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essential practice, employing traditional model-based, sig-
nal-based, and modern data-driven approaches to evaluate 
the health of motors, generators, and other rotating equip-
ment. Model-based methods rely on physical or mathe-
matical representations of machine behavior, signal-based 
techniques use signal processing to analyze sensor outputs 
such as vibration and sound, and data-driven models har-
ness artificial intelligence (AI) to uncover and detect pat-
terns from raw data [13]. Ensuring reliability through these 
strategies minimizes costly downtimes and prevents safety 
hazards.

Beyond diagnostic techniques, advancements in sensor 
technologies have been instrumental in improving fault 
diagnosis capabilities, providing richer, more precise data to 
feed these monitoring systems. Modern industrial systems 
are often monitored using a variety of sensors that track dif-
ferent parameters such as temperature, current, sound, vibra-
tion, and visual data like images or videos. Accelerometers 
are the most commonly used sensors for machinery fault 
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to inevitable wear and an increased risk of failure [28]. 
To address this, condition monitoring has emerged as an 
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Abstract
Purpose  The primary aim of this study is to enhance fault diagnosis in induction machines by leveraging the Padé Approxi-
mant Neuron (PAON) model. While accelerometers and microphones are standard in motor condition monitoring, deep 
learning models with nonlinear neuron architectures offer promising improvements in diagnostic performance. This research 
investigates whether Padé Approximant Neural Networks (PadéNets) can outperform conventional Convolutional Neural 
Networks (CNNs) and Self-Organized Operational Neural Networks (Self-ONNs) in the diagnosis of electrical and mechani-
cal faults from vibration and acoustic data.
Methods  We evaluate and compare the diagnostic capabilities of three deep learning architectures: one-dimensional CNNs, 
Self-ONNs, and PadéNets. These models are tested on the University of Ottawa’s publicly available constant-speed induc-
tion motor datasets, which include both vibration and acoustic sensor data. The PadéNet model is designed to introduce 
enhanced nonlinearity and is compatible with unbounded activation functions such as LeakyReLU.
Results and Conclusion  PadéNets consistently outperformed the baseline models, achieving diagnostic accuracies of 99.96%, 
98.26%, 97.61%, and 98.33% for accelerometers 1, 2, 3, and the acoustic sensor, respectively. The enhanced nonlinearity 
of PadéNets, together with their compatibility with unbounded activation functions, significantly improves fault diagnosis 
performance in induction motor condition monitoring.
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diagnosis, favored for their high sensitivity, high dynamic 
range, and wide bandwidth in frequency response [2, 40]. 
During rotary motion, components of rotating machines 
produce vibrations, with characteristic frequencies deter-
mined by their rotational speed, geometry, and interactions 
with other parts [13]. The vibration amplitude at a specific 
frequency is predictable but increases with wear or damage, 
making Fast Fourier Transform (FFT) analysis crucial for 
detecting fault-induced changes [3]. However, accelerome-
ters are contact sensors, and their response can significantly 
vary depending on the mounting location, which is one of 
the most common problems associated with these sensors. 
As a non-contact alternative, microphones can be used for 
condition monitoring, offering several advantages such as 
lower cost, easier installation, and the ability to monitor mul-
tiple machines simultaneously without the need for physical 
attachment [21, 38]. Acoustic-based monitoring eliminates 
the need for mechanical coupling and avoids potential sen-
sor mounting resonances that can distort vibration measure-
ments. These diverse sensing modalities generate complex, 
high-dimensional time series data often at high sampling 
rates, resulting in vast amounts of information in indus-
trial environments. Deep learning (DL) models can handle 
high-velocity data streams more effectively than traditional 
spectral analysis and statistical pattern recognition methods 
for several reasons. They process high-dimensional data, 
automatically extract relevant features end-to-end without 
manual intervention [13, 28], capture complex, nonlinear 
relationships, and adapt to evolving data over time [6, 29]. 
Additionally, DL architectures scale efficiently, managing 
vast datasets from multiple sensors in industrial environ-
ments [19, 36, 41]. Consequently, DL architectures, such 
as Convolutional Neural Networks (CNNs) [5, 13, 16, 17], 
Recurrent Neural Networks (RNNs) [44, 46, 47], and hybrid 
models [4, 10, 12, 39], potentially incorporating attention 
mechanisms, have become widely adopted computational 
frameworks for fault diagnostics.

CNNs have been widely adopted for machine fault clas-
sification, which is one of the earliest and most extensively 
studied applications of fault diagnosis, drawing direct inspi-
ration from image classification techniques [34]. In this 
context, both one-dimensional (1D) and two-dimensional 
(2D) CNNs have been utilized. The 1D CNNs are special-
ized for processing time series data such as raw vibration or 
audio signals, whereas the 2D CNNs are designed to man-
age multidimensional data, often by converting 1D signals 
into 2D representations that capture both spatial and tempo-
ral relationships. For example, in [43], vibration spectrum 
imaging (VSI) was used to transform normalized spectral 
amplitudes from segmented vibration signals into images. 
These images were subsequently fed into a CNN for bearing 
fault classification. The proposed VSI-CNN model achieved 

a classification accuracy of around 99%. Similarly, in [33], 
a 2D CNN model achieved an accuracy of 99.38% by uti-
lizing 2D image representations of 1D raw vibration data 
from the Case Western Reserve University (CWRU) bear-
ing dataset. In addition to these transformed inputs, thermal 
images have also been utilized as inputs for 2D CNNs in 
fault diagnosis [35, 42]. On the other hand, 1D CNNs pro-
vide a simple and computationally efficient way to perform 
fault diagnosis by directly processing raw 1D input data. 
Numerous studies [5, 7, 8, 13, 45] have applied 1D CNNs 
to machinery fault diagnosis, using either raw sensor data or 
engineered features as input.

While CNNs exhibit strong performance under controlled 
conditions, prior studies [24, 25] emphasize that conven-
tional CNNs, built upon a fixed architecture and first-order 
neuron model, often struggle to capture highly nonlinear 
and complex patterns inherent in real-world data. Although 
nonlinearity is introduced through pointwise activation 
functions, such as ReLU [32] and its variant LeakyReLU 
[30], these functions are predefined and uniformly applied 
across layers, limiting the network’s representational flex-
ibility. To address this constraint, Padé Activation Units 
(PAUs) were introduced in [31] as a learnable alternative to 
traditional hand-crafted activations. PAUs model activation 
functions using Padé approximants, which are rational func-
tions expressed as the ratio of two polynomials. This formu-
lation enables the network to learn complex, task-specific 
nonlinear mappings during training, as both the numerator 
and denominator coefficients are optimized via backpropa-
gation (BP). By making the activation functions adaptive 
rather than fixed, PAUs provide a more expressive and flex-
ible framework for capturing intricate data patterns. To fur-
ther extend this paradigm and enhance the network’s ability 
to model nonlinearities at the neuron level, Self-Organized 
Operational Neural Networks (Self-ONNs) have been pro-
posed [27]. Unlike traditional CNNs, which rely solely on 
pointwise nonlinear activations, Self-ONNs incorporate 
nonlinear neuron models. They incorporate generative neu-
rons that approximate the necessary nonlinear mappings by 
utilizing a truncated Taylor series expansion centered at the 
origin, specifically applying a Maclaurin series expansion 
up to a predefined order. Therefore, generative neurons use 
the input along with its higher-order powers and compute 
their weighted sum to approximate a nonlinear mapping 
in the neuron itself. The enhanced fault diagnosis perfor-
mance of 1D and 2D Self-ONNs has been validated in stud-
ies on machinery fault diagnosis, utilizing various sensor 
modalities [14, 15, 20, 22]. While generative neurons in 
Self-ONNs capture greater nonlinearity, the linear combina-
tion of different input orders can lead to instability outside 
a safe computation range. Moreover, since Taylor series 
approximations are most accurate near the expansion point, 
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the output of generative neurons is constrained by a tanh 
activation function, which may suffer from vanishing gradi-
ents during training. To address this limitation, a new class 
of networks known as PadéNets, built using Padé Approxi-
mant Neurons (PAONs) has been proposed [18]. Padé 
neurons utilize Padé approximation at the neuron level by 
representing nonlinear functions as ratios of polynomials. 
In PadéNets, a single neuron within a 1D Padé layer with 
a kernel size of k effectively learns k distinct Padé approxi-
mants, each represented as a ratio of two polynomials. This 
structure significantly increases the degrees of freedom 
available to the model compared to PAUs, as it introduces 
nonlinearity within the kernel itself, in addition to the non-
linearity contributed by the activation function. They have 
been shown to offer improved performance compared to 
Taylor-based generative neurons and convolutional neurons 
in single-image super-resolution tasks [18]. Furthermore, 
PAONs generalize several existing neuron models and can 
effectively serve as a replacement for conventional convo-
lutional neurons within CNN architectures. To leverage the 
superior feature extraction capabilities of PAONs, this study 
introduces the use of 1D PadéNets for the classification of 
electrical and mechanical faults in three-phase induction 
machines. The main contributions of this work can be sum-
marized as follows:

	● We present, for the first time, the application of 1D Pa-
déNets for the classification of electrical and mechanical 
faults in three-phase induction motors.

	● We evaluate 1D PadéNets separately on benchmark vi-
bration and audio datasets from the University of Ot-
tawa [37], demonstrating robust results across different 
sensing modalities.

	● We compare 1D PadéNets with 1D Self-ONNs and 1D 
CNNs to highlight the superior diagnostic accuracy en-
abled by Padé neurons.

The proposed 1D PadéNet-based framework for fault diag-
nosis is illustrated in Fig. 1. Section “Methods” discusses 
the mathematical foundations of all evaluated models: 1D 
CNNs, 1D Self-ONNs, and 1D PadéNets. Section “Experi-
mental Evaluation” presents the experimental setup, includ-
ing the University of Ottawa constant-speed vibration and 
acoustic datasets [37], followed by details on preprocessing 
steps, training methodology, and evaluation metrics. Sec-
tion  “Results and Discussion” presents a thorough com-
parison of the fault diagnosis performance of each model, 
along with their computational complexities. Finally, Sec-
tion “Conclusions” concludes the paper and outlines poten-
tial directions for future research.

Methods

This section establishes the mathematical foundations and 
architectural characteristics of 1D CNNs, 1D Self-ONNs, 
and 1D PadéNets to enable their comparative evaluation in 
electric motor fault diagnosis.

...
...

...

......

... ... ... ... ... ... ...

...

Fig. 1  The proposed 1D PadéNet-based framework and the diagram of a Padé neuron with P = 2, Q = 1, where w0 represents the bias term in the 
numerator, (·)n denotes element-wise exponentiation of the input to the nth power, ∗ indicates convolution, and ··  implements Eq. 10
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sharing and localized connectivity at the kernel level. 
However, they can utilize a variety of functions as the 
nodal operators, including sinusoidal transformations, 
exponentials, or other nonlinear operations [25]. Addi-
tionally, instead of the standard additive pooling in CNNs, 
these models allow for alternative aggregation strategies 
such as taking the median, offering greater flexibility in 
learning complex patterns. In ONNs, the Greedy Iterative 
Search (GIS) algorithm is often employed to explore a 
set of candidate functions, aiming to determine the most 
effective combination of nodal and pooling operators 
[25]. Once these optimal operators are selected, they are 
uniformly assigned to all neurons within a given hidden 
layer, defining the final structure of the network. Despite 
its effectiveness, this design introduces key limitations 
[27]. A major drawback is the lack of diversity, as each 
neuron within a layer uses the same operator set, limit-
ing functional heterogeneity. Additionally, identifying 
appropriate candidate operators prior to training poses 
a significant challenge, because it requires considerable 
computational effort and may introduce bias that affects 
learning. To overcome these issues, Self-ONNs were 
introduced [27].

Self-ONNs leverage a generative neuron model to enable 
adaptive operator selection during training. Each generative 
neuron can optimize its nodal operators through BP training. 
This optimization occurs individually for each kernel ele-
ment and connection to neurons in the previous layer, with 
the goal of maximizing learning performance. In self-orga-
nized operational layers, the nodal functions are optimized 
by approximating nonlinear behaviors using a Taylor series 
expansion. This approach enables each generative neuron to 
apply a learned nodal transformation, which can be formu-
lated as follows:

ψ̃
(l)
k

(
{w(l)

p,ik[r]}P
p=1, y(l−1)

i [m + r]
)

=
P∑

p=1
w(l)

p,ik[r]
(
y(l−1)

i [m + r]
)p

� (4)

In Eq. 4, the hyperparameter P sets the order of the Taylor 
polynomial approximation, thereby influencing the degree 
of nonlinearity. Additionally, the weights w(l)

p,ik now consist 
of P times the number of learnable parameters in the corre-
sponding convolutional model. During training, the weights 
w(l)

p,ik are updated via the standard BP algorithm, leading to 
nonlinear transformations [27].

By adopting summation as the pooling operator, we can 
model the self-organized operational layer using a convo-
lutional framework. The output of a generative neuron can 
simply be expressed as follows:

1D CNNs achieved state-of-the-art performance in 
various applications, including biomedical data classifica-
tion [23], structural health monitoring [1], and motor fault 
diagnosis [5, 7, 8, 13, 45]. Their simple 1D convolutional 
structure also enables real-time, low-cost hardware imple-
mentation [26]. The traditional CNN architecture is based 
on the classical linear neuron model, which incorporates 
constraints such as restricted connectivity and weight shar-
ing at the kernel level. These constraints lead to the convo-
lution operations commonly used in CNNs. The kth input 
feature map in the lth layer of a 1D CNN can be computed 
as:

x(l)
k = b

(l)
k +

Nl−1∑
i=1

x(l)
ik � (1)

In this expression, x(l)
ik ∈ RM  denotes the feature map 

obtained by convolving the ith output map from layer 
(l − 1), denoted as y(l−1)

i ∈ RM , with the kernel w(l)
ik ∈ RK , 

which connects it to the kth input feature map in layer l. The 
term b(l)

k  represents the bias associated with the kth neuron 
in the current layer, and Nl−1 is the number of output fea-
ture maps (or channels) produced by layer l − 1. The 1D 
convolution operation used to compute x(l)

ik [m] is given by:

x(l)
ik [m] =

K−1∑
r=0

w
(l)
ik [r] y

(l−1)
i [m + r]� (2)

In the forward pass, each input feature map x(l)
k  is then 

transformed by a nonlinear activation function followed by 
an optional subsampling operation, resulting in the output 
feature representation of the convolutional neuron.

CNNs are derived from the traditional McCulloch-Pitts 
neuron model, which is fundamentally linear, with nonlin-
earity introduced through an activation function. To extend 
nonlinearity beyond simple pointwise transformations, new 
architectures like Operational Neural Networks (ONNs) 
[25], which incorporate inherent nonlinearities within their 
neurons, have been proposed. ONNs extend the conven-
tional convolutional neuron by generalizing the standard 
convolution operation as follows:

x(l)
ik [m] = P

(l)
k

(
ψ

(l)
k

(
w

(l)
ik [r], y

(l−1)
i [m + r]

)K−1

r=0

)
� (3)

where ψ(l)
k (·) : RM×K → RM×K  and P (l)

k (·) : RK → R1 
are called nodal and pool operators, respectively, assigned 
to the kth neuron of the lth layer.

Operational layers in ONNs preserve the two funda-
mental constraints of conventional CNNs, namely weight 
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Padé Activation Units (PAUs) adapt the classical Padé 
approximation for use as learnable activation functions in 
neural networks [31]. Unlike fixed-form nonlinearities such 
as tanh, a PAU represents the activation as the ratio of two 
polynomials whose coefficients are trainable parameters. By 
appropriately learning these coefficients, PAUs can replicate 
common activation functions (e.g., sigmoid, tanh) as special 
cases or generate entirely new, data-driven nonlinearities. 
The analytical differentiability of the rational form ensures 
compatibility with standard BP, while its flexibility enables 
the network to capture complex, task-specific behaviors that 
may be inaccessible to conventional fixed activations. For-
mally, a PAU in the lth layer, applied element-wise to each 
input map x(l)

i ∈ RM , is defined as:

ϕPAU

(
x(l)

i

)
=

P∑
m=0

a(l)
m

(
x(l)

i

)m

1 +
Q∑

n=1
b(l)

n

(
x(l)

i

)n

,� (8)

where a(l)
m  and b(l)

n  are trainable scalar coefficients shared by 
all feature maps in the lth layer.

This idea of embedding trainable Padé approximants into 
the network structure naturally motivates the use of PAONs 
in PadéNets, where the polynomial ratio formulation is 
incorporated directly into the neuron instead of the activa-
tion function. If we interpret the coefficients am and bn as 
kernels in a convolution operation, with a0 representing the 
bias, the kth input feature map in the lth Padé layer can be 
expressed as:

x(l)
k =

w
(l)
p0,k +

P∑
m=1

Nl−1∑
i=1

w(l)
pm,ik ∗

(
y(l−1)

i

)m

1 +
Q∑

n=1

Nl−1∑
i=1

w(l)
qn,ik ∗

(
y(l−1)

i

)n

� (9)

where y(l−1)
i ∈ RM  is the ith output feature map from the 

(l − 1)th layer, w(l)
pm,ik, w(l)

qn,ik ∈ RK  are the numerator and 
denominator kernels corresponding to polynomial orders m 
and n, respectively, with i indexing the output feature map 
from layer l − 1 and k indexing the input feature map in 
layer l. w(l)

p0,k is the bias term, and ∗ denotes 1D convolution. 
One important consideration with this neuron model is that 
the denominator can potentially become zero or approach to 
zero throughout training. To mathematically ensure that the 
denominator remains nonzero, several variants of the Padé 
neurons have been proposed [18]. In this study, we adopt 
the first variant, which involves taking the absolute value of 
each term in the denominator to guarantee that each element 

x̃(l)
ik =

P∑
p=1

Conv1D
(
w(l)

p,ik,
(
y(l−1)

i

)p
)

� (5)

Thus, the formulation can be implemented using P 1D con-
volution operations. When P = 1, it simplifies to the con-
ventional 1D convolution. Self-ONNs are super set of CNNs 
(P = 1), and generative neurons in Self-ONNs enable the 
modeling of more complex nonlinearities. However, using 
higher-order powers 

(
y(l−1)

i

)p can introduce numerical 
instability outside a stable computational range; therefore, 
x̃(l)

ik  is typically constrained by bounded activation func-
tions. Since Taylor series approximations are most accurate 
near the expansion point, the output of generative neurons 
is typically constrained by the tanh activation function to 
model the nonlinear mapping around the origin. However, 
the tanh function saturates, which can lead to the vanish-
ing gradient problem during BP, hindering effective train-
ing. To address these challenges, a new neuron model, Padé 
Approximant Neurons (PAONs), inspired by Padé approxi-
mants, has recently been proposed [18].

The Padé approximation offers a powerful means of rep-
resenting transcendental functions by expressing them as a 
ratio of two polynomials of specified degrees. It finds exten-
sive application in fields such as control theory, where it is 
particularly useful for approximating time-delay elements 
in feedback control systems. An asymptotic expansion, such 
as a Taylor series, can often be significantly accelerated or 
even transformed from divergent to convergent by reformu-
lating it as a Padé approximant [11].

If we let f[P/Q](y) denote the Padé approximation of 
a function f(y), where the numerator is a polynomial of 
degree P  and the denominator is a polynomial of degree Q, 
the approximation can be formulated as follows:

f[P/Q](y) = RP (y)
SQ(y)

=

P∑
m=0

am ym

Q∑
n=0

bn yn

� (6)

The coefficients am and bn correspond to the terms in the 
numerator and denominator polynomials, respectively. Typ-
ically, to simplify the formulation, the Padé approximant 
coefficients are normalized such that b0 = 1. Hence, we can 
express it as follows:

f[P/Q](y) =
a0 +

P∑
m=1

am ym

1 +
Q∑

n=1
bn yn

� (7)
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Cout denote the number of input and output feature maps, 
respectively. This increase is due to the full PAON mapping 
that consists of (P + Q) parallel convolutional branches, 
whereas a conventional convolution employs only a single 
branch. Figure  2 offers a comparative illustration of the 
computations involved in a convolutional, generative, and 
Padé neuron.

To enable end-to-end training of networks containing 
Padé neurons (PAONs), we derive the gradients of the loss 
function L with respect to the numerator kernels w(l)

pm,ik, the 

denominator kernels w(l)
qn,ik, and the output feature map of 

the previous layer y(l−1)
i . We denote the upstream gradient 

from the (l + 1)th layer as follows;

δ
(l)
k ≜ ∂L

∂x(l)
k

,� (11)

For compactness, we define:

R(l)
k = w

(l)
p0,k +

P∑
m=1

Nl−1∑
i=1

w(l)
pm,ik ∗

(
y(l−1)

i

)m
, � (12)

S(l)
k = 1 +

Q∑
n=1

Nl−1∑
i=1

∣∣ w(l)
qn,ik ∗

(
y(l−1)

i

)n ∣∣, � (13)

so that x(l)
k = R(l)

k ⊘ S(l)
k , where ⊘ denotes element-wise 

division and ∗ denotes 1D convolution. For any kernel w, let 
w̃ denote its time-reversal, w̃[t] = w[−t]. We use ⊙ for ele-
ment-wise multiplication, [·]−1 for element-wise inversion, 

in the numerator is divided by a value greater than or equal 
to one. Therefore, we can express the equation for this vari-
ant as follows:

x(l)
k =

w
(l)
p0,k +

P∑
m=1

Nl−1∑
i=1

w(l)
pm,ik ∗

(
y(l−1)

i

)m

1 +
Q∑

n=1

Nl−1∑
i=1

∣∣ w(l)
qn,ik ∗

(
y(l−1)

i

)n ∣∣
� (10)

Each kernel element in a Padé neuron adapts independently, 
allowing each weight group to learn its own specific Padé 
approximation. This self-adjustment enhances the model’s 
nonlinearity by integrating higher-order features in both the 
numerator and denominator of the approximation. Addition-
ally, as the Padé neuron is expressed as a ratio of polyno-
mials, it provides greater stability, even with higher-order 
approximations. When the numerator and denominator 
degrees are comparable, the PAON’s rational form main-
tains training stability even with unbounded activation 
functions.

Padé neurons generalize both convolutional and genera-
tive neuron models. For P = 1 and Q = 0, the Padé neuron 
reduces to a standard convolutional neuron in CNNs, and 
for P ≥ 2 and Q = 0, they behave as generative neurons 
in Self-ONNs. As a result, PAONs can effectively capture 
complex nonlinear relationships and they are capable of 
replacing existing neuron models in CNNs and Self-ONNs. 
Compared to a standard Conv1D layer, the PAON formula-
tion introduces (P + Q − 1) × K × Cin × Cout additional 
trainable parameters for a kernel size K, where Cin and 

Fig. 2  An illustrative overview 
of the operations involved in a 
convolutional, generative, and 
Padé neuron
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∂L
∂y(l−1)

i

=
Nl∑

k=1

δ
(l)
k ⊙

(
[S(l)

k ]−1 ⊙
∂R(l)

k

∂y(l−1)
i

− (R(l)
k ⊘ [S(l)

k ]◦2) ⊙
∂S(l)

k

∂y(l−1)
i

)
.

� (18)

Experimental Evaluation

This section outlines the experimental setup used to acquire 
the University of Ottawa electric motor vibration and 
acoustic fault signature dataset (UOEMD-VAFCVS) [37], 
describes the preprocessing steps applied to the data, and 
details the training and testing configurations, including 
data partitioning, training strategy, and evaluation criteria.

Experimental Setup and Dataset

The University of Ottawa electric motor vibration and 
audio datasets were collected from a modified SpectraQuest 
Machinery Fault & Rotor Dynamics Simulator test rig [37]. 
The setup includes an induction motor, a variable frequency 
drive, three single-axis accelerometers, and a microphone, 
as depicted in Fig. 3. The data collection system involves 
a National Instruments USB-6212 data acquisition unit 
to connect the sensors to a computer. The accelerometers 
measure vibration and temperature signals at both the drive 
end and shaft of the system, while the microphone captures 
acoustic signals. The variable frequency drive records the 
rotational speed of the motor. The data collection duration 
was fixed at 10 seconds, with data acquisition carried out 
using LabVIEW. All signals were sampled at a rate of 42 
kHz [37].

Each data file consists of time-series measurements orga-
nized into several columns. The first column contains data 
from the accelerometer (PCB, model 603C01) positioned 
at the drive end of the motor. The second column records 

[·]◦2 for element-wise squaring, ∗grad for cross-correlation 
used in kernel gradients, and ∗inp for convolution with w̃ 
when backpropagating to inputs.

Since w(l)
pm,ik appears only in R(l)

k , differentiating 
x(l)

k = R(l)
k /S(l)

k  with respect to w(l)
pm,ik while treating S(l)

k  
as constant yields;

∂L
∂w(l)

pm,ik

=
(

δ
(l)
k ⊙ [S(l)

k ]−1
)

∗grad
(
y(l−1)

i

)m
.� (14)

For denominator kernels, we introduce 
h(l)

qn,ik ≜ w(l)
qn,ik ∗

(
y(l−1)

i

)n and use the subgradient sgn(·) 
element-wise. Applying the quotient rule gives:

∂L
∂w(l)

qn,ik

=
(

δ
(l)
k ⊙

(
− R(l)

k ⊘ [S(l)
k ]◦2))

∗grad

(
sgn(h(l)

qn,ik) ⊙
(
y(l−1)

i

)n
)

.

� (15)

For the input gradients, both R(l)
k  and S(l)

k  depend on y(l−1)
i , 

leading to:

∂R(l)
k

∂y(l−1)
i

=
P∑

m=1
w̃(l)

pm,ik ∗
(
m (y(l−1)

i )m−1)
, � (16)

∂S(l)
k

∂y(l−1)
i

=
Q∑

n=1
sgn

(
h(l)

qn,ik

)
⊙

[
w̃(l)

qn,ik ∗
(
n (y(l−1)

i )n−1)]
.

� (17)

Finally, the gradient of the loss function with respect to the 
i-th output feature map y(l−1)

i  of the (l − 1)th layer can be 
expressed as:

Fig. 3  The experimental setup [37]
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the remaining 10% for testing. This approach ensures that 
the model is evaluated on future unseen data and avoids 
temporal leakage, which can occur if segments from 
the same temporal window appear in both training and 
evaluation sets. No shuffling was performed either within 
or between files. Finally, the segments were categorized 
into fault classes, with each class containing data collected 
across all operating frequencies and both loaded and 
unloaded machine conditions. The number of samples in 
each split is summarized in Table 2.

All channels of vibration and audio data were segmented 
into fixed-length windows of 1000 time-domain samples 
without overlap. Thus, a total of 420 samples were extracted 
per channel from a single recording. The segmentation pro-
cess divides the continuous time series data into smaller, 
non-overlapping segments of 1000 samples to balance 
temporal resolution and model complexity. Each segment 
is then normalized separately. Normalization is performed 
using the min-max normalization method, where each data 
point xi in a given segment is scaled based on the minimum 

acoustic data, while the third column presents data from a 
second accelerometer (PCB, model 623C01) positioned on 
the shaft’s bearing housing near the drive end. The fourth 
column contains data from the third accelerometer (PCB, 
model 623C01), located on the shaft’s bearing housing fur-
thest from the drive end, and the remaining columns include 
temperature and rotational speed measurements [37].

The dataset includes samples from a healthy induction 
motor and various fault conditions. These faults can be cat-
egorized as follows:

	● Electrical faults: stator winding faults (SW), voltage 
unbalance and single phasing (VU), and broken rotor 
bars (KA).

	● Mechanical faults: rotor unbalance (RU), rotor mis-
alignment (RM), bowed rotor (BR), and faulty bearings 
(FB).

Therefore, it contains a total of 8 classes, corresponding 
to the 7 fault conditions and the healthy motor. Induction 
machines were operated under both constant and vari-
able operating frequencies. The constant frequencies were 
approximately 15 Hz, 30 Hz, 45 Hz, and 60 Hz. The vari-
able frequencies included ranges such as 15 Hz to 45 Hz, 30 
Hz to 60 Hz, 45 Hz to 15 Hz, and 60 Hz to 30 Hz. In this 
study, only the constant speed portion of the Ottawa dataset 
is utilized, and the subsequent discussions are based on this 
subset of the data. The motors were operated under both no-
load and loaded conditions. The loading was implemented 
by symmetrically attaching ten bolts to a disk mounted on 
the motor shaft [37]. The dataset filenames follow the format 
Letter-Letter-Number-Number, where the first two letters 
indicate the motor’s condition (e.g., “H” for healthy, “R” 
for rotor fault, “B” for bowed rotor, etc.). The first number 
shows the motor speed setting (e.g., 1 = 15 Hz, 4 = 60 Hz), 
and the second number indicates the load condition (“0” for 
no load, “1” for loaded). For instance, “R-U-1-0” refers to 
an unloaded rotor unbalance fault at 15 Hz. The constant-
speed dataset under both unloaded and loaded conditions 
can be structured as shown in Table 1.

Data Preparation

In this work, we evaluate the performance of 1D PadéNets 
for vibration and audio inputs separately. For each input 
channel, the entire dataset was partitioned into training 
(80%), validation (10%), and testing (10%) subsets 
through a sequential temporal split performed separately 
on each individual signal file. Each file, corresponding to 
a distinct operating frequency and fault class, was split 
temporally such that the initial 80% of its segments were 
used for training, the subsequent 10% for validation, and 

Table 1  Labeling of datasets for constant speed conditions across dif-
ferent fault modes
Fault Mode Speed (Hz)

15 Hz 30 Hz 45 Hz 60 Hz
Healthy (H) H-H-1-0

H-H-1-1
H-H-2-0 
H-H-2-1

H-H-3-0 
H-H-3-1

H-H-4-0 
H-H-4-1

Rotor Unbalance (RU) R-U-1-0
R-U-1-1

R-U-2-0 
R-U-2-1

R-U-3-0 
R-U-3-1

R-U-4-0 
R-U-4-1

Rotor Misalignment (RM) R-M-1-0
R-M-1-1

R-M-2-0 
R-M-2-1

R-M-3-0 
R-M-3-1

R-M-4-0 
R-M-4-1

Stator Winding Fault (SW) S-W-1-0
S-W-1-1

S-W-2-0 
S-W-2-1

S-W-3-0 
S-W-3-1

S-W-4-0 
S-W-4-1

Voltage Unbalance (VU) V-U-1-0
V-U-1-1

V-U-2-0 
V-U-2-1

V-U-3-0 
V-U-3-1

V-U-4-0 
V-U-4-1

Bowed Rotor (BR) B-R-1-0
B-R-1-1

B-R-2-0 
B-R-2-1

B-R-3-0 
B-R-3-1

B-R-4-0 
B-R-4-1

Broken Rotor Bars (KA) K-A-1-0
K-A-1-1

K-A-2-0 
K-A-2-1

K-A-3-0 
K-A-3-1

K-A-4-0 
K-A-4-1

Faulty Bearings (FB) F-B-1-0 
F-B-1-1

F-B-2-0 
F-B-2-1

F-B-3-0 
F-B-3-1

F-B-4-0 
F-B-4-1

The last digit indicates the load condition (0 = Unloaded, 1 = Loaded)

Table 2  Number of samples in each data split for each input channel, 
including both unloaded and loaded conditions of the constant-speed 
datasets
Fault Mode Training 

Samples
Validation 
Samples

Test 
Samples

Healthy (H) 2680 336 336
Rotor Unbalance (RU) 2680 336 336
Rotor Misalignment (RM) 2680 336 336
Stator Winding Fault (SW) 2680 336 336
Voltage Unbalance (VU) 2680 336 336
Bowed Rotor (BR) 2680 336 336
Broken Rotor Bars (KA) 2680 336 336
Faulty Bearings (FB) 2680 336 336
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waveforms obtained from the first accelerometer and micro-
phone at an operating frequency of 45 Hz.

Model Architecture and Training Strategy

The architecture of the proposed 1D PadéNet-based frame-
work is illustrated in Fig. 1 and detailed in Table 3. In this 
context, P  and Q are hyperparameters that define the degree 
of the nonlinear transformations applied within the 1D Padé 
layers. Specifically, P  determines the order of the numerator 

and maximum values of that segment. The normalization 
equation can be written as:

xnorm
i = 2 · (xi − xmin)

xmax − xmin
− 1,� (19)

where xnorm
i  is the normalized value, xi is the original data 

point, xmin and xmax are the minimum and maximum val-
ues of the segment, respectively. Figure  4 presents some 
examples of segmented and normalized vibration and audio 

Fig. 4  Examples of segmented and normalized waveforms for 45 Hz input frequency: (a) Accelerometer-1, (b) microphone
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1D Self-ONNs, we are restricted to using tanh to prevent 
excessively large activations due to the increasing powers of 
the input, thus mitigating the risk of the exploding gradients. 
For all models, a 1D max-pooling layer with a pool size of 
2 was applied after each block for spatial downsampling, 
reducing the dimensionality of the feature maps while pre-
serving the most crucial information.

Each of the seven 1D Padé layers was configured with 32 
filters, a kernel size of 7, padding=’same’, and incorporated an 
L2 kernel regularizer (λ = 10−4) for weight decay. Following 
these layers, a Flatten layer was used to reshape the feature maps 
into a vector. It was followed by a dense layer with 64 neurons 
and a tanh activation, which processes the flattened features. 
The model ends with a Softmax output layer with 8 neurons for 
multi-class classification, assigning probabilities to each of the 
8 classes. To prevent overfitting, a Dropout layer with a rate of 
0.25 was applied before the dense layers during training.

Training was performed over a maximum of 100 epochs 
with a batch size of 64. The network parameters were optimized 
using the Adam optimizer with an initial learning rate of 0.0005 
and the categorical cross-entropy loss function. Early stopping 
was employed to stop training if the validation loss did not 
improve over 20 consecutive epochs. Additionally, a learning 
rate decay callback was used to reduce the learning rate by a 
factor of 0.5 if there was no reduction in validation loss over 10 
epochs. To evaluate each model’s classification accuracy and 
robustness, we conducted 5 independent runs with different ran-
dom seeds. For each run, both the training and validation data 
were reshuffled using a fixed seed to ensure reproducibility.

Evaluation Metrics

The fault diagnosis performance of each model was evalu-
ated on the test set using the following classification met-
rics: Accuracy, Precision, Recall, and F1-Score. To account 
for variability due to random initialization, each model was 
trained and evaluated across 5 independent runs with dis-
tinct random seeds. For each metric, the mean and standard 
deviation were reported to summarize performance, along 
with the minimum and maximum accuracy values.

Accuracy represents the overall proportion of correctly 
predicted instances, calculated as the ratio of the sum of true 
positives (TP) and true negatives (TN) to the total number 
of samples as follows:

Accuracy = TP + TN

TP + TN + FP + FN
� (20)

Precision is also important when the cost of false positives (i.e., 
incorrectly identifying a motor fault when there is not one) is 
high. It is defined as the ratio of true positives to the total number 
of predicted positives (TP + FP). High precision ensures that the 

polynomial, and Q determines the order of the denomina-
tor polynomial in the Padé approximation used in these 
layers. By adjusting P  and Q, the model can be tailored to 
capture different levels of nonlinearity in the data, allow-
ing for enhanced feature extraction. For a direct comparison 
with 1D CNNs, we set P = 1 and Q = 0, which simpli-
fies the Padé neuron to a standard convolutional neuron. On 
the other hand, for comparison with 1D Self-ONNs, we set 
P ≥ 2 and Q = 0, allowing the Padé neurons to function as 
generative neurons, as used in Self-ONNs.

Following each 1D Padé layer, the activation function 
applied is either the tanh or LeakyReLU with a negative 
slope of 0.01. We evaluate the performance of both activation 
functions separately for 1D CNN and PadéNet. However, in 

Table 3  Detailed architecture of the proposed 1D PadéNet model is 
given
Number Layer Name Filters / 

Kernel 
Size

Output 
Shape

Other 
Hyper-
params.

1 1D Padé 32 / 7 (None, 
1000, 32)

P, Q, 
Strides = 1

2 1D MaxPooling – (None, 500, 
32)

Pool Size 
= 2

3 1D Padé 32 / 7 (None, 500, 
32)

P, Q, 
Strides = 1

4 1D MaxPooling – (None, 250, 
32)

Pool Size 
= 2

5 1D Padé 32 / 7 (None, 250, 
32)

P, Q, 
Strides = 1

6 1D MaxPooling – (None, 125, 
32)

Pool Size 
= 2

7 1D Padé 32 / 7 (None, 125, 
32)

P, Q, 
Strides = 1

8 1D MaxPooling – (None, 62, 
32)

Pool Size 
= 2

9 1D Padé 32 / 7 (None, 62, 
32)

P, Q, 
Strides = 1

10 1D MaxPooling – (None, 31, 
32)

Pool Size 
= 2

11 1D Padé 32 / 7 (None, 31, 
32)

P, Q, 
Strides = 1

12 1D MaxPooling – (None, 15, 
32)

Pool Size 
= 2

13 1D Padé 32 / 7 (None, 15, 
32)

P, Q, 
Strides = 1

14 1D MaxPooling – (None, 7, 
32)

Pool Size 
= 2

15 Flatten – (None, 224) –
16 Dropout – (None, 224) Dropout 

Rate = 0.25
17 Dense – (None, 64) Activation 

= tanh
18 Dense – (None, 8) Activation 

= Softmax
Activations in the 1D Padé layers (tanh and LeakyReLU with nega-
tive slope coefficient 0.01) were evaluated separately and not explic-
itly shown
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Results and Discussion

This section presents the fault diagnosis performance of 
Padé-based models, along with CNNs and Self-ONNs, on 
the constant-speed vibration and acoustic datasets from 
Ottawa University [37]. The analysis further evaluates 
robustness under varying noise levels, examines the sensi-
tivity of Padé layers to different Padé orders and activation 
functions, and compares the corresponding computational 
complexities.

Performance on the Ottawa University Vibration 
and Acoustic Datasets

We first present a comprehensive evaluation of the pro-
posed 1D PadéNet compared to 1D CNN and Self-ONN 
using noise-free vibration and acoustic data [37]. Per-
formance metrics were computed for each sensor input 
on 5 independent runs, and the results were averaged, 
with standard deviations reported to quantify variabil-
ity, as detailed in Tables 4, 5, 6, and 7. Aggregated con-
fusion matrices over 5 runs (Figs. 5, 6, 7 and 8) provide 
further insight into classification performance across 
fault types.

model does not produce too many false alarms, which is impor-
tant in scenarios where an incorrect fault diagnosis could lead to 
unnecessary maintenance or costly downtime. On the other hand, 
Recall measures the model’s ability to correctly identify all actual 
positives (i.e., actual faults). It is defined as the ratio of true posi-
tives to the total number of actual positives (TP + FN). Recall is 
particularly important in fault diagnosis because failing to iden-
tify a fault (i.e., a false negative) could lead to catastrophic conse-
quences, such as equipment failure or unplanned downtime. The 
equations for Precision and Recall are given as:

Precision = TP

TP + FP
, Recall = TP

TP + FN
� (21)

Finally, the F1-Score is the harmonic mean of Precision and 
Recall, providing a balanced evaluation of both metrics. It 
can be computed as:

F1-Score = 2 · Precision · Recall
Precision + Recall

� (22)

By using these metrics in combination, we can obtain a compre-
hensive evaluation of each model’s performance to have a clear 
understanding of its effectiveness for motor fault diagnosis.

Table 4  Average test performance metrics (over 5 seeds) for different Padé models using the first accelerometer data as input
Padé Model Min. Acc. (%) Max. Acc. (%) Avg. Acc. (%) Avg. Prec. (%) Avg. Rec. (%) Avg. F1 (%)
P = 1, Q = 0 (tanh) 99.03 100.00 99.69±0.35 99.70±0.33 99.69±0.35 99.69±0.35
P = 1, Q = 0 (LeakyReLU) 99.33 100.00 99.74±0.22 99.74±0.22 99.74±0.22 99.74±0.22
P = 1, Q = 1 (tanh) 99.85 100.00 99.95±0.06 99.95±0.06 99.95±0.06 99.95±0.06
P = 1, Q = 1 (LeakyReLU) 99.89 99.96 99.92±0.03 99.92±0.03 99.92±0.03 99.92±0.03
P = 1, Q = 2 (tanh) 99.85 100.00 99.96±0.05 99.96±0.05 99.96±0.05 99.96±0.05
P = 1, Q = 2 (LeakyReLU) 99.85 99.96 99.93±0.04 99.93±0.04 99.93±0.04 99.93±0.04
P = 2, Q = 0 (tanh) 99.81 100.00 99.95±0.07 99.95±0.07 99.95±0.07 99.95±0.07
P = 2, Q = 1 (tanh) 99.89 100.00 99.96±0.04 99.96±0.04 99.96±0.04 99.96±0.04
P = 2, Q = 1 (LeakyReLU) 99.52 99.89 99.70±0.14 99.70±0.14 99.70±0.14 99.70±0.14
P = 3, Q = 0 (tanh) 99.52 99.96 99.84±0.17 99.85±0.16 99.84±0.17 99.84±0.17

Table 5  Average test performance metrics (over 5 seeds) for different Padé models using the second accelerometer data as input
Padé Model Min. Acc. (%) Max. Acc. (%) Avg. Acc. (%) Avg. Prec. (%) Avg. Rec. (%) Avg. F1 (%)
P = 1, Q = 0 (tanh) 92.75 94.57 93.94±0.64 93.96±0.63 93.94±0.64 93.93±0.64
P = 1, Q = 0 (LeakyReLU) 96.06 97.62 96.81±0.51 96.83±0.49 96.81±0.51 96.80±0.50
P = 1, Q = 1 (tanh) 93.79 95.35 94.79±0.53 94.82±0.54 94.79±0.53 94.79±0.53
P = 1, Q = 1 (LeakyReLU) 96.61 97.88 97.25±0.43 97.26±0.43 97.25±0.43 97.25±0.43
P = 1, Q = 2 (tanh) 95.05 96.28 95.47±0.43 95.47±0.43 95.47±0.43 95.46±0.43
P = 1, Q = 2 (LeakyReLU) 96.95 97.81 97.54±0.32 97.55±0.33 97.54±0.32 97.54±0.32
P = 2, Q = 0 (tanh) 95.31 96.24 95.96±0.33 95.97±0.32 95.96±0.33 95.96±0.33
P = 2, Q = 1 (tanh) 96.35 97.25 96.85±0.29 96.86±0.28 96.85±0.29 96.84±0.29
P = 2, Q = 1 (LeakyReLU) 97.88 98.59 98.26±0.26 98.27±0.26 98.26±0.26 98.26±0.26
P = 3, Q = 0 (tanh) 96.13 97.21 96.67±0.34 96.68±0.35 96.67±0.34 96.67±0.35
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increasing the average accuracy to 99.74% ± 0.22%. Among 
the evaluated Self-ONN configurations, the model with 
P = 2 and Q = 0 attained the highest average test accuracy 
of 99.95% ± 0.07%, outperforming all CNN-based counter-
parts. However, the best overall fault diagnosis performance 
was achieved by the PadéNet model with P = 2, Q = 1 and 

For the first accelerometer, located at the motor’s drive 
end, the 1D CNN (P = 1, Q = 0) configuration with 
tanh activation function achieved an average test accu-
racy of 99.69% ± 0.35%. Replacing the activation function 
with LeakyReLU (with a negative slope of 0.01) across 
all convolutional layers led to a noticeable improvement, 

Table 6  Average test performance metrics (over 5 seeds) for different Padé models using the third accelerometer data as input
Padé Model Min. Acc. (%) Max. Acc. (%) Avg. Acc. (%) Avg. Prec. (%) Avg. Rec. (%) Avg. F1 (%)
P = 1, Q = 0 (tanh) 93.12 94.38 93.74±0.45 93.76±0.44 93.74±0.45 93.73±0.44
P = 1, Q = 0 (LeakyReLU) 96.35 97.40 96.73±0.40 96.74±0.40 96.73±0.40 96.72±0.40
P = 1, Q = 1 (tanh) 93.34 94.61 94.11±0.50 94.12±0.50 94.11±0.50 94.10±0.50
P = 1, Q = 1 (LeakyReLU) 96.99 97.62 97.30±0.28 97.32±0.28 97.30±0.28 97.30±0.28
P = 1, Q = 2 (tanh) 93.68 95.76 94.81±0.73 94.83±0.73 94.81±0.73 94.80±0.74
P = 1, Q = 2 (LeakyReLU) 97.10 97.88 97.61±0.27 97.62±0.27 97.61±0.27 97.61±0.27
P = 2, Q = 0 (tanh) 92.63 95.46 94.41±1.01 94.43±0.99 94.41±1.01 94.41±1.01
P = 2, Q = 1 (tanh) 95.39 96.39 96.00±0.36 96.03±0.35 96.00±0.36 96.00±0.36
P = 2, Q = 1 (LeakyReLU) 97.28 98.03 97.59±0.27 97.61±0.27 97.59±0.27 97.59±0.27
P = 3, Q = 0 (tanh) 94.72 96.39 95.83±0.59 95.87±0.55 95.83±0.59 95.83±0.58

Table 7  Average test performance metrics (over 5 seeds) for different Padé models using acoustic data as input
Padé Model Min. Acc. (%) Max. Acc. (%) Avg. Acc. (%) Avg. Prec. (%) Avg. Rec. (%) Avg. F1 (%)
P = 1, Q = 0 (tanh) 95.05 96.24 95.56±0.45 95.58±0.46 95.56±0.45 95.55±0.45
P = 1, Q = 0 (LeakyReLU) 96.80 98.03 97.55±0.46 97.57±0.45 97.55±0.46 97.55±0.46
P = 1, Q = 1 (tanh) 96.84 97.47 97.13±0.24 97.14±0.25 97.13±0.24 97.13±0.24
P = 1, Q = 1 (LeakyReLU) 97.58 98.36 97.89±0.30 97.92±0.29 97.89±0.30 97.89±0.31
P = 1, Q = 2 (tanh) 97.47 97.66 97.58±0.07 97.59±0.07 97.58±0.07 97.58±0.07
P = 1, Q = 2 (LeakyReLU) 97.81 98.92 98.33±0.44 98.34±0.43 98.33±0.44 98.33±0.44
P = 2, Q = 0 (tanh) 97.62 98.10 97.89±0.16 97.89±0.16 97.89±0.16 97.89±0.16
P = 2, Q = 1 (tanh) 97.02 98.62 98.07±0.55 98.08±0.54 98.07±0.55 98.07±0.55
P = 2, Q = 1 (LeakyReLU) 97.92 98.70 98.30±0.32 98.31±0.31 98.30±0.32 98.30±0.32
P = 3, Q = 0 (tanh) 97.51 98.40 97.93±0.32 97.94±0.32 97.93±0.32 97.93±0.32

Fig. 5  Aggregated confusion matrices over 5 runs for the 1D 
CNN (P = 1, Q = 0), Self-ONN (P = 2, Q = 0), and PadéNet 
(P = 2, Q = 1) models with the first accelerometer data as input. The 

1D Self-ONN and PadéNet models use the tanh activation function, 
while the 1D CNN utilizes LeakyReLU with negative slope of 0.01
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Fig. 7  Aggregated confusion matrices over 5 runs for the 1D 
CNN (P = 1, Q = 0), Self-ONN (P = 3, Q = 0), and PadéNet 
(P = 1, Q = 2) models with the third accelerometer data as input. 

The 1D Self-ONN model uses the tanh activation function, while the 
1D CNN and PadéNet utilize LeakyReLU with negative slope of 0.01

 

Fig. 6  Aggregated confusion matrices over 5 runs for the 1D 
CNN (P = 1, Q = 0), Self-ONN (P = 3, Q = 0), and PadéNet 
(P = 2, Q = 1) models with the second accelerometer data as input. 

The 1D Self-ONN model uses the tanh activation function, while the 
1D CNN and PadéNet utilize LeakyReLU with negative slope of 0.01

 

Fig. 8  Aggregated confusion matrices over 5 runs for the 1D 
CNN (P = 1, Q = 0), Self-ONN (P = 3, Q = 0), and PadéNet 
(P = 1, Q = 2) models with the acoustic data as input. The 1D Self-

ONN model uses the tanh activation function, while the 1D CNN and 
PadéNet utilize LeakyReLU with negative slope of 0.01
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Figure 6 shows the aggregated confusion matrices across 
5 independent runs for the 1D CNN (P = 1, Q = 0), Self-
ONN (P = 3, Q = 0), and PadéNet (P = 2, Q = 1) mod-
els, using data from the second accelerometer as input. For 
these confusion matrices, the 1D Self-ONN model uses 
the tanh activation function, while the 1D CNN and Padé-
Net utilize LeakyReLU with negative slope of 0.01. The 
1D CNN (P = 1, Q = 0) and Self-ONN (P = 3, Q = 0) 
models achieve classification accuracies of 94.82% and 
93.75%, respectively, in the faulty bearings (FB) class. In 
comparison, the 1D PadéNet (P = 2, Q = 1) model deliv-
ers a significantly higher accuracy of 96.78% in the same 
class. Similarly, for the rotor misalignment (RM) class, 
the 1D CNN and Self-ONN models yield accuracies of 
93.63% and 94.70%, respectively, whereas the 1D PadéNet 
(P = 2, Q = 1) model once again outperforms them with 
a superior accuracy of 96.67%. Faulty bearings and rotor 
misalignment are two of the most critical fault types in 
electric motors, as they can severely compromise mechani-
cal integrity and lead to costly operational downtimes if 
not detected early. Accurate classification of these faults is 
therefore essential for timely maintenance and fault preven-
tion. The enhanced fault diagnosis performance of the 1D 
PadéNet model is clearly evident across all fault classes in 
these confusion matrices and reflects its superior capability 
to distinguish even the most critical fault types.

When data from the third accelerometer, positioned on 
the bearing housing farthest from the drive end, is used 
as input, the results in Table 6 show that the 1D PadéNet 
model, particularly with P = 1, Q = 2 and LeakyReLU 
activation, consistently outperforms both the 1D CNN and 
Self-ONN models across all evaluated metrics. In particu-
lar, the 1D PadéNet model achieves the highest average test 
accuracy of 97.61% ± 0.27%, surpassing the best-perform-
ing configurations of the 1D CNN and Self-ONN models.

Figure 7 shows the aggregated confusion matrices for the 
1D CNN (P = 1, Q = 0), Self-ONN (P = 3, Q = 0), and 
PadéNet (P = 1, Q = 2) models, using data from the third 
accelerometer as input. The 1D PadéNet model once again 
achieves the highest per-class accuracies across all fault cat-
egories. Overall, although the classification accuracy of the 
1D PadéNet model slightly decreases as the input acceler-
ometer sensor is positioned farther from the drive-end, the 
1D PadéNet consistently outperforms both the 1D CNN and 
Self-ONN models.

When acoustic signals captured by the microphone are 
used as input, 1D PadéNet models continue to demonstrate 
superior diagnostic capabilities, as shown in Table 7. The 
best performance was achieved by the configuration with 
P = 1, Q = 2 and LeakyReLU activation, which yielded 

tanh activation, which reached an average test accuracy of 
99.96%  ±  0.04% and an F1-score of 99.96%  ±  0.04%. A 
detailed summary of the test metrics for all 1D CNN, Self-
ONN, and PadéNet models evaluated using the first acceler-
ometer data is provided in Table 4.

Figure  5 presents the aggregated confusion matrices 
across 5 independent runs for the 1D CNN (P = 1, Q = 0), 
Self-ONN (P = 2, Q = 0), and PadéNet (P = 2, Q = 1) 
models, using data from the first accelerometer as input. 
While all models achieve an average classification accuracy 
above 99%, the 1D Self-ONN (P = 2, Q = 0) and PadéNet 
(P = 2, Q = 1) models demonstrate superior recall across 
all fault classes compared to 1D CNN (P = 1, Q = 0). The 
Self-ONN (P = 2, Q = 0) delivers similar performance to 
PadéNet (P = 2, Q = 1) with fewer parameters, likely due 
to the placement of the first accelerometer at the motor’s 
drive end, which enables easier fault diagnosis through 
more effective feature extraction.

Located on the bearing housing near the drive end, the 
second accelerometer presented a complex diagnostic envi-
ronment due to potential signal disturbances from bearing 
dynamics. When the second accelerometer data was used 
as input, the 1D CNN model (P = 1, Q = 0) with tanh 
activation reached an average test accuracy of 93.94% ± 
0.64% as given in Table 5. Switching to LeakyReLU acti-
vation across its convolutional layers significantly enhanced 
performance, boosting the average accuracy to 96.81% ± 
0.51%, with reduced variability indicating improved con-
sistency across each run. Among Self-ONN models tested, 
the configuration (P = 3, Q = 0) delivered the highest 
mean accuracy of 96.67% ± 0.34%. Although the average 
classification accuracy of the Self-ONN model (P = 3, 
Q = 0) surpassed that of the 1D CNN with tanh activation, 
switching to LeakyReLU enabled the 1D CNN to achieve 
higher fault diagnosis accuracy. Thus, it can be concluded 
that Self-ONNs generally outperform CNNs when tanh is 
employed as the activation function in both models. How-
ever, when LeakyReLU is used in all convolutional layers 
of a 1D CNN, it can achieve higher fault diagnosis accuracy 
compared to Self-ONNs utilizing the tanh activation func-
tion, potentially due to the vanishing gradient issue com-
monly associated with tanh. In contrast to other 1D CNN 
and Self-ONN models, the most effective fault diagnosis for 
the second accelerometer was achieved by the 1D PadéNet 
model with P = 2, Q = 1 and LeakyReLU activation, hav-
ing a mean test accuracy of 98.26% ± 0.26%, along with 
an F1-score of 98.26% ± 0.26%. A complete summary of 
performance metrics for all tested 1D CNN, Self-ONN, 
and PadéNet models using the second accelerometer data is 
available in Table 5.
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the highest average accuracy of 98.33% ± 0.44%. This result 
is superior to those obtained using data from the second and 
third accelerometers, yet slightly underperforms compared 
to the first accelerometer, which is mounted directly above 
the drive-end.

Figure 8 shows the aggregated confusion matrices across 
5 independent runs for the 1D CNN (P = 1, Q = 0), Self-
ONN (P = 3, Q = 0), and PadéNet (P = 1, Q = 2) mod-
els, using acoustic data as input. The PadéNet model with 
P = 1 and Q = 2 achieves the highest per-class classifica-
tion accuracies in the BR, FB, RM, and RU fault catego-
ries, while the Self-ONN model performs best in the H, KA, 
and VU classes. The 1D CNN model achieves the highest 
accuracy only in the SW category. As a result, acoustic data 
can serve as a highly informative and reliable modality for 
fault diagnosis when processed with the 1D PadéNet archi-
tecture, and we can obtain a diagnostic performance compa-
rable to accelerometer-based inputs.

The fault diagnosis performance of 1D PadéNets is also 
compared with other DL-based methods trained on the Uni-
versity of Ottawa’s constant-speed vibration and audio data-
sets. In [10], a 15-layer 1D CNN-LSTM model (comprising 
6 Conv1D and 2 LSTM layers) was proposed for classifying 
electrical and mechanical faults. The model takes an input 
window size of 1000 samples, as used in this study, with the 
same train-validation-test split ratios and all accelerometer 
inputs. To evaluate the impact of the LSTM layers, two other 
variations of the model were tested. First, the two LSTM 
layers were removed, resulting in a 13-layer CNN, referred 
to as “13-Layers CNN” in Table  8. In the second experi-
ment, the LSTM layers in the 11th and 12th layers were 
replaced with Conv1D layers, producing a 15-layer CNN. 
All results are presented in Table  8 for each accelerome-
ter sensor. For Accelerometer-1, the 1D PadéNet (P = 2, 
Q = 1) achieves the same average test accuracy as the 1D 
CNN-LSTM model but with significantly fewer trainable 
parameters, and outperforms all other CNN models. More-
over, for accelerometers 2 and 3, 1D PadéNet delivers com-
parable classification accuracy to the CNN-LSTM model, 
while the 13-layer and 15-layer CNN models fail to match 
those accuracies. However, it is worth noting that, due to the 
sequential nature of LSTM layers, the CNN-LSTM model 
tends to be slower during training and inference, whereas 
the 1D PadéNet achieves similar performance with greater 
computational efficiency.

For the acoustic modality, we also compare classifica-
tion performance against established baselines. In par-
ticular, we re-implemented the 1D CNN–LSTM from 
[10], training it end-to-end using the same segmentation, 

Table 8  Comparison of DL-based methods for fault diagnosis using 
the University of Ottawa’s constant speed vibration and acoustic data-
sets under unloaded and loaded conditions
Model Sensor Aver-

age Test 
Accuracy 
(%)

No. of 
Params.

13-Layers CNN 
[10]

Accelerometer-1 97.73 -

15-Layers CNN 
[10]

Accelerometer-1 99.44 -

CNN-LSTM [10] Accelerometer-1 99.96 246,568
P = 1, Q = 0 (CNN) 
1

Accelerometer-1 99.74 58,376

P = 2, Q = 0 (Self-
ONN) 2

Accelerometer-1 99.95 101,832

P = 2, Q = 1 (Padé-
Net) 3

Accelerometer-1 99.96 145,064

13-Layers CNN 
[10]

Accelerometer-2 80.58 -

15-Layers CNN 
[10]

Accelerometer-2 83.44 -

CNN-LSTM [10] Accelerometer-2 98.88 246,568
P = 1, Q = 0 (CNN) 
1

Accelerometer-2 96.81 58,376

P = 3, Q = 0 (Self-
ONN) 2

Accelerometer-2 96.67 145,288

P = 2, Q = 1 (Padé-
Net) 3

Accelerometer-2 98.26 145,064

13-Layers CNN 
[10]

Accelerometer-3 82.89 -

15-Layers CNN 
[10]

Accelerometer-3 87.43 -

CNN-LSTM [10] Accelerometer-3 99.37 246,568
P = 1, Q = 0 (CNN) 
1

Accelerometer-3 96.73 58,376

P = 3, Q = 0 (Self-
ONN) 2

Accelerometer-3 95.83 145,288

P = 1, Q = 2 (Padé-
Net) 3

Accelerometer-3 97.61 144,840

Custom 2D CNN 
[9]

Microphone 83.36 -

VGG16 [9] Microphone 91.52 134,293,320
VGG19 [9] Microphone 92.11 139,602,016
CNN-LSTM [10] Microphone 96.55 246,568
P = 1, Q = 0 (CNN) 
1

Microphone 97.55 58,376

P = 3, Q = 0 (Self-
ONN) 2

Microphone 97.93 145,288

P = 1, Q = 2 (Padé-
Net) 3

Microphone 98.33 144,840

1 The best-performing 1D CNN models based on average classifica-
tion accuracy 2 The best-performing 1D Self-ONN models based on 
average classification accuracy 3 The best-performing 1D PadéNet 
models based on average classification accuracy
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Sensitivity Analysis

We also provide an explicit sensitivity analysis across Padé 
orders and activation functions on identical train/validation/
test splits for all sensors. Figure 9 summarizes average test 
accuracies for P ∈ {1, 2, 3} and Q ∈ {0, 1, 2} (per sensor). 
Figure 10 examines the interaction with the activation func-
tion (tanh versus LeakyReLU).

The dominant factor is the inclusion of a denominator 
branch (Q > 0). Adding a modest convolutional denomi-
nator in the Padé formulation (Q = 1 or 2) consistently 
improves accuracy over both the CNN baseline and the 
Self-ONN family, as it stabilizes higher-order terms while 
preserving expressivity. For example, accuracy on Acceler-
ometer-2 increases from 96.81% with CNN (P=1, Q=0) 
to 98.26% with PadéNet (P=2, Q=1); on Accelerometer-3 
from 96.73% with CNN (P=1, Q=0) to 97.61% with 
PadéNet (P=1, Q=2); and on the acoustic sensor from 
97.55% with CNN (P=1, Q=0) to 98.33% with Padé-
Net (P=1, Q=2) (Fig. 9). Accelerometer-1 is already at a 
performance plateau but still rises from 99.69% with CNN 
(P=1, Q=0) to approximately 99.96% with any PadéNet 

normalization pipeline, and data splits as PadéNet to 
ensure a fair comparison. As shown in Table 8, PadéNet 
with (P = 1, Q = 2) achieves an average test accuracy 
of 98.33% with 144, 840 parameters, outperforming both 
the 1D CNN (97.55%, 58, 376 parameters) and the CNN-
LSTM (96.55%, 246, 568 parameters). Moreover, in [9], 
acoustic signals from the Ottawa University constant-
speed audio dataset were converted into spectrograms, and 
faults in induction motors were detected using a transfer 
learning approach with pre-trained models. An 8-class 
fault detection task was performed, achieving an accuracy 
rate of 91.52% using the VGG16 model and 92.11% using 
the VGG19 model. In the same study, a custom 2D CNN 
consisting of 4 convolutional, 4 max-pooling, and 3 dense 
layers was also evaluated for comparison. The 1D Padé-
Net (P = 1, Q = 2) outperforms these models, achieving 
a superior fault diagnosis performance with approximately 
a 6% increase in accuracy, while requiring far fewer 
parameters than the pretrained models. Consequently, 
1D PadéNets are capable of achieving high classification 
accuracies using raw audio data as input, while requiring 
significantly fewer parameters.

Fig. 9  Sensitivity of PadéNet accuracy to Padé orders across sensors
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Accelerometer-3 and on the acoustic sensor achieve the 
strongest results, while on Accelerometer-1 both activations 
are effectively tied near 99.96%.

Performance under Additive Gaussian Noise

We further extend our evaluation to include 1D CNNs, 1D 
Self-ONNs, and 1D PadéNets under varying noise condi-
tions. The same data partitioning protocol described in Sec-
tion  “Data Preparation” is adopted. For the training and 
validation sets, each clean segment is subjected to stochastic 
noise injection with a probability of p = 0.5. When noise is 
injected, zero–mean Gaussian noise is added at a target sig-
nal–to–noise ratio (SNR) drawn uniformly at random from 
a predefined range of 0–6 dB.

For evaluation, noisy test sets are generated at fixed SNR 
levels by creating separate test copies for each target value 
in {−4, −2, 0, 2, 4, 6, 8, 10}  dB. In each case, noise is 
added on a per–segment basis according to:

xnoisy = xclean + n,

n ∼ N
(
0, σ2)

, σ =
√

Psignal

10SNR/10

� (23)

having Q > 0. Increasing the numerator order without a 
denominator (i.e., Self-ONN with Q=0 and P≥2) does 
not reliably help and can sometimes reduce accuracy; on 
Accelerometer-3, Self-ONN (P=2, Q=0) drops to 94.41% 
(Fig. 9). Overall, balanced low-order configurations such as 
PadéNet (P=2, Q=1) or (P=1, Q=2) consistently pro-
vide the best trade-off between accuracy, training stability, 
and computational complexity.

Across the configurations we tested, LeakyReLU gen-
erally improves accuracy over tanh for nearly all (P,  Q) 
pairs where training is stable. For the CNN baseline 
(P=1, Q=0), LeakyReLU raises accuracy from 93.94% 
to 96.81% on Accelerometer-2, from 93.74% to 96.73% 
on Accelerometer-3, and from 95.56% to 97.55% on the 
acoustic sensor (Fig.  10). Accelerometer-1 is already at a 
performance plateau, remaining around 99.7–99.8% with 
either activation. For Self-ONN (Q=0, P≥2), unbounded 
activations cannot be used reliably, so comparisons are 
limited to tanh; moreover, increasing the polynomial 
order may not improve accuracy, as noted above. For 
PadéNet (P>0, Q>0), the learned denominator stabilizes 
higher-order terms and enables the safe use of unbounded 
activations; with LeakyReLU, PadéNet (P=2, Q=1) 
on Accelerometer-2 and PadéNet (P=1, Q=2) on 

Fig. 10  Sensitivity of PadéNet accuracy to activation functions across Padé orders
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a wide range of SNR conditions. In particular, PadéNet vari-
ants with moderate numerator and denominator orders com-
bined with the LeakyReLU activation function exhibit the 
most competitive performance profiles, maintaining higher 
accuracy even in severely degraded noise environments.

For example, using Accelerometer-1 input, the P=1, Q=1 
configuration with LeakyReLU sustains accuracies exceed-
ing 93% from as low as 2  dB SNR, reaching 98.91% at 
10  dB. A similar pattern emerges for Accelerometer-3, 
where the P=1, Q=2 LeakyReLU model surpasses 90% 

where Psignal = 1
L

∑L
i=1 x2

clean,i denotes the average power 
of the clean segment of length L, and σ2 is the noise vari-
ance required to achieve the desired SNR in decibels. By 
using distinct fixed SNR levels during testing that are not 
necessarily seen during training, we can also quantify each 
model’s ability to generalize to unseen noise conditions.

The comparative analysis in Tables 9, 10, 11 and 12 dem-
onstrates that the proposed 1D PadéNet configurations con-
sistently deliver superior classification accuracy relative to 
both the baseline 1D CNN and 1D Self-ONN models under 

Table 9  Average classification accuracies (mean ± s.d.) over 5 runs across SNR levels using Accelerometer-1 input
SNR (dB)

 Model Activation -4 -2 0 2 4 6 8 10
P=1, Q=0 tanh 52.86 ± 1.23 65.19 ± 0.82 75.47 ± 0.75 83.50 ± 0.65 88.59 ± 0.66 91.89 ± 0.41 94.07 ± 0.62 95.30 ± 0.50
P=1, Q=0 LeakyReLU 63.44 ± 1.48 77.43 ± 1.16 86.85 ± 0.68 92.70 ± 0.58 95.65 ± 0.52 97.24 ± 0.53 98.15 ± 0.31 98.68 ± 0.13
P=1, Q=1 tanh 56.70 ± 0.48 69.42 ± 0.81 79.90 ± 0.69 87.66 ± 0.50 92.06 ± 0.50 94.64 ± 0.49 96.43 ± 0.74 97.54 ± 0.61
P=1, Q=1 LeakyReLU 64.93 ± 0.99 78.80 ± 0.61 88.33 ± 0.66 93.47 ± 0.37 96.19 ± 0.36 97.67 ± 0.32 98.49 ± 0.18 98.91 ± 0.16
P=1, Q=2 tanh 58.52 ± 0.54 71.72 ± 0.44 82.71 ± 0.54 89.67 ± 0.29 93.47 ± 0.26 95.65 ± 0.29 96.93 ± 0.15 97.83 ± 0.14
P=1, Q=2 LeakyReLU 63.71 ± 1.76 77.54 ± 0.77 87.37 ± 0.63 93.12 ± 0.41 95.82 ± 0.24 97.31 ± 0.38 98.25 ± 0.26 98.76 ± 0.20
P=2, Q=0 tanh 54.55 ± 2.65 67.43 ± 2.43 78.39 ± 2.03 86.39 ± 1.50 90.99 ± 0.75 93.55 ± 0.83 95.34 ± 0.76 96.40 ± 0.93
P=2, Q=1 tanh 59.05 ± 1.63 72.02 ± 0.99 82.99 ± 0.55 89.61 ± 0.32 93.74 ± 0.31 95.86 ± 0.35 97.34 ± 0.09 98.07 ± 0.14
P=2, Q=1 LeakyReLU 64.38 ± 0.87 77.63 ± 1.57 86.85 ± 1.21 92.70 ± 0.67 95.77 ± 0.40 97.28 ± 0.28 98.32 ± 0.41 98.85 ± 0.31
P=3, Q=0 tanh 58.18 ± 1.07 71.02 ± 0.60 81.54 ± 0.69 88.54 ± 0.77 92.86 ± 0.67 95.00 ± 0.71 96.55 ± 0.37 97.38 ± 0.47

Table 10  Average classification accuracies (mean ± s.d.) over 5 runs across SNR levels using Accelerometer-2 input
SNR (dB)

 Model Activation -4 -2 0 2 4 6 8 10
P=1, Q=0 tanh 49.00 ± 1.18 63.75 ± 0.89 73.85 ± 1.05 80.32 ± 0.84 84.08 ± 0.75 86.42 ± 0.63 87.66 ± 0.71 88.50 ± 0.91
P=1, Q=0 LeakyReLU 54.26 ± 4.80 77.13 ± 0.79 87.42 ± 0.75 91.89 ± 0.69 93.78 ± 0.70 94.64 ± 0.52 95.13 ± 0.64 95.43 ± 0.41
P=1, Q=1 tanh 50.65 ± 0.95 66.69 ± 1.13 77.05 ± 1.32 82.83 ± 1.38 86.47 ± 1.43 88.53 ± 1.18 89.68 ± 1.31 90.49 ± 1.34
P=1, Q=1 LeakyReLU 53.10 ± 2.90 76.62 ± 1.02 87.24 ± 0.47 92.03 ± 0.62 94.08 ± 0.58 95.13 ± 0.45 95.67 ± 0.40 95.82 ± 0.31
P=1, Q=2 tanh 51.21 ± 2.59 68.42 ± 0.98 78.92 ± 0.76 85.01 ± 0.78 88.42 ± 0.63 90.09 ± 0.49 91.11 ± 0.49 91.84 ± 0.48
P=1, Q=2 LeakyReLU 52.00 ± 4.67 76.12 ± 2.48 88.08 ± 0.97 92.84 ± 0.91 94.94 ± 0.66 95.69 ± 0.67 96.26 ± 0.61 96.44 ± 0.57
P=2, Q=0 tanh 45.29 ± 2.35 64.55 ± 1.37 76.90 ± 0.34 83.59 ± 0.14 87.25 ± 0.35 89.35 ± 0.33 90.35 ± 0.15 91.15 ± 0.24
P=2, Q=1 tanh 47.76 ± 1.25 68.17 ± 0.67 80.51 ± 0.82 86.96 ± 0.97 90.35 ± 0.60 92.19 ± 0.52 93.19 ± 0.33 93.82 ± 0.37
P=2, Q=1 LeakyReLU 55.77 ± 1.96 77.67 ± 2.16 88.92 ± 1.08 93.45 ± 0.92 95.20 ± 0.77 95.86 ± 0.85 96.29 ± 0.74 96.53 ± 0.61
P=3, Q=0 tanh 44.49 ± 2.48 64.74 ± 1.32 77.82 ± 0.76 85.24 ± 0.66 89.26 ± 0.77 91.25 ± 0.86 92.29 ± 0.80 92.88 ± 0.72

Table 11  Average classification accuracies (mean ± s.d.) over 5 runs across SNR levels using Accelerometer-3 input
SNR (dB)

 Model Activation -4 -2 0 2 4 6 8 10
P=1, Q=0 tanh 58.01 ± 1.38 69.71 ± 1.02 78.30 ± 0.93 83.44 ± 1.13 86.10 ± 0.67 87.43 ± 0.56 88.17 ± 0.60 88.82 ± 0.52
P=1, Q=0 LeakyReLU 64.50 ± 1.92 80.78 ± 0.91 88.56 ± 0.91 92.40 ± 0.58 93.87 ± 0.61 94.61 ± 0.53 94.81 ± 0.45 95.19 ± 0.34
P=1, Q=1 tanh 59.43 ± 1.17 71.67 ± 0.84 80.23 ± 0.82 85.31 ± 1.08 87.60 ± 1.31 88.86 ± 1.48 89.75 ± 1.41 90.41 ± 1.33
P=1, Q=1 LeakyReLU 65.98 ± 3.44 81.13 ± 2.38 89.41 ± 1.25 92.80 ± 0.77 94.55 ± 0.70 95.16 ± 0.72 95.68 ± 0.68 95.95 ± 0.72
P=1, Q=2 tanh 60.15 ± 1.12 73.90 ± 1.23 83.72 ± 1.08 88.39 ± 0.80 90.89 ± 0.92 92.14 ± 0.95 92.93 ± 1.08 93.30 ± 1.04
P=1, Q=2 LeakyReLU 67.93 ± 1.93 82.69 ± 1.67 90.23 ± 1.25 93.57 ± 0.68 95.01 ± 0.38 95.73 ± 0.53 96.12 ± 0.24 96.29 ± 0.22
P=2, Q=0 tanh 58.10 ± 2.84 70.68 ± 1.94 79.72 ± 1.01 84.84 ± 1.03 88.01 ± 0.81 89.58 ± 0.92 90.60 ± 0.89 90.97 ± 0.76
P=2, Q=1 tanh 59.61 ± 1.44 72.94 ± 0.85 81.76 ± 0.59 86.56 ± 0.54 89.30 ± 0.68 90.58 ± 0.62 91.29 ± 0.64 91.49 ± 0.55
P=2, Q=1 LeakyReLU 65.54 ± 1.20 81.27 ± 0.89 89.76 ± 0.51 93.50 ± 0.31 94.98 ± 0.75 95.62 ± 0.41 96.01 ± 0.53 96.21 ± 0.49
P=3, Q=0 tanh 58.56 ± 1.07 73.12 ± 0.97 82.48 ± 0.96 88.07 ± 0.81 90.95 ± 0.68 92.46 ± 0.67 93.34 ± 0.66 93.84 ± 0.75
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computational efficiency must be balanced against diagnos-
tic accuracy. For each configuration, the trainable parameter 
count, FLOPs (floating-point operations), inference dura-
tion per 1000-sample window measured with TensorFlow 
Lite on a Raspberry Pi 4 Model B (mean ± s.d. over 100 
runs), and the serialized model sizes for Float32 and 8-bit 
dynamic-range quantized TFLite exports are provided. 
The baseline 1D CNN (P=1, Q=0) requires the fewest 
parameters (58,376) and is the fastest at 3.159 ± 0.050 ms 
per window, while the highest-accuracy PadéNet set-
tings evaluated—P=2, Q=1 and P=1, Q=2—run in 
8.578 ± 0.224 ms and 9.591 ± 0.098 ms, respectively. This 
corresponds to a throughput of roughly 100–320 windows/s 
across all variants, indicating that the models satisfy real-
time constraints on our edge platform. Model footprints 
span 228–568 KB for Float32 and 78–187 KB for the quan-
tized TFLite models, which fit within the flash budgets of 
many Cortex-M–class MCUs. FLOPs are computed on fro-
zen TensorFlow graphs using the TensorFlow profiler.

While increasing the degree of the numerator (P) and 
denominator (Q) generally enhances fault diagnosis accu-
racy, it also results in increased computational complexity 
for the 1D PadéNet models. Nevertheless, with moderate 
values of P and Q, the increase in trainable parameters 
remains manageable, and the inference time stays within 
a few milliseconds, making 1D PadéNets a competitive 
option for fault diagnosis systems that can be deployed on 
the edge devices.

accuracy from 0 dB onwards, achieving 96.29% at 10 dB. 
The performance gap is wider in low-SNR regimes (−4 dB 
to 0 dB), where accurate recognition is typically most chal-
lenging. On the acoustic modality at −4 dB, for instance, the 
P=1, Q=2 LeakyReLU PadéNet attains 52.07% accuracy, 
representing an absolute gain of over 6% compared to the 
best-performing 1D CNN baseline (45.95%). However, it 
should be noted that the acoustic modality is more affected 
by noise than the vibration modality, exhibiting greater per-
formance loss under noisy conditions.

While Self-ONNs demonstrate competitive behaviour 
at certain mid-SNR conditions, they generally lag behind 
PadéNets across both extreme and moderate noise levels. 
The consistently high accuracy observed for PadéNets at 
SNR values not explicitly encountered during training fur-
ther indicates strong generalization to previously unseen 
noise conditions. These findings suggest that the PadéNet 
architecture offers enhanced noise robustness that remains 
consistent across different sensing modalities.

Computational Complexity Analysis

The computational demands of the 1D CNN, 1D Self-
ONN, and 1D PadéNet models were evaluated through 
their number of trainable parameters and average infer-
ence times, as summarized in Table  13. These metrics 
are critical for assessing the feasibility of deploying fault 
diagnosis models on resource-constrained devices, where 

Table 12  Average classification accuracies (mean ± s.d.) over 5 runs across SNR levels using Microphone input
SNR (dB)

 Model Activation -4 -2 0 2 4 6 8 10
P=1, Q=0 tanh 37.95 ± 0.42 46.27 ± 0.63 54.66 ± 0.61 61.55 ± 1.07 67.09 ± 0.98 71.45 ± 1.09 74.39 ± 1.21 76.91 ± 1.21
P=1, Q=0 LeakyReLU 45.95 ± 1.42 61.18 ± 1.91 72.42 ± 1.77 78.97 ± 1.80 83.59 ± 1.84 86.96 ± 1.52 89.11 ± 1.07 90.18 ± 1.33
P=1, Q=1 tanh 42.17 ± 1.85 52.22 ± 1.45 60.45 ± 1.09 67.45 ± 0.95 72.66 ± 0.97 76.79 ± 0.98 80.26 ± 1.01 82.43 ± 1.11
P=1, Q=1 LeakyReLU 50.82 ± 2.26 62.47 ± 1.11 73.05 ± 1.25 79.67 ± 0.80 84.30 ± 0.94 87.59 ± 0.83 89.76 ± 0.60 91.24 ± 0.77
P=1, Q=2 tanh 42.17 ± 1.99 52.64 ± 0.80 61.83 ± 0.76 68.52 ± 1.46 74.00 ± 1.25 78.24 ± 1.04 81.45 ± 1.26 83.90 ± 1.29
P=1, Q=2 LeakyReLU 52.07 ± 2.21 63.96 ± 0.51 73.42 ± 0.44 79.75 ± 1.66 84.38 ± 0.92 87.80 ± 0.69 90.10 ± 0.64 91.66 ± 0.53
P=2, Q=0 tanh 36.86 ± 1.69 47.10 ± 1.04 56.78 ± 0.71 64.12 ± 0.66 70.53 ± 0.63 75.21 ± 0.48 78.80 ± 0.45 81.82 ± 0.70
P=2, Q=1 tanh 38.72 ± 2.00 51.69 ± 1.88 62.98 ± 1.74 70.99 ± 1.39 76.27 ± 1.09 80.02 ± 1.25 83.31 ± 1.19 86.02 ± 1.38
P=2, Q=1 LeakyReLU 47.93 ± 1.39 63.44 ± 1.51 72.33 ± 0.73 79.26 ± 0.82 84.38 ± 1.51 87.33 ± 1.31 89.13 ± 1.49 90.69 ± 1.51
P=3, Q=0 tanh 35.42 ± 1.85 46.82 ± 1.62 57.81 ± 0.95 66.05 ± 0.71 71.93 ± 0.77 76.74 ± 0.70 80.26 ± 0.59 82.83 ± 0.57

Model (config) # Params 
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P =3, Q=0 (Self-ONN) 145.29 44.19 7.677 ± 0.127 567.53 186.85

Table 13  Model complexity and 
inference performance
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speed drives via self-organized operational neural networks. 
Electric Eng pp 1–13
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Conclusions

This study proposed 1D Padé Approximant Neural Net-
works (PadéNets) for classifying mechanical and electri-
cal faults in three-phase induction motors using vibration 
and acoustic data. By leveraging rational-function-based 
nonlinearities, PadéNets consistently outperformed tradi-
tional CNNs and Self-ONNs across all sensor inputs. The 
best performance was achieved on the first accelerometer 
with an average accuracy of 99.96%, while acoustic-based 
classification reached 98.33%, highlighting the potential of 
1D PadéNets for both contact and non-contact condition 
monitoring. The models demonstrated strong generalization 
across sensor positions, with lower complexity and faster 
inference compared to state-of-the-art alternatives. These 
results establish PadéNets as effective and efficient tools 
for real-time fault diagnosis. Future work could focus on 
extending 1D PadéNets to variable-speed operating condi-
tions and integrating multi-sensor data fusion to advance 
intelligent fault diagnosis in electrical machines.
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