sciences 15(6):3179 DOI 10.3390/app15063179.

Cmaroglu S. 2017. Comparison of machine learning regression methods in predicting health
expenditure. Uludag University Journal of the Faculty of Engineering 22(2):179-200 [In Turkish]
DOI 10.17482/uumfd.338805.

Aydin and Evrentug (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2999 22/24


http://dx.doi.org/10.7717/peerj-cs.2999#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2999#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2999#supplemental-information
http://dx.doi.org/10.1016/j.ejpe.2019.06.006
http://dx.doi.org/10.1016/j.ifacol.2015.09.632
http://dx.doi.org/10.3390/forecast3010012
http://dx.doi.org/10.31590/ejosat.708257
https://www.researchgate.net/publication/318745237_Artificial_Intelligence_vs_Human_Intelligence_Man_vs_Machine_2016
https://www.researchgate.net/publication/318745237_Artificial_Intelligence_vs_Human_Intelligence_Man_vs_Machine_2016
http://dx.doi.org/10.1016/j.ifacol.2019.11.226
http://dx.doi.org/10.3390/app15063179
http://dx.doi.org/10.17482/uumfd.338805
http://dx.doi.org/10.7717/peerj-cs.2999
https://peerj.com/computer-science/

PeerJ Computer Science

Dogan O, Baloglu N. 2020. Industry 4.0 conceptual awareness scale. KMU Journal of Social and
Economic Research 22(38):58-81 [In Turkish].

Gougam F, Afia A, Aitchikh MA, Touzout W, Rahmoune C, Benazzouz D. 2024. Computer
numerical control machine tool wear monitoring through a data-driven approach. Advances in
Mechanical Engineering 16(2):16878132241229314 DOI 10.1177/16878132241229314.

Justus V, Kanagachidambaresan GR. 2022. Intelligent single-board computer for industry 4.0:
efficient real-time monitoring system for anomaly detection in CNC machines. Microprocessors
and Microsystems 93(2):104629 DOI 10.1016/j.micpro.2022.104629.

Kane AP, Kore AS, Khandale AN, Nigade SS, Joshi PP. 2022. Predictive maintenance using
machine learning. ArXiv DOI 10.48550/arXiv.2205.09402.

Kannadaguli P. 2020. IoT based CNC machine condition monitoring system using machine
learning techniques. In: Proceedings of the 2020 IEEE 9th International Conference on
Communication Systems and Network Technologies (CSNT). Piscataway: IEEE, 61-65.

Kasiviswanathan S, Gnanasekaran S, Thangamuthu M, Rakkiyannan J. 2024. Machine-learning-
and Internet-of-Things-driven techniques for monitoring tool wear in machining process: a

comprehensive review. Journal of Sensor and Actuator Networks 13(5):53
DOI 10.3390/jsan13050053.

Merkt O. 2019. On the use of predictive models for improving the quality of industrial
maintenance: an analytical literature review of maintenance strategies. In: FedCSIS. Poland,
693-704.

Nikfar M, Bitencourt J, Mykoniatis K. 2022. A two-phase machine learning approach for
predictive maintenance of low voltage industrial motors. Procedia Computer Science
200:111-120 DOI 10.1016/j.procs.2022.01.210.

Ozkat EC. 2021. Determination of health indicator in high-speed bearings using machine learning
methodology. European Journal of Science and Technology 22:176-183 [In Turkish]
DOI 10.31590/ejosat.843465.

Paszkiewicz A, Piecuch G, Zabinski T, Bolanowski M, Salach M, Raczka D. 2023. Estimation of
tool life in the milling process—testing regression models. Sensors 23(23):9346
DOI 10.3390/523239346.

Selvaraj V, Min S. 2023. Real-time fault identification system for a retrofitted ultra-precision CNC
machine from equipment’s power consumption data: a case study of an implementation.
International Journal of Precision Engineering and Manufacturing-Green Technology 10(4):925-
941 DOI 10.1007/s40684-022-00497-x.

Shearer C. 2000. The crisp-DM model: the new blueprint for data mining. Journal of Data
Warehousing 5(4):13-23.

Sindhu V. 2020. An empirical science research on bioinformatics in machine learning. Journal of
Mechanics Continua and Mathematical Sciences 7(1):86-94
DOI 10.26782/jmcms.spl.7/2020.02.00006.

Soylemezoglu A, Jagannathan S, Saygin C. 2010. Mahalanobis Taguchi system (MTS) as a
prognostics tool for rolling element bearing failures. In: Proceedings of the 2010 IEEE
International Conference on Prognostics and Health Management (PHM). Piscataway: IEEE.

Soylu B, Yigiter H, Sarikaya V, Sandik¢1 Z, Utku A. 2022. A machine learning based decision
support system and an application for predictive maintenance planning. Efficiency Magazine
2022:48-66 [In Turkish] DOI 10.51551/verimlilik.988104.

Tambake N, Deshmukh B, Pardeshi S, Salunkhe S, Cep R, Nasr EA. 2024. Condition monitoring
of a CNC hobbing cutter using machine learning approach. Advances in Mechanical Engineering
16(9):16878132241275750 DOI 10.1177/16878132241275750.

Aydin and Evrentug (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2999 23/24


http://dx.doi.org/10.1177/16878132241229314
http://dx.doi.org/10.1016/j.micpro.2022.104629
http://dx.doi.org/10.48550/arXiv.2205.09402
http://dx.doi.org/10.3390/jsan13050053
http://dx.doi.org/10.1016/j.procs.2022.01.210
http://dx.doi.org/10.31590/ejosat.843465
http://dx.doi.org/10.3390/s23239346
http://dx.doi.org/10.1007/s40684-022-00497-x
http://dx.doi.org/10.26782/jmcms.spl.7/2020.02.00006
http://dx.doi.org/10.51551/verimlilik.988104
http://dx.doi.org/10.1177/16878132241275750
http://dx.doi.org/10.7717/peerj-cs.2999
https://peerj.com/computer-science/

PeerJ Computer Science

Tas HY. 2018. The potential effects of the fourth industrial revolution (Industry 4.0) on working
life and employment. OPUS International Journal of Society Research 9(16):1817-1836 [In
Turkish] DOI 10.26466/0pus.479123.

Thessen AE. 2016. Adoption of machine learning techniques in ecology and earth science. One
Ecosystem 1(2):1 DOI 10.3897/oneeco.1.e8621.

Tong R, WuJ, LiY, Chen C, Zhou Q, Hu X. 2023. A survey on reinforcement learning methods in
bionic underwater robots. Biomimetics 8(2):168-197 DOI 10.3390/biomimetics8020168.

Yeardley AS, Ejeh JO, Allen L, Brown SF, Cordiner J. 2022. Integrating machine learning ML
techniques into optimal maintenance scheduling. Computers ¢~ Chemical Engineering
166:107958 DOI 10.1016/j.ifacol.2024.09.155.

Zhong D, Tang X, Yan J, Ding K, Ma Y. 2023. Overview of predictive maintenance based on
digital twin technology. Heliyon 9(4):e14534 DOI 10.1016/j.heliyon.2023.e14534.

Aydin and Evrentug (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2999 24/24


http://dx.doi.org/10.26466/opus.479123
http://dx.doi.org/10.3897/oneeco.1.e8621
http://dx.doi.org/10.3390/biomimetics8020168
http://dx.doi.org/10.1016/j.ifacol.2024.09.155
http://dx.doi.org/10.1016/j.heliyon.2023.e14534
http://dx.doi.org/10.7717/peerj-cs.2999
https://peerj.com/computer-science/

	Evaluation of predictive maintenance efficiency with the comparison of machine learning models in machining production process in brake industry ...
	Introduction
	Materials and Methods
	Results
	Discussion and Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


