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Abstract

Purpose The primary aim of this study is to enhance fault diagnosis in induction machines by leveraging the Padé Approxi-
mant Neuron (PAON) model. While accelerometers and microphones are standard in motor condition monitoring, deep
learning models with nonlinear neuron architectures offer promising improvements in diagnostic performance. This research
investigates whether Padé Approximant Neural Networks (PadéNets) can outperform conventional Convolutional Neural
Networks (CNNs) and Self-Organized Operational Neural Networks (Self~-ONNSs) in the diagnosis of electrical and mechani-
cal faults from vibration and acoustic data.

Methods We evaluate and compare the diagnostic capabilities of three deep learning architectures: one-dimensional CNNs,
Self-ONNs, and PadéNets. These models are tested on the University of Ottawa’s publicly available constant-speed induc-
tion motor datasets, which include both vibration and acoustic sensor data. The PadéNet model is designed to introduce
enhanced nonlinearity and is compatible with unbounded activation functions such as LeakyReLU.

Results and Conclusion PadéNets consistently outperformed the baseline models, achieving diagnostic accuracies of 99.96%,
98.26%, 97.61%, and 98.33% for accelerometers 1, 2, 3, and the acoustic sensor, respectively. The enhanced nonlinearity
of PadéNets, together with their compatibility with unbounded activation functions, significantly improves fault diagnosis
performance in induction motor condition monitoring.

Keywords Condition monitoring - Fault diagnosis - Padé approximant neural networks - Self-organized operational
neural networks - Convolutional neural networks

Introduction essential practice, employing traditional model-based, sig-

nal-based, and modern data-driven approaches to evaluate

Electrical machines are the backbone of modern industrial
processes, driving manufacturing, automation and energy
production. However, continuous operation over time leads
to inevitable wear and an increased risk of failure [28].
To address this, condition monitoring has emerged as an
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the health of motors, generators, and other rotating equip-
ment. Model-based methods rely on physical or mathe-
matical representations of machine behavior, signal-based
techniques use signal processing to analyze sensor outputs
such as vibration and sound, and data-driven models har-
ness artificial intelligence (Al) to uncover and detect pat-
terns from raw data [13]. Ensuring reliability through these
strategies minimizes costly downtimes and prevents safety
hazards.

Beyond diagnostic techniques, advancements in sensor
technologies have been instrumental in improving fault
diagnosis capabilities, providing richer, more precise data to
feed these monitoring systems. Modern industrial systems
are often monitored using a variety of sensors that track dif-
ferent parameters such as temperature, current, sound, vibra-
tion, and visual data like images or videos. Accelerometers
are the most commonly used sensors for machinery fault
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diagnosis, favored for their high sensitivity, high dynamic
range, and wide bandwidth in frequency response [2, 40].
During rotary motion, components of rotating machines
produce vibrations, with characteristic frequencies deter-
mined by their rotational speed, geometry, and interactions
with other parts [13]. The vibration amplitude at a specific
frequency is predictable but increases with wear or damage,
making Fast Fourier Transform (FFT) analysis crucial for
detecting fault-induced changes [3]. However, accelerome-
ters are contact sensors, and their response can significantly
vary depending on the mounting location, which is one of
the most common problems associated with these sensors.
As a non-contact alternative, microphones can be used for
condition monitoring, offering several advantages such as
lower cost, easier installation, and the ability to monitor mul-
tiple machines simultaneously without the need for physical
attachment [21, 38]. Acoustic-based monitoring eliminates
the need for mechanical coupling and avoids potential sen-
sor mounting resonances that can distort vibration measure-
ments. These diverse sensing modalities generate complex,
high-dimensional time series data often at high sampling
rates, resulting in vast amounts of information in indus-
trial environments. Deep learning (DL) models can handle
high-velocity data streams more effectively than traditional
spectral analysis and statistical pattern recognition methods
for several reasons. They process high-dimensional data,
automatically extract relevant features end-to-end without
manual intervention [13, 28], capture complex, nonlinear
relationships, and adapt to evolving data over time [6, 29].
Additionally, DL architectures scale efficiently, managing
vast datasets from multiple sensors in industrial environ-
ments [19, 36, 41]. Consequently, DL architectures, such
as Convolutional Neural Networks (CNNs) [5, 13, 16, 17],
Recurrent Neural Networks (RNNs) [44, 46, 47], and hybrid
models [4, 10, 12, 39], potentially incorporating attention
mechanisms, have become widely adopted computational
frameworks for fault diagnostics.

CNN s have been widely adopted for machine fault clas-
sification, which is one of the earliest and most extensively
studied applications of fault diagnosis, drawing direct inspi-
ration from image classification techniques [34]. In this
context, both one-dimensional (1D) and two-dimensional
(2D) CNNs have been utilized. The 1D CNNs are special-
ized for processing time series data such as raw vibration or
audio signals, whereas the 2D CNNs are designed to man-
age multidimensional data, often by converting 1D signals
into 2D representations that capture both spatial and tempo-
ral relationships. For example, in [43], vibration spectrum
imaging (VSI) was used to transform normalized spectral
amplitudes from segmented vibration signals into images.
These images were subsequently fed into a CNN for bearing
fault classification. The proposed VSI-CNN model achieved
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a classification accuracy of around 99%. Similarly, in [33],
a 2D CNN model achieved an accuracy of 99.38% by uti-
lizing 2D image representations of 1D raw vibration data
from the Case Western Reserve University (CWRU) bear-
ing dataset. In addition to these transformed inputs, thermal
images have also been utilized as inputs for 2D CNNs in
fault diagnosis [35, 42]. On the other hand, 1D CNNs pro-
vide a simple and computationally efficient way to perform
fault diagnosis by directly processing raw 1D input data.
Numerous studies [5, 7, 8, 13, 45] have applied 1D CNNs
to machinery fault diagnosis, using either raw sensor data or
engineered features as input.

While CNNs exhibit strong performance under controlled
conditions, prior studies [24, 25] emphasize that conven-
tional CNNSs, built upon a fixed architecture and first-order
neuron model, often struggle to capture highly nonlinear
and complex patterns inherent in real-world data. Although
nonlinearity is introduced through pointwise activation
functions, such as ReLU [32] and its variant LeakyReLLU
[30], these functions are predefined and uniformly applied
across layers, limiting the network’s representational flex-
ibility. To address this constraint, Padé¢ Activation Units
(PAUs) were introduced in [31] as a learnable alternative to
traditional hand-crafted activations. PAUs model activation
functions using Padé¢ approximants, which are rational func-
tions expressed as the ratio of two polynomials. This formu-
lation enables the network to learn complex, task-specific
nonlinear mappings during training, as both the numerator
and denominator coefficients are optimized via backpropa-
gation (BP). By making the activation functions adaptive
rather than fixed, PAUs provide a more expressive and flex-
ible framework for capturing intricate data patterns. To fur-
ther extend this paradigm and enhance the network’s ability
to model nonlinearities at the neuron level, Self-Organized
Operational Neural Networks (Self~ONNs) have been pro-
posed [27]. Unlike traditional CNNs, which rely solely on
pointwise nonlinear activations, Self~ONNs incorporate
nonlinear neuron models. They incorporate generative neu-
rons that approximate the necessary nonlinear mappings by
utilizing a truncated Taylor series expansion centered at the
origin, specifically applying a Maclaurin series expansion
up to a predefined order. Therefore, generative neurons use
the input along with its higher-order powers and compute
their weighted sum to approximate a nonlinear mapping
in the neuron itself. The enhanced fault diagnosis perfor-
mance of 1D and 2D Self-ONNs has been validated in stud-
ies on machinery fault diagnosis, utilizing various sensor
modalities [14, 15, 20, 22]. While generative neurons in
Self-ONNs capture greater nonlinearity, the linear combina-
tion of different input orders can lead to instability outside
a safe computation range. Moreover, since Taylor series
approximations are most accurate near the expansion point,
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the output of generative neurons is constrained by a tanh
activation function, which may suffer from vanishing gradi-
ents during training. To address this limitation, a new class
of networks known as PadéNets, built using Padé Approxi-
mant Neurons (PAONs) has been proposed [18]. Padé
neurons utilize Padé approximation at the neuron level by
representing nonlinear functions as ratios of polynomials.
In PadéNets, a single neuron within a 1D Padé layer with
a kernel size of k effectively learns £ distinct Padé approxi-
mants, each represented as a ratio of two polynomials. This
structure significantly increases the degrees of freedom
available to the model compared to PAUSs, as it introduces
nonlinearity within the kernel itself, in addition to the non-
linearity contributed by the activation function. They have
been shown to offer improved performance compared to
Taylor-based generative neurons and convolutional neurons
in single-image super-resolution tasks [18]. Furthermore,
PAONSs generalize several existing neuron models and can
effectively serve as a replacement for conventional convo-
lutional neurons within CNN architectures. To leverage the
superior feature extraction capabilities of PAONSs, this study
introduces the use of 1D PadéNets for the classification of
electrical and mechanical faults in three-phase induction
machines. The main contributions of this work can be sum-
marized as follows:

e We present, for the first time, the application of 1D Pa-
déNets for the classification of electrical and mechanical
faults in three-phase induction motors.

1D Raw Vibration or Audio Waveform

1D PadéNet

e We evaluate 1D PadéNets separately on benchmark vi-
bration and audio datasets from the University of Ot-
tawa [37], demonstrating robust results across different
sensing modalities.

e We compare 1D PadéNets with 1D Self-ONNs and 1D
CNN s to highlight the superior diagnostic accuracy en-
abled by Padé neurons.

The proposed 1D PadéNet-based framework for fault diag-
nosis is illustrated in Fig. 1. Section “Methods” discusses
the mathematical foundations of all evaluated models: 1D
CNNs, 1D Self-ONNs, and 1D PadéNets. Section “Experi-
mental Evaluation” presents the experimental setup, includ-
ing the University of Ottawa constant-speed vibration and
acoustic datasets [37], followed by details on preprocessing
steps, training methodology, and evaluation metrics. Sec-
tion “Results and Discussion” presents a thorough com-
parison of the fault diagnosis performance of each model,
along with their computational complexities. Finally, Sec-
tion “Conclusions” concludes the paper and outlines poten-
tial directions for future research.

Methods

This section establishes the mathematical foundations and
architectural characteristics of 1D CNNs, 1D Self-ONNs,
and 1D PadéNets to enable their comparative evaluation in
electric motor fault diagnosis.
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Fig. 1 The proposed 1D PadéNet-based framework and the diagram of a Padé neuron with P = 2, Q) = 1, where wo represents the bias term in the
numerator, ()" denotes element-wise exponentiation of the input to the n'" power, * indicates convolution, and - implements Eq. 10
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1D CNNs achieved state-of-the-art performance in
various applications, including biomedical data classifica-
tion [23], structural health monitoring [1], and motor fault
diagnosis [5, 7, 8, 13, 45]. Their simple 1D convolutional
structure also enables real-time, low-cost hardware imple-
mentation [26]. The traditional CNN architecture is based
on the classical linear neuron model, which incorporates
constraints such as restricted connectivity and weight shar-
ing at the kernel level. These constraints lead to the convo-
lution operations commonly used in CNNs. The k" input
feature map in the I*? layer of a 1D CNN can be computed
as:

Ni_1
x) = by + D xy! (1)
=1

In this expression, x'2 € RM denotes the feature map

obtained by convolving the i*" output map from layer
(I — 1), denoted as vV € RM  with the kernel WEQ € RX,

which connects it to the k*® input feature map in layer /. The
term b,(f) represents the bias associated with the k' neuron
in the current layer, and N;_; is the number of output fea-
ture maps (or channels) produced by layer [ — 1. The 1D

convolution operation used to compute XEQ [m] is given by:

K-—1
<P m) =3 wi iy fm 4+ ] @)
r=0

In the forward pass, each input feature map x,(cl)

is then
transformed by a nonlinear activation function followed by
an optional subsampling operation, resulting in the output

feature representation of the convolutional neuron.

CNNs are derived from the traditional McCulloch-Pitts
neuron model, which is fundamentally linear, with nonlin-
earity introduced through an activation function. To extend
nonlinearity beyond simple pointwise transformations, new
architectures like Operational Neural Networks (ONNs)
[25], which incorporate inherent nonlinearities within their
neurons, have been proposed. ONNs extend the conven-
tional convolutional neuron by generalizing the standard
convolution operation as follows:

_a 1 n( @ -1 K1

</ [m] = P (w,i H(wl il o Vmr]) ) 3)
where w,(ﬁl)(-) c RMXE _, RMXK gpd P,gl)(-) ‘RE 5 R!
are called nodal and pool operators, respectively, assigned
to the k*® neuron of the I* layer.

Operational layers in ONNs preserve the two funda-
mental constraints of conventional CNNs, namely weight
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sharing and localized connectivity at the kernel level.
However, they can utilize a variety of functions as the
nodal operators, including sinusoidal transformations,
exponentials, or other nonlinear operations [25]. Addi-
tionally, instead of the standard additive pooling in CNNs,
these models allow for alternative aggregation strategies
such as taking the median, offering greater flexibility in
learning complex patterns. In ONNSs, the Greedy Iterative
Search (GIS) algorithm is often employed to explore a
set of candidate functions, aiming to determine the most
effective combination of nodal and pooling operators
[25]. Once these optimal operators are selected, they are
uniformly assigned to all neurons within a given hidden
layer, defining the final structure of the network. Despite
its effectiveness, this design introduces key limitations
[27]. A major drawback is the lack of diversity, as each
neuron within a layer uses the same operator set, limit-
ing functional heterogeneity. Additionally, identifying
appropriate candidate operators prior to training poses
a significant challenge, because it requires considerable
computational effort and may introduce bias that affects
learning. To overcome these issues, Self-ONNs were
introduced [27].

Self-ONNs leverage a generative neuron model to enable
adaptive operator selection during training. Each generative
neuron can optimize its nodal operators through BP training.
This optimization occurs individually for each kernel ele-
ment and connection to neurons in the previous layer, with
the goal of maximizing learning performance. In self-orga-
nized operational layers, the nodal functions are optimized
by approximating nonlinear behaviors using a Taylor series
expansion. This approach enables each generative neuron to
apply a learned nodal transformation, which can be formu-
lated as follows:

B (N, ¥0 1)

P 4
= > wolr) (0 Vm o+ 0))” ?
p=1

In Eq. 4, the hyperparameter P sets the order of the Taylor

polynomial approximation, thereby influencing the degree
©)

of nonlinearity. Additionally, the weights w,, ;, now consist

of P times the number of learnable parameters in the corre-

sponding convolutional model. During training, the weights
O]

p,ik
nonlinear transformations [27].

w ., are updated via the standard BP algorithm, leading to

By adopting summation as the pooling operator, we can
model the self-organized operational layer using a convo-
lutional framework. The output of a generative neuron can
simply be expressed as follows:
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~£? *ZCOHVH:)( ptk’ (yz(l 1)) ) (5)

Thus, the formulation can be implemented using P 1D con-
volution operations. When P = 1, it simplifies to the con-
ventional 1D convolution. Self-ONNs are super set of CNNs
(P = 1), and generative neurons in Self-ONNs enable the
modeling of more complex nonlinearities. However, using
higher-order powers (ygl_l))p can introduce numerical
instability outside a stable computational range; therefore,
}EEQ is typically constrained by bounded activation func-
tions. Since Taylor series approximations are most accurate
near the expansion point, the output of generative neurons
is typically constrained by the tanh activation function to
model the nonlinear mapping around the origin. However,
the tanh function saturates, which can lead to the vanish-
ing gradient problem during BP, hindering effective train-
ing. To address these challenges, a new neuron model, Padé
Approximant Neurons (PAONS), inspired by Padé approxi-
mants, has recently been proposed [18].

The Padé¢ approximation offers a powerful means of rep-
resenting transcendental functions by expressing them as a
ratio of two polynomials of specified degrees. It finds exten-
sive application in fields such as control theory, where it is
particularly useful for approximating time-delay elements
in feedback control systems. An asymptotic expansion, such
as a Taylor series, can often be significantly accelerated or
even transformed from divergent to convergent by reformu-
lating it as a Padé approximant [11].

If we let fip/q)(y) denote the Padé approximation of
a function f(y), where the numerator is a polynomial of
degree P and the denominator is a polynomial of degree @,
the approximation can be formulated as follows:

P
Z o T

m=0
= == (©)

> bay”
n=0

The coefficients a,,, and b,, correspond to the terms in the
numerator and denominator polynomials, respectively. Typ-
ically, to simplify the formulation, the Padé approximant
coefficients are normalized such that by, = 1. Hence, we can
express it as follows:

P
aop + Z Qm, ym

fipjQy) = —"g—— (7

1+ an y"
n=1

Rp(y)
Sqly)

fipsq(y) =

Padé Activation Units (PAUs) adapt the classical Padé
approximation for use as learnable activation functions in
neural networks [31]. Unlike fixed-form nonlinearities such
as tanh, a PAU represents the activation as the ratio of two
polynomials whose coefficients are trainable parameters. By
appropriately learning these coefficients, PAUs can replicate
common activation functions (e.g., sigmoid, tanh) as special
cases or generate entirely new, data-driven nonlinearities.
The analytical differentiability of the rational form ensures
compatibility with standard BP, while its flexibility enables
the network to capture complex, task-specific behaviors that
may be inaccessible to conventional fixed activations. For-
mally, a PAU in the I*? layer, applied element-wise to each

input map x\” € RM s defined as:

P
> ot ()"

droav(x") = =% : ®)

Z (l)

where a(l) and b%l ) are trainable scalar coefficients shared by
all feature maps in the I*" layer.

This idea of embedding trainable Pad¢ approximants into
the network structure naturally motivates the use of PAONs
in PadéNets, where the polynomial ratio formulation is
incorporated directly into the neuron instead of the activa-
tion function. If we interpret the coefficients a,, and b,, as
kernels in a convolution operation, with ag representing the
bias, the &*" input feature map in the [*" Padé layer can be
expressed as:

P N
(l Dym
ot D2 D W (1)
(l) m=1 i=1
Xk Q N1 (9)
O] (l Dyn
14D D o (73 )
n=1 i=1
where yglfl) € RM is the i*? output feature map from the

(I — 1) layer, W;E)l'n)q,ikv wfll,,)mk € RX are the numerator and
denominator kernels corresponding to polynomial orders m
and n, respectively, with i indexing the output feature map
from layer  — 1 and & indexing the input feature map in

O]

layer /. w,,q . is the bias term, and * denotes 1D convolution.

One important consideration with this neuron model is that
the denominator can potentially become zero or approach to
zero throughout training. To mathematically ensure that the
denominator remains nonzero, several variants of the Padé
neurons have been proposed [18]. In this study, we adopt
the first variant, which involves taking the absolute value of
each term in the denominator to guarantee that each element

@ Springer
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in the numerator is divided by a value greater than or equal
to one. Therefore, we can express the equation for this vari-
ant as follows:

P Ni—1
pO k + Z Z me zk (l 1))m
X, = e (10)
1+ 33wl ()
n=1 i=1

Each kernel element in a Padé neuron adapts independently,
allowing each weight group to learn its own specific Padé
approximation. This self-adjustment enhances the model’s
nonlinearity by integrating higher-order features in both the
numerator and denominator of the approximation. Addition-
ally, as the Padé neuron is expressed as a ratio of polyno-
mials, it provides greater stability, even with higher-order
approximations. When the numerator and denominator
degrees are comparable, the PAON’s rational form main-
tains training stability even with unbounded activation
functions.

Padé neurons generalize both convolutional and genera-
tive neuron models. For P = 1 and Q = 0, the Padé neuron
reduces to a standard convolutional neuron in CNNs, and
for P > 2 and Q = 0, they behave as generative neurons
in Self~-ONNs. As a result, PAONs can effectively capture
complex nonlinear relationships and they are capable of
replacing existing neuron models in CNNs and Self-ONNS.
Compared to a standard Conv1D layer, the PAON formula-
tion introduces (P + Q — 1) x K x Cj, X Coyy additional
trainable parameters for a kernel size K, where Cj, and

Cous denote the number of input and output feature maps,
respectively. This increase is due to the full PAON mapping
that consists of (P + @) parallel convolutional branches,
whereas a conventional convolution employs only a single
branch. Figure 2 offers a comparative illustration of the
computations involved in a convolutional, generative, and
Padé neuron.

To enable end-to-end training of networks containing
Padé neurons (PAONSs), we derive the gradients of the loss

function £ with respect to the numerator kernels Wl(ﬂ)n .0 the
®

denominator kernels w,, ;.

the previous layer yg D We denote the upstream gradient

from the (I + 1)*® layer as follows;

and the output feature map of

oL
o) &= (an
l 9
8x,(€)
For compactness, we define:
P N
) l -1
RY = wii s+ D D whnar ()" (12)
m=1 i=1
Q Ni_
) _ (z 1)
Sk _1+Z Z qnzk ) |’ (13)
n=1 i=1

0 R,(Cl) @ S(l), where © denotes element-wise

so that x,
division and x denotes 1D convolution. For any kernel w, let
W denote its time-reversal, W[t] = w[—t]. We use © for ele-

ment-wise multiplication, [-] ! for element-wise inversion,

Fig. 2 An illustrative overview
of the operations involved in a
convolutional, generative, and
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[-]°2 for element-wise squaring, *grad fOr cross-correlation
used in kernel gradients, and *j,,, for convolution with W

when backpropagating to inputs.
)

Since w,;, ., appears only in R(l), differentiating
x,(cl) = R,(cl) / S,(Cl) with respect to wz(i)n’ik while treating S,(gl)

as constant yields;

oL ! )q— I—1)\m
= (519 o [sY] 1) faraa (vi )" (14)
me,ik:
For denominator kernels, we introduce
hélT)L i Wffﬁ i % (ygl_l))n and use the subgradient sgn(-)

element-wise. Applying the quotient rule gives:

oL .
= (8o (- B 2 [3{"%))

Ow )
an ik (15)
*grad (sgn(hfﬁz i) © (yEH))”) .

For the input gradients, both R(l) and S(l) depend on y(l 1),

leading to:

R\ P R
o (151) = Z Wz(nz% ik * (m (Y1(J 1)) 1)7 (16)
! m=1
l Q
o8

Z sgn hgln m

[ ffi e (n (YEZ_”)"”)] :

Finally, the gradient of the loss function with respect to the
Y of the (1 —

ay{ Y (17)

i-th output feature map yl 1)*® layer can be

expressed as:

(N

Fig. 3 The experimental setup [37]

5}’1@71) k=1 8}’?71)
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Experimental Evaluation

This section outlines the experimental setup used to acquire
the University of Ottawa electric motor vibration and
acoustic fault signature dataset (UOEMD-VAFCVS) [37],
describes the preprocessing steps applied to the data, and
details the training and testing configurations, including
data partitioning, training strategy, and evaluation criteria.

Experimental Setup and Dataset

The University of Ottawa electric motor vibration and
audio datasets were collected from a modified SpectraQuest
Machinery Fault & Rotor Dynamics Simulator test rig [37].
The setup includes an induction motor, a variable frequency
drive, three single-axis accelerometers, and a microphone,
as depicted in Fig. 3. The data collection system involves
a National Instruments USB-6212 data acquisition unit
to connect the sensors to a computer. The accelerometers
measure vibration and temperature signals at both the drive
end and shaft of the system, while the microphone captures
acoustic signals. The variable frequency drive records the
rotational speed of the motor. The data collection duration
was fixed at 10 seconds, with data acquisition carried out
using LabVIEW. All signals were sampled at a rate of 42
kHz [37].

Each data file consists of time-series measurements orga-
nized into several columns. The first column contains data
from the accelerometer (PCB, model 603CO01) positioned
at the drive end of the motor. The second column records

@ Springer
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acoustic data, while the third column presents data from a
second accelerometer (PCB, model 623C01) positioned on
the shaft’s bearing housing near the drive end. The fourth
column contains data from the third accelerometer (PCB,
model 623C01), located on the shaft’s bearing housing fur-
thest from the drive end, and the remaining columns include
temperature and rotational speed measurements [37].

The dataset includes samples from a healthy induction
motor and various fault conditions. These faults can be cat-
egorized as follows:

e Electrical faults: stator winding faults (SW), voltage
unbalance and single phasing (VU), and broken rotor
bars (KA).

e Mechanical faults: rotor unbalance (RU), rotor mis-
alignment (RM), bowed rotor (BR), and faulty bearings
(FB).

Therefore, it contains a total of 8 classes, corresponding
to the 7 fault conditions and the healthy motor. Induction
machines were operated under both constant and vari-
able operating frequencies. The constant frequencies were
approximately 15 Hz, 30 Hz, 45 Hz, and 60 Hz. The vari-
able frequencies included ranges such as 15 Hz to 45 Hz, 30
Hz to 60 Hz, 45 Hz to 15 Hz, and 60 Hz to 30 Hz. In this
study, only the constant speed portion of the Ottawa dataset
is utilized, and the subsequent discussions are based on this
subset of the data. The motors were operated under both no-
load and loaded conditions. The loading was implemented
by symmetrically attaching ten bolts to a disk mounted on
the motor shaft [37]. The dataset filenames follow the format
Letter-Letter-Number-Number, where the first two letters
indicate the motor’s condition (e.g., “H” for healthy, “R”
for rotor fault, “B” for bowed rotor, etc.). The first number
shows the motor speed setting (e.g., | = 15 Hz, 4 = 60 Hz),
and the second number indicates the load condition (“0” for
no load, “1” for loaded). For instance, “R-U-1-0" refers to
an unloaded rotor unbalance fault at 15 Hz. The constant-
speed dataset under both unloaded and loaded conditions
can be structured as shown in Table 1.

Data Preparation

In this work, we evaluate the performance of 1D PadéNets
for vibration and audio inputs separately. For each input
channel, the entire dataset was partitioned into training
(80%), validation (10%), and testing (10%) subsets
through a sequential temporal split performed separately
on each individual signal file. Each file, corresponding to
a distinct operating frequency and fault class, was split
temporally such that the initial 80% of its segments were
used for training, the subsequent 10% for validation, and

@ Springer

Table 1 Labeling of datasets for constant speed conditions across dif-
ferent fault modes

Fault Mode Speed (Hz)
15 Hz 30 Hz 45 Hz 60 Hz
Healthy (H) H-H-1-0 H-H-2-0 H-H-3-0 H-H-4-0
H-H-1-1 H-H-2-1 H-H-3-1 H-H-4-1
Rotor Unbalance (RU) R-U-1-0 R-U-2-0 R-U-3-0 R-U-4-0

R-U-1-1 R-U-2-1 R-U-3-1 R-U+4-1
R-M-1-0 R-M-2-0 R-M-3-0 R-M-4-0
R-M-1-1 R-M-2-1 R-M-3-1 R-M+4-1
Stator Winding Fault (SW) S-W-1-0 S-W-2-0 S-W-3-0 S-W-4-0
S-W-1-1 S-W-2-1 S-W-3-1 S-W-4-1
V-U-1-0 V-U-2-0 V-U-3-0 V-U-4-0
V-U-1-1 V-U-2-1 V-U-3-1 V-U-4-1
B-R-1-0 B-R-2-0 B-R-3-0 B-R-4-0
B-R-1-1 B-R-2-1 B-R-3-1 B-R-4-1
K-A-1-0 K-A-2-0 K-A-3-0 K-A-4-0
K-A-1-1 K-A-2-1 K-A-3-1 K-A-4-1
F-B-1-0 F-B-2-0 F-B-3-0 F-B-4-0
F-B-1-1 F-B-2-1 F-B-3-1 F-B-4-1
The last digit indicates the load condition (0 = Unloaded, 1 = Loaded)

Rotor Misalignment (RM)

Voltage Unbalance (VU)
Bowed Rotor (BR)
Broken Rotor Bars (KA)

Faulty Bearings (FB)

the remaining 10% for testing. This approach ensures that
the model is evaluated on future unseen data and avoids
temporal leakage, which can occur if segments from
the same temporal window appear in both training and
evaluation sets. No shuffling was performed either within
or between files. Finally, the segments were categorized
into fault classes, with each class containing data collected
across all operating frequencies and both loaded and
unloaded machine conditions. The number of samples in
each split is summarized in Table 2.

All channels of vibration and audio data were segmented
into fixed-length windows of 1000 time-domain samples
without overlap. Thus, a total of 420 samples were extracted
per channel from a single recording. The segmentation pro-
cess divides the continuous time series data into smaller,
non-overlapping segments of 1000 samples to balance
temporal resolution and model complexity. Each segment
is then normalized separately. Normalization is performed
using the min-max normalization method, where each data
point z; in a given segment is scaled based on the minimum

Table 2 Number of samples in each data split for each input channel,
including both unloaded and loaded conditions of the constant-speed
datasets

Fault Mode Training Validation  Test
Samples Samples Samples
Healthy (H) 2680 336 336
Rotor Unbalance (RU) 2680 336 336
Rotor Misalignment (RM) 2680 336 336
Stator Winding Fault (SW) 2680 336 336
Voltage Unbalance (VU) 2680 336 336
Bowed Rotor (BR) 2680 336 336
Broken Rotor Bars (KA) 2680 336 336
Faulty Bearings (FB) 2680 336 336
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and maximum values of that segment. The normalization
equation can be written as:

2- (xz - xmin)

norm __
i =

x ~1, (19)

Tmax — Lmin
where z}°™ is the normalized value, ; is the original data
point, Ty and xyax are the minimum and maximum val-
ues of the segment, respectively. Figure 4 presents some
examples of segmented and normalized vibration and audio

waveforms obtained from the first accelerometer and micro-
phone at an operating frequency of 45 Hz.

Model Architecture and Training Strategy

The architecture of the proposed 1D PadéNet-based frame-
work is illustrated in Fig. 1 and detailed in Table 3. In this
context, P and () are hyperparameters that define the degree
of the nonlinear transformations applied within the 1D Padé
layers. Specifically, P determines the order of the numerator
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Fig.4 Examples of segmented and normalized waveforms for 45 Hz input frequency: (a) Accelerometer-1, (b) microphone
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Table 3 Detailed architecture of the proposed 1D PadéNet model is
given

Number Layer Name Filters/  Output Other
Kernel Shape Hyper-
Size params.
1 1D Padé 32/17 (None, P, 0,
1000, 32)  Strides=1
2 1D MaxPooling — (None, 500, Pool Size
32) =2
3 1D Padé 32/7 (None, 500, P, Q,
32) Strides = 1
4 1D MaxPooling — (None, 250, Pool Size
32) =2
5 1D Padé 32/7 (None, 250, P, Q,
32) Strides = 1
6 1D MaxPooling — (None, 125, Pool Size
32) =2
7 1D Padé 32/7 (None, 125, P, Q,
32) Strides = 1
8 1D MaxPooling — (None, 62, Pool Size
32) =2
9 1D Padé 32/17 (None, 62, P, Q,
32) Strides = 1
10 1D MaxPooling — (None, 31, Pool Size
32) =2
11 1D Padé 32/7 (None, 31, P, 0,
32) Strides = 1
12 1D MaxPooling — (None, 15, Pool Size
32) =2
13 1D Padé 32/7 (None, 15, P, Q,
32) Strides = 1
14 1D MaxPooling — (None, 7,  Pool Size
32) =2
15 Flatten - (None, 224) —
16 Dropout - (None, 224) Dropout
Rate =0.25
17 Dense - (None, 64) Activation
=tanh
18 Dense - (None, 8)  Activation
= Softmax

Activations in the 1D Padé layers (tanh and LeakyReLU with nega-
tive slope coefficient 0.01) were evaluated separately and not explic-
itly shown

polynomial, and ) determines the order of the denomina-
tor polynomial in the Padé approximation used in these
layers. By adjusting P and (), the model can be tailored to
capture different levels of nonlinearity in the data, allow-
ing for enhanced feature extraction. For a direct comparison
with 1D CNNs, we set P =1 and @ = 0, which simpli-
fies the Padé neuron to a standard convolutional neuron. On
the other hand, for comparison with 1D Self~-ONNs, we set
P > 2and () = 0, allowing the Padé neurons to function as
generative neurons, as used in Self-ONNSs.

Following each 1D Pad¢ layer, the activation function
applied is either the tanh or LeakyReLU with a negative
slope of 0.01. We evaluate the performance of both activation
functions separately for 1D CNN and PadéNet. However, in
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1D Self-ONNs, we are restricted to using tanh to prevent
excessively large activations due to the increasing powers of
the input, thus mitigating the risk of the exploding gradients.
For all models, a 1D max-pooling layer with a pool size of
2 was applied after each block for spatial downsampling,
reducing the dimensionality of the feature maps while pre-
serving the most crucial information.

Each of the seven 1D Padé layers was configured with 32
filters, a kernel size of 7, padding="same’, and incorporated an
L2 kernel regularizer (A = 10~%) for weight decay. Following
these layers, a Flatten layer was used to reshape the feature maps
into a vector. It was followed by a dense layer with 64 neurons
and a tanh activation, which processes the flattened features.
The model ends with a Softmax output layer with 8 neurons for
multi-class classification, assigning probabilities to each of the
8 classes. To prevent overfitting, a Dropout layer with a rate of
0.25 was applied before the dense layers during training.

Training was performed over a maximum of 100 epochs
with a batch size of 64. The network parameters were optimized
using the Adam optimizer with an initial learning rate of 0.0005
and the categorical cross-entropy loss function. Early stopping
was employed to stop training if the validation loss did not
improve over 20 consecutive epochs. Additionally, a learning
rate decay callback was used to reduce the learning rate by a
factor of 0.5 if there was no reduction in validation loss over 10
epochs. To evaluate each model’s classification accuracy and
robustness, we conducted 5 independent runs with different ran-
dom seeds. For each run, both the training and validation data
were reshuffled using a fixed seed to ensure reproducibility.

Evaluation Metrics

The fault diagnosis performance of each model was evalu-
ated on the test set using the following classification met-
rics: Accuracy, Precision, Recall, and F1-Score. To account
for variability due to random initialization, each model was
trained and evaluated across 5 independent runs with dis-
tinct random seeds. For each metric, the mean and standard
deviation were reported to summarize performance, along
with the minimum and maximum accuracy values.

Accuracy represents the overall proportion of correctly
predicted instances, calculated as the ratio of the sum of true
positives (TP) and true negatives (TN) to the total number
of samples as follows:

TP+ TN
TP+TN+FP+FN

Accuracy = (20)

Precision is also important when the cost of false positives (i.e.,
incorrectly identifying a motor fault when there is not one) is
high. It is defined as the ratio of true positives to the total number
of predicted positives (TP + FP). High precision ensures that the
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model does not produce too many false alarms, which is impor-
tant in scenarios where an incorrect fault diagnosis could lead to
unnecessary maintenance or costly downtime. On the other hand,
Recall measures the model’s ability to correctly identify all actual
positives (i.e., actual faults). It is defined as the ratio of true posi-
tives to the total number of actual positives (TP + FN). Recall is
particularly important in fault diagnosis because failing to iden-
tify a fault (i.e., a false negative) could lead to catastrophic conse-
quences, such as equipment failure or unplanned downtime. The
equations for Precision and Recall are given as:

TP
TP+ FP’

TP

Recall = m

Precision =

e2y)

Finally, the F1-Score is the harmonic mean of Precision and
Recall, providing a balanced evaluation of both metrics. It
can be computed as:

F1-Score = 2 - Precision - Recall

22
Precision + Recall (22)

By using these metrics in combination, we can obtain a compre-
hensive evaluation of each model’s performance to have a clear
understanding of its effectiveness for motor fault diagnosis.

Results and Discussion

This section presents the fault diagnosis performance of
Padé-based models, along with CNNs and Self~ONNs, on
the constant-speed vibration and acoustic datasets from
Ottawa University [37]. The analysis further evaluates
robustness under varying noise levels, examines the sensi-
tivity of Padé layers to different Padé orders and activation
functions, and compares the corresponding computational
complexities.

Performance on the Ottawa University Vibration
and Acoustic Datasets

We first present a comprehensive evaluation of the pro-
posed 1D PadéNet compared to 1D CNN and Self-ONN
using noise-free vibration and acoustic data [37]. Per-
formance metrics were computed for each sensor input
on 5 independent runs, and the results were averaged,
with standard deviations reported to quantify variabil-
ity, as detailed in Tables 4, 5, 6, and 7. Aggregated con-
fusion matrices over 5 runs (Figs. 5, 6, 7 and 8) provide
further insight into classification performance across
fault types.

Table 4 Average test performance metrics (over 5 seeds) for different Padé models using the first accelerometer data as input

Padé Model

Min. Acc. (%)

Max. Acc. (%)

Avg. Acc. (%)

Avg. Prec. (%)

Avg. Rec. (%)

Avg. F1 (%)

P =1,Q = 0 (tanh) 99.03 100.00
P =1,Q =0 (LeakyReLU)  99.33 100.00
P =1,Q = 1 (tanh) 99.85 100.00
P=1,Q =1 (LeakyReLU)  99.89 99.96
P =1,Q = 2 (tanh) 99.85 100.00
P=1,Q =2 (LeakyReLU)  99.85 99.96
P =2,Q = 0 (tanh) 99.81 100.00
P =2,Q =1 (tanh) 99.89 100.00
P =2Q =1 (LeakyReLU)  99.52 99.89
P =3,Q = 0 (tanh) 99.52 99.96

99.69+0.35 99.70+0.33 99.69+0.35 99.69+0.35
99.74+0.22 99.74+0.22 99.74+0.22 99.74+0.22
99.95+0.06 99.95+0.06 99.95+0.06 99.95+0.06
99.92+0.03 99.92+0.03 99.92+0.03 99.92+0.03
99.96+0.05 99.96+0.05 99.96+0.05 99.96+0.05
99.93+0.04 99.93+0.04 99.93+0.04 99.93+0.04
99.95+0.07 99.95+0.07 99.95+0.07 99.95+0.07
99.96+0.04 99.96+0.04 99.96+0.04 99.96+0.04
99.70+0.14 99.70+0.14 99.70+0.14 99.70+0.14
99.84+0.17 99.85+0.16 99.84+0.17 99.84+0.17

Table 5 Average test performance metrics (over 5 seeds) for different Padé models using the second accelerometer data as input

Avg. Acc. (%)

Avg. Prec. (%)

Avg. Rec. (%)

Avg. F1 (%)

Padé Model Min. Acc. (%) Max. Acc. (%)
P =1,Q = 0 (tanh) 92.75 94.57
P =1,Q = 0 (LeakyReLU) 96.06 97.62
P =1,Q =1 (tanh) 93.79 95.35
P =1,Q =1 (LeakyReLU) 96.61 97.88
P =1,Q = 2 (tanh) 95.05 96.28
P =1,Q = 2 (LeakyReLU) 96.95 97.81
P =2,Q = 0 (tanh) 95.31 96.24
P =2,Q =1 (tanh) 96.35 97.25
P =2,Q =1 (LeakyReLU) 97.88 98.59
P =3,Q = 0 (tanh) 96.13 97.21

93.94+0.64 93.96+0.63 93.94+0.64 93.93+0.64
96.81+0.51 96.83+0.49 96.81+0.51 96.80+0.50
94.79+0.53 94.82+0.54 94.79+0.53 94.79+0.53
97.25+0.43 97.26+0.43 97.254+0.43 97.25+0.43
95.47+0.43 95.47+0.43 95.47+0.43 95.46+0.43
97.54+0.32 97.55+0.33 97.54+0.32 97.54+0.32
95.96+0.33 95.97+0.32 95.96+0.33 95.96+0.33
96.85+0.29 96.86+0.28 96.85+0.29 96.84+0.29
98.26+0.26 98.27+0.26 98.26+0.26 98.26+0.26
96.67+0.34 96.68+0.35 96.67+0.34 96.67+0.35
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Table 6 Average test performance metrics (over 5 seeds) for different Padé models using the third accelerometer data as input

Avg. Acc. (%) Avg. Prec. (%) Avg. Rec. (%) Avg. F1 (%)

Padé Model Min. Acc. (%) Max. Acc. (%)
P =1,Q = 0 (tanh) 93.12 94.38
P =1,Q = 0 (LeakyReLU) 96.35 97.40
P =1,Q =1 (tanh) 93.34 94.61
P =1,Q =1 (LeakyReLU) 96.99 97.62
P =1,Q = 2 (tanh) 93.68 95.76
P =1,Q = 2 (LeakyReLU) 97.10 97.88
P =2,Q = 0 (tanh) 92.63 95.46
P =2/Q =1 (tanh) 95.39 96.39
P =2,Q =1 (LeakyReLU) 97.28 98.03
P =3,Q = 0 (tanh) 94.72 96.39

93.74+0.45 93.76+0.44 93.74+0.45 93.73+0.44
96.73+0.40 96.74+0.40 96.73+0.40 96.72+0.40
94.11+0.50 94.12+0.50 94.11+0.50 94.10+0.50
97.30+0.28 97.32+0.28 97.30+0.28 97.30+0.28
94.81+0.73 94.83+0.73 94.81+0.73 94.80+0.74
97.61+£0.27 97.62+0.27 97.61+0.27 97.61+0.27
94.41£1.01 94.43+0.99 94.41+1.01 94.41£1.01
96.00+0.36 96.03+0.35 96.00+0.36 96.00+0.36
97.59+0.27 97.61+£0.27 97.59+0.27 97.59+0.27
95.83+0.59 95.87+0.55 95.83+0.59 95.83+0.58

Table 7 Average test performance metrics (over 5 seeds) for different Padé models using acoustic data as input

Avg. Acc. (%) Avg. Prec. (%) Avg. Rec. (%) Avg. F1 (%)

Padé Model Min. Acc. (%) Max. Acc. (%)
P =1,Q = 0 (tanh) 95.05 96.24
P =1,Q = 0 (LeakyReLU) 96.80 98.03
P =1,Q =1 (tanh) 96.84 97.47
P =1,Q =1 (LeakyReLU) 97.58 98.36
P =1,Q = 2 (tanh) 97.47 97.66
P =1,Q = 2 (LeakyReLU) 97.81 98.92
P =2,Q = 0 (tanh) 97.62 98.10
P =2/Q =1 (tanh) 97.02 98.62
P =2,Q =1 (LeakyReLU) 97.92 98.70
P =3,Q = 0 (tanh) 97.51 98.40

95.56+0.45 95.58+0.46 95.56+0.45 95.55+0.45
97.55+0.46 97.57+0.45 97.55+0.46 97.55+0.46
97.13+£0.24 97.14+0.25 97.13+0.24 97.13+0.24
97.89+0.30 97.92+0.29 97.89+0.30 97.89+0.31
97.58+0.07 97.59+0.07 97.58+0.07 97.58+0.07
98.33+0.44 98.34+0.43 98.33+0.44 98.33+0.44
97.89+0.16 97.89+0.16 97.89+0.16 97.89+0.16
98.07+0.55 98.08+0.54 98.07+0.55 98.07+0.55
98.30+0.32 98.31+0.31 98.30+0.32 98.30+0.32
97.93+0.32 97.94+0.32 97.93+0.32 97.93+0.32

Aggregated Confusion Matrix Over 5 Runs (P=1, Q=0)

Aggregated Confusion Matrix Over 5 Runs (P=2, Q=0)

Aggregated Confusion Matrix Over 5 Runs (P=2, Q=1)
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Fig. 5 Aggregated confusion matrices over 5 runs for the 1D
CNN (P =1,Q =0), Self-ONN (P =2,Q =0), and PadéNet
(P = 2,Q = 1) models with the first accelerometer data as input. The

For the first accelerometer, located at the motor’s drive
end, the 1D CNN (P =1,Q =0) configuration with
tanh activation function achieved an average test accu-
racy of 99.69% =+ 0.35%. Replacing the activation function
with LeakyReLU (with a negative slope of 0.01) across
all convolutional layers led to a noticeable improvement,
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Predicted label
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1D Self-ONN and PadéNet models use the tanh activation function,
while the 1D CNN utilizes LeakyReL U with negative slope of 0.01

increasing the average accuracy to 99.74% + 0.22%. Among
the evaluated Self-ONN configurations, the model with
P = 2 and ) = 0 attained the highest average test accuracy
0f 99.95% + 0.07%, outperforming all CNN-based counter-
parts. However, the best overall fault diagnosis performance
was achieved by the PadéNet model with P = 2, ) = 1 and
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Fig. 6 Aggregated confusion matrices over 5 runs for the 1D
CNN (P =1,Q =0), Self-ONN (P =3,Q =0), and PadéNet
(P = 2,Q = 1) models with the second accelerometer data as input.

The 1D Self-ONN model uses the tanh activation function, while the
1D CNN and PadéNet utilize LeakyReL.U with negative slope of 0.01
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Fig. 7 Aggregated confusion matrices over 5 runs for the 1D
CNN (P =1,Q =0), Self-ONN (P =3,Q =0), and PadéNet
(P =1,Q = 2) models with the third accelerometer data as input.

The 1D Self-ONN model uses the tanh activation function, while the
1D CNN and PadéNet utilize LeakyReL U with negative slope of 0.01
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Fig. 8 Aggregated confusion matrices over 5 runs for the 1D
CNN (P =1,Q =0), SelffONN (P =3,Q =0), and PadéNet
(P =1, Q = 2) models with the acoustic data as input. The 1D Self-

ONN model uses the tanh activation function, while the 1D CNN and
PadéNet utilize LeakyReLU with negative slope of 0.01
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tanh activation, which reached an average test accuracy of
99.96% =+ 0.04% and an Fl-score of 99.96% = 0.04%. A
detailed summary of the test metrics for all 1D CNN, Self-
ONN, and PadéNet models evaluated using the first acceler-
ometer data is provided in Table 4.

Figure 5 presents the aggregated confusion matrices
across 5 independent runs for the ID CNN (P =1,Q = 0),
Self-ONN (P =2,Q =0), and PadéNet (P =2,Q = 1)
models, using data from the first accelerometer as input.
While all models achieve an average classification accuracy
above 99%, the 1D Self-ONN (P = 2, Q = 0) and PadéNet
(P =2,Q = 1) models demonstrate superior recall across
all fault classes compared to 1D CNN (P = 1,Q = 0). The
Self-ONN (P = 2,Q = 0) delivers similar performance to
PadéNet (P = 2, Q = 1) with fewer parameters, likely due
to the placement of the first accelerometer at the motor’s
drive end, which enables easier fault diagnosis through
more effective feature extraction.

Located on the bearing housing near the drive end, the
second accelerometer presented a complex diagnostic envi-
ronment due to potential signal disturbances from bearing
dynamics. When the second accelerometer data was used
as input, the 1D CNN model (P =1, @ = 0) with tanh
activation reached an average test accuracy of 93.94% =+
0.64% as given in Table 5. Switching to LeakyReLU acti-
vation across its convolutional layers significantly enhanced
performance, boosting the average accuracy to 96.81% +
0.51%, with reduced variability indicating improved con-
sistency across each run. Among Self-ONN models tested,
the configuration (P =3, @ = 0) delivered the highest
mean accuracy of 96.67% = 0.34%. Although the average
classification accuracy of the Self-ONN model (P = 3,
@ = 0) surpassed that of the 1D CNN with tanh activation,
switching to LeakyReLU enabled the 1D CNN to achieve
higher fault diagnosis accuracy. Thus, it can be concluded
that Self-ONNs generally outperform CNNs when tanh is
employed as the activation function in both models. How-
ever, when LeakyReLU is used in all convolutional layers
of a 1D CNN, it can achieve higher fault diagnosis accuracy
compared to Self-ONNS utilizing the tanh activation func-
tion, potentially due to the vanishing gradient issue com-
monly associated with tanh. In contrast to other 1D CNN
and Self-ONN models, the most effective fault diagnosis for
the second accelerometer was achieved by the 1D PadéNet
model with P = 2, Q = 1 and LeakyReLU activation, hav-
ing a mean test accuracy of 98.26% =+ 0.26%, along with
an Fl-score of 98.26% + 0.26%. A complete summary of
performance metrics for all tested 1D CNN, Self-ONN,
and PadéNet models using the second accelerometer data is
available in Table 5.

@ Springer

Figure 6 shows the aggregated confusion matrices across
5 independent runs for the 1D CNN (P = 1,Q = 0), Self-
ONN (P =3,Q = 0), and PadéNet (P = 2,Q = 1) mod-
els, using data from the second accelerometer as input. For
these confusion matrices, the 1D Self~ONN model uses
the tanh activation function, while the 1D CNN and Padé-
Net utilize LeakyReLU with negative slope of 0.01. The
ID CNN (P =1,Q =0) and Self-ONN (P =3,Q =0)
models achieve classification accuracies of 94.82% and
93.75%, respectively, in the faulty bearings (FB) class. In
comparison, the 1D PadéNet (P = 2,Q = 1) model deliv-
ers a significantly higher accuracy of 96.78% in the same
class. Similarly, for the rotor misalignment (RM) class,
the 1D CNN and Self-ONN models yield accuracies of
93.63% and 94.70%, respectively, whereas the 1D PadéNet
(P =2,0Q = 1) model once again outperforms them with
a superior accuracy of 96.67%. Faulty bearings and rotor
misalignment are two of the most critical fault types in
electric motors, as they can severely compromise mechani-
cal integrity and lead to costly operational downtimes if
not detected early. Accurate classification of these faults is
therefore essential for timely maintenance and fault preven-
tion. The enhanced fault diagnosis performance of the 1D
PadéNet model is clearly evident across all fault classes in
these confusion matrices and reflects its superior capability
to distinguish even the most critical fault types.

When data from the third accelerometer, positioned on
the bearing housing farthest from the drive end, is used
as input, the results in Table 6 show that the 1D PadéNet
model, particularly with P =1, @ = 2 and LeakyReLU
activation, consistently outperforms both the 1D CNN and
Self-ONN models across all evaluated metrics. In particu-
lar, the 1D PadéNet model achieves the highest average test
accuracy of 97.61% + 0.27%, surpassing the best-perform-
ing configurations of the 1D CNN and Self-ONN models.

Figure 7 shows the aggregated confusion matrices for the
ID CNN (P =1,Q = 0), Self-ONN (P = 3,Q = 0), and
PadéNet (P = 1,Q = 2) models, using data from the third
accelerometer as input. The 1D PadéNet model once again
achieves the highest per-class accuracies across all fault cat-
egories. Overall, although the classification accuracy of the
1D PadéNet model slightly decreases as the input acceler-
ometer sensor is positioned farther from the drive-end, the
1D PadéNet consistently outperforms both the 1D CNN and
Self-ONN models.

When acoustic signals captured by the microphone are
used as input, 1D PadéNet models continue to demonstrate
superior diagnostic capabilities, as shown in Table 7. The
best performance was achieved by the configuration with
P =1,Q =2 and LeakyReLU activation, which yielded
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the highest average accuracy of 98.33% =+ 0.44%. This result
is superior to those obtained using data from the second and
third accelerometers, yet slightly underperforms compared
to the first accelerometer, which is mounted directly above
the drive-end.

Figure 8 shows the aggregated confusion matrices across
5 independent runs for the 1D CNN (P = 1,Q = 0), Self-
ONN (P = 3,Q = 0), and PadéNet (P = 1,Q = 2) mod-
els, using acoustic data as input. The PadéNet model with
P =1 and @ = 2 achieves the highest per-class classifica-
tion accuracies in the BR, FB, RM, and RU fault catego-
ries, while the Self~-ONN model performs best in the H, KA,
and VU classes. The 1D CNN model achieves the highest
accuracy only in the SW category. As a result, acoustic data
can serve as a highly informative and reliable modality for
fault diagnosis when processed with the 1D PadéNet archi-
tecture, and we can obtain a diagnostic performance compa-
rable to accelerometer-based inputs.

The fault diagnosis performance of 1D PadéNets is also
compared with other DL-based methods trained on the Uni-
versity of Ottawa’s constant-speed vibration and audio data-
sets. In [10], a 15-layer 1D CNN-LSTM model (comprising
6 Conv1D and 2 LSTM layers) was proposed for classifying
electrical and mechanical faults. The model takes an input
window size of 1000 samples, as used in this study, with the
same train-validation-test split ratios and all accelerometer
inputs. To evaluate the impact of the LSTM layers, two other
variations of the model were tested. First, the two LSTM
layers were removed, resulting in a 13-layer CNN, referred
to as “13-Layers CNN” in Table 8. In the second experi-
ment, the LSTM layers in the 11th and 12th layers were
replaced with Conv1D layers, producing a 15-layer CNN.
All results are presented in Table 8 for each accelerome-
ter sensor. For Accelerometer-1, the 1D PadéNet (P = 2,
@ = 1) achieves the same average test accuracy as the 1D
CNN-LSTM model but with significantly fewer trainable
parameters, and outperforms all other CNN models. More-
over, for accelerometers 2 and 3, 1D PadéNet delivers com-
parable classification accuracy to the CNN-LSTM model,
while the 13-layer and 15-layer CNN models fail to match
those accuracies. However, it is worth noting that, due to the
sequential nature of LSTM layers, the CNN-LSTM model
tends to be slower during training and inference, whereas
the 1D PadéNet achieves similar performance with greater
computational efficiency.

For the acoustic modality, we also compare classifica-
tion performance against established baselines. In par-
ticular, we re-implemented the 1D CNN-LSTM from
[10], training it end-to-end using the same segmentation,

Table 8 Comparison of DL-based methods for fault diagnosis using
the University of Ottawa’s constant speed vibration and acoustic data-
sets under unloaded and loaded conditions

Model Sensor Aver- No. of
age Test ~ Params.
Accuracy
(%)
13-Layers CNN Accelerometer-1 97.73 -
[10]
15-Layers CNN Accelerometer-1 99.44 -
[10]
CNN-LSTM [10]  Accelerometer-1 99.96 246,568
]P =1,Q = QCN\N) Accelerometer-1 99.74 58,376
P =2,Q = 0(Self- Accelerometer-1 99.95 101,832
ONN) 2
P =2,Q = 1(Padé- Accelerometer-1 99.96 145,064
Net) ?
13-Layers CNN Accelerometer-2 80.58 -
[10]
15-Layers CNN Accelerometer-2 83.44 -
[10]
CNN-LSTM [10]  Accelerometer-2 98.88 246,568
]P =1,Q = QC\N) Accelerometer-2 96.81 58,376
P = 3,Q = 0(Self- Accelerometer-2 96.67 145,288
ONN) 2
P =2,Q = 1(Padé- Accelerometer-2 98.26 145,064
Net) ?
13-Layers CNN Accelerometer-3 82.89 -
[10]
15-Layers CNN Accelerometer-3 87.43 -
[10]
CNN-LSTM [10]  Accelerometer-3 99.37 246,568
1P =1,Q = QCN\N) Accelerometer-3 96.73 58,376
P =3,Q = 0(Self- Accelerometer-3 95.83 145,288
ONN) 2
P =1,Q = 2(Padé- Accelerometer-3 97.61 144,840
Net) ?
Custom 2D CNN  Microphone 83.36 -
(9]
VGG16 [9] Microphone 91.52 134,293,320
VGG19 [9] Microphone 92.11 139,602,016
CNN-LSTM [10]  Microphone 96.55 246,568
f’ =1,Q = QCNN) Microphone 97.55 58,376
P =3,Q = 0(Self- Microphone 97.93 145,288
ONN)?
P =1,Q = 2(Padé- Microphone 98.33 144,840
Net) ?

! The best-performing 1D CNN models based on average classifica-
tion accuracy 2 The best-performing 1D Self~-ONN models based on
average classification accuracy > The best-performing 1D PadéNet
models based on average classification accuracy
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normalization pipeline, and data splits as PadéNet to
ensure a fair comparison. As shown in Table 8, PadéNet
with (P =1, Q = 2) achieves an average test accuracy
of 98.33% with 144, 840 parameters, outperforming both
the 1D CNN (97.55%, 58, 376 parameters) and the CNN-
LSTM (96.55%, 246, 568 parameters). Moreover, in [9],
acoustic signals from the Ottawa University constant-
speed audio dataset were converted into spectrograms, and
faults in induction motors were detected using a transfer
learning approach with pre-trained models. An 8-class
fault detection task was performed, achieving an accuracy
rate of 91.52% using the VGG16 model and 92.11% using
the VGG19 model. In the same study, a custom 2D CNN
consisting of 4 convolutional, 4 max-pooling, and 3 dense
layers was also evaluated for comparison. The 1D Padé-
Net (P =1, @ = 2) outperforms these models, achieving
a superior fault diagnosis performance with approximately
a 6% increase in accuracy, while requiring far fewer
parameters than the pretrained models. Consequently,
1D PadéNets are capable of achieving high classification
accuracies using raw audio data as input, while requiring
significantly fewer parameters.

Sensitivity Analysis

We also provide an explicit sensitivity analysis across Padé
orders and activation functions on identical train/validation/
test splits for all sensors. Figure 9 summarizes average test
accuracies for P € {1,2,3} and Q € {0,1, 2} (per sensor).
Figure 10 examines the interaction with the activation func-
tion (tanh versus LeakyReLU).

The dominant factor is the inclusion of a denominator
branch (¢ > 0). Adding a modest convolutional denomi-
nator in the Padé formulation (Q =1 or 2) consistently
improves accuracy over both the CNN baseline and the
Self-ONN family, as it stabilizes higher-order terms while
preserving expressivity. For example, accuracy on Acceler-
ometer-2 increases from 96.81% with CNN (P=1, Q=0)
to 98.26% with PadéNet (P=2, Q=1); on Accelerometer-3
from 96.73% with CNN (P=1, Q=0) to 97.61% with
PadéNet (P=1, @=2); and on the acoustic sensor from
97.55% with CNN (P=1, Q=0) to 98.33% with Padé-
Net (P=1, Q=2) (Fig. 9). Accelerometer-1 is already at a
performance plateau but still rises from 99.69% with CNN
(P=1, @=0) to approximately 99.96% with any PadéNet

Sensitivity of PadéNet Accuracy to Padé Orders Across Sensors
(CNN: P=1, Q=0; Self-ONN: P>2, Q=0)
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Fig.9 Sensitivity of PadéNet accuracy to Padé orders across sensors
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having @ > 0. Increasing the numerator order without a
denominator (i.e., Self-ONN with Q=0 and P>2) does
not reliably help and can sometimes reduce accuracy; on
Accelerometer-3, Self-ONN (P=2, Q=0) drops to 94.41%
(Fig. 9). Overall, balanced low-order configurations such as
PadéNet (P=2, Q=1) or (P=1, Q=2) consistently pro-
vide the best trade-off between accuracy, training stability,
and computational complexity.

Across the configurations we tested, LeakyReLU gen-
erally improves accuracy over tanh for nearly all (P, Q)
pairs where training is stable. For the CNN baseline
(P=1,Q=0), LeakyReLU raises accuracy from 93.94%
to 96.81% on Accelerometer-2, from 93.74% to 96.73%
on Accelerometer-3, and from 95.56% to 97.55% on the
acoustic sensor (Fig. 10). Accelerometer-1 is already at a
performance plateau, remaining around 99.7-99.8% with
either activation. For Self-ONN (Q=0, P>2), unbounded
activations cannot be used reliably, so comparisons are
limited to tanh; moreover, increasing the polynomial
order may not improve accuracy, as noted above. For
PadéNet (P>0,Q>0), the learned denominator stabilizes
higher-order terms and enables the safe use of unbounded
activations; with LeakyReLU, PadéNet (P=2,Q=1)
on Accelerometer-2 and PadéNet (P=1,Q=2) on

Accelerometer-3 and on the acoustic sensor achieve the
strongest results, while on Accelerometer-1 both activations
are effectively tied near 99.96%.

Performance under Additive Gaussian Noise

We further extend our evaluation to include 1D CNNs, 1D
Self-ONNs, and 1D PadéNets under varying noise condi-
tions. The same data partitioning protocol described in Sec-
tion “Data Preparation” is adopted. For the training and
validation sets, each clean segment is subjected to stochastic
noise injection with a probability of p = 0.5. When noise is
injected, zero—mean Gaussian noise is added at a target sig-
nal-to—noise ratio (SNR) drawn uniformly at random from
a predefined range of 06 dB.

For evaluation, noisy test sets are generated at fixed SNR
levels by creating separate test copies for each target value
in {—4, —2,0,2, 4, 6,8, 10} dB. In each case, noise is
added on a per—segment basis according to:

Xnoisy = Xclean T 1,
Psignal (23)
10SNR/10

nNN(O,UQ), o=

Sensitivity of PadéNet Accuracy to Activation Functions Across Padé Orders
(CNN: P=1, Q=0)
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Fig. 10 Sensitivity of PadéNet accuracy to activation functions across Padé orders
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_ 1 L 2
where Piignal = 7 2 _ieq T3 ean,; denotes the average power

of the clean segment of length L, and o is the noise vari-
ance required to achieve the desired SNR in decibels. By
using distinct fixed SNR levels during testing that are not
necessarily seen during training, we can also quantify each
model’s ability to generalize to unseen noise conditions.

The comparative analysis in Tables 9, 10, 11 and 12 dem-
onstrates that the proposed 1D PadéNet configurations con-
sistently deliver superior classification accuracy relative to
both the baseline 1D CNN and 1D Self~ONN models under

a wide range of SNR conditions. In particular, PadéNet vari-
ants with moderate numerator and denominator orders com-
bined with the LeakyReLU activation function exhibit the
most competitive performance profiles, maintaining higher
accuracy even in severely degraded noise environments.
Forexample, using Accelerometer-1 input, the P=1, Q=1
configuration with LeakyReLU sustains accuracies exceed-
ing 93% from as low as 2 dB SNR, reaching 98.91% at
10 dB. A similar pattern emerges for Accelerometer-3,
where the P=1, Q=2 LeakyReLU model surpasses 90%

Table 9 Average classification accuracies (mean + s.d.) over 5 runs across SNR levels using Accelerometer-1 input

SNR (dB)

Model Activation -4 -2 0 2 4 6 8 10
P=1,Q=0 tanh 52.86+1.23 65.19+0.82 7547+0.75 83.50+0.65 88.59+0.66 91.89+0.41 94.07+0.62 95.30+0.50
P=1,Q=0 LeakyReLU 63.44+148 77.43+1.16 86.85+0.68 92.70+0.58 95.65+0.52 97.24+0.53 98.15+0.31 98.68+0.13
P=1,Q=1 tanh 56.70 £ 0.48 69.42+0.81 79.90+0.69 87.66+0.50 92.06+0.50 94.64+0.49 96.43+0.74 97.54+0.61
P=1,Q=1 LeakyReLU 64.93+0.99 78.80+0.61 88.33+0.66 93.47+0.37 96.19+0.36 97.67+0.32 98.49+0.18 98.91+0.16
P=1,Q=2 tanh 58.52+0.54 71.72+0.44 82.71+0.54 89.67+0.29 93.47+£026 95.65+0.29 96.93+0.15 97.83+0.14
P=1,Q=2 LeakyReLU 63.71+1.76 77.54+0.77 87.37+0.63 93.12+0.41 9582+0.24 97.31+0.38 98.25+0.26 98.76+0.20
P=2,Q=0 tanh 54.55+2.65 67.43+2.43 78.39+2.03 86.39+1.50 90.99+0.75 93.55+0.83 9534+0.76 96.40+0.93
P=2,Q=1 tanh 59.05+1.63 72.02+0.99 82.99+0.55 89.61+£0.32 93.74+0.31 9586+0.35 97.34+0.09 98.07+0.14
P=2,Q=1 LeakyReLU 64.38+0.87 77.63+1.57 86.85+1.21 92.70+£0.67 9577+0.40 97.28+0.28 98.32+0.41 98.85+0.31
P=3, Q=0 tanh 58.18+1.07 71.02+0.60 81.54+0.69 88.54+0.77 92.86+0.67 95.00+0.71 96.55+0.37 97.38+0.47
Table 10 Average classification accuracies (mean + s.d.) over 5 runs across SNR levels using Accelerometer-2 input

SNR (dB)

Model Activation -4 -2 0 2 4 6 8 10
P=1,Q=0 tanh 49.00+1.18 63.75+0.89 73.85+1.05 80.32+0.84 84.08+0.75 86.42+0.63 87.66+0.71 88.50+0.91
P=1,Q=0 LeakyReLU 54.26+4.80 77.13+0.79 87.42+0.75 91.89+0.69 93.78+0.70 94.64+0.52 95.13+0.64 95.43 +0.41
P=1,Q=1 tanh 50.65+0.95 66.69+1.13 77.05+1.32 82.83+1.38 86.47+143 8853+1.18 89.68+1.31 90.49+1.34
P=1,Q=1 LeakyReLU 53.10+2.90 76.62+1.02 87.24+0.47 92.03+£0.62 94.08+0.58 95.13+0.45 95.67+0.40 95.82+0.31
P=1,Q=2 tanh 51.21+2.59 68.42+0.98 78.92+0.76 85.01+0.78 88.42+0.63 90.09+0.49 91.11+0.49 91.84+0.48
P=1,Q=2 LeakyReLU 52.00+4.67 76.12+2.48 88.08+0.97 92.84+091 94.94+0.66 95.69+0.67 96.26+0.61 96.44+0.57
P=2,Q=0 tanh 4529 +2.35 64.55+1.37 76.90+0.34 83.59+0.14 87.25+0.35 89.35+0.33 90.35+0.15 91.15+0.24
P=2,Q=1 tanh 4776 +1.25 68.17+0.67 80.51+£0.82 86.96+0.97 90.35+0.60 92.19+0.52 93.19+0.33 93.82+0.37
P=2,Q=1 LeakyReLU 55.77+£1.96 77.67+2.16 88.92+1.08 93.45+0.92 9520+0.77 95.86+0.85 96.29+0.74 96.53 +0.61
P=3,Q=0 tanh 4449 +248 64.74+1.32 77.82+0.76 85.24+0.66 89.26+0.77 91.25+0.86 92.29+0.80 92.88 +0.72
Table 11 Average classification accuracies (mean + s.d.) over 5 runs across SNR levels using Accelerometer-3 input

SNR (dB)

Model Activation -4 -2 0 2 4 6 8 10
P=1,Q=0 tanh 58.01+1.38 69.71+1.02 78.30+0.93 83.44+1.13 86.10+£0.67 87.43+0.56 88.17+0.60 88.82+0.52
P=1,Q=0 LeakyReLU 64.50+1.92 80.78+0.91 88.56+0.91 92.40+0.58 93.87+0.61 94.61+0.53 94.81+0.45 95.19+0.34
P=1,Q=1 tanh 59.43+1.17 71.67+0.84 80.23+0.82 85.31+1.08 87.60+1.31 88.86+148 89.75+1.41 90.41+1.33
P=1,Q=1 LeakyReLU 6598+3.44 81.13+2.38 89.41+1.25 92.80+0.77 94.55+£0.70 95.16+0.72 95.68 +0.68 95.95+0.72
P=1,Q=2 tanh 60.15+1.12 7390+1.23 83.72+1.08 88.39+0.80 90.89+0.92 92.14+0.95 92.93+1.08 93.30+1.04
P=1,Q=2 LeakyReLU 67.93+£1.93 82.69+1.67 90.23+1.25 93.57+0.68 95.01+0.38 95.73+0.53 96.12+0.24 96.29 +0.22
P=2,Q=0 tanh 58.10+2.84 70.68+1.94 79.72+1.01 84.84+1.03 88.01£0.81 89.58+0.92 90.60+0.89 90.97 +0.76
P=2,Q=1 tanh 59.61+1.44 7294+0.85 81.76+0.59 86.56+0.54 89.30+£0.68 90.58+0.62 91.29+0.64 91.49+0.55
P=2,Q=1 LeakyReLU 65.54+1.20 81.27+0.89 89.76+£0.51 93.50+0.31 94.98+0.75 95.62+0.41 96.01 £0.53 96.21+0.49
P=3,Q=0 tanh 58.56+1.07 73.12+0.97 82.48+0.96 88.07+0.81 90.95+0.68 92.46+0.67 93.34+0.66 93.84+0.75
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Table 12 Average classification accuracies (mean + s.d.) over 5 runs across SNR levels using Microphone input
SNR (dB)
Model Activation -4 -2 0 2 4 6 8 10
P=1,Q=0 tanh 37.95+042 46.27+0.63 54.66+0.61 61.55+1.07 67.09+098 71.45+1.09 7439+1.21 76.91+1.21
P=1,Q=0 LeakyReLU 4595+1.42 61.18+191 7242+1.77 7897+1.80 83.59+1.84 86.96+1.52 89.11+1.07 90.18 £ 1.33
P=1,Q=1 tanh 42.17+1.85 52.22+1.45 60.45+£1.09 67.45+095 72.66+0.97 76.79+0.98 80.26+1.01 82.43+1.11
P=1,Q=1 LeakyReLU 50.82+226 6247+1.11 73.05+1.25 79.67+0.80 84.30+0.94 87.59+0.83 89.76+0.60 91.24+0.77
P=1,Q=2 tanh 42.17+1.99 52.64+0.80 61.83+0.76 68.52+1.46 74.00+1.25 7824+1.04 81.45+1.26 83.90+1.29
P=1,Q=2 LeakyReLU 52.07 +£2.21 63.96+0.51 73.42+0.44 79.75+1.66 84.38+0.92 87.80+0.69 90.10+0.64 91.66 =+ 0.53
P=2,Q=0 tanh 36.86 +1.69 47.10+1.04 56.78+0.71 64.12+0.66 70.53+0.63 75.21+0.48 78.80+0.45 81.82+0.70
P=2,Q=1 tanh 38.72+2.00 51.69+1.88 62.98+1.74 70.99+1.39 7627+1.09 80.02+1.25 8331+1.19 86.02+1.38
P=2,Q=1 LeakyReLU 47.93+139 63.44+1.51 7233+0.73 79.26+0.82 84.38+1.51 8733+131 89.13+1.49 90.69+1.51
P=3,Q=0 tanh 3542+1.85 46.82+1.62 57.81+0.95 66.05+0.71 71.93+£0.77 76.74+0.70 80.26+0.59 82.83 +0.57
Table 13 Model complexity and Model (config) # Params FLOPs Inf. Time (ms) Float32 Quantized
inference performance (K) M) (Model TFLite
KB) (Model KB)

P=1, Q=0 (CNN) 58.38 14.79 3.159 £ 0.050 228.03 78.24

P=1, Q=1 (PadéNet) 101.61 29.33 6.110 +0.048 396.91 127.08

P=1, Q=2 (PadéNet) 144.84 43.97 9.591 +0.098 565.78 181.92

P=2, Q=0 (Self-ONN) 101.83 29.49 5.542 £0.168 397.78 134.19

P=2, Q=1 (PadéNet) 145.06 44.03 8.578 £0.224 566.66 182.58

P=3, Q=0 (Self-ONN) 145.29 44.19 7.677 £0.127 567.53 186.85

accuracy from 0 dB onwards, achieving 96.29% at 10 dB.
The performance gap is wider in low-SNR regimes (—4 dB
to 0 dB), where accurate recognition is typically most chal-
lenging. On the acoustic modality at —4 dB, for instance, the
P=1, Q=2 LeakyReLU PadéNet attains 52.07% accuracy,
representing an absolute gain of over 6% compared to the
best-performing 1D CNN baseline (45.95%). However, it
should be noted that the acoustic modality is more affected
by noise than the vibration modality, exhibiting greater per-
formance loss under noisy conditions.

While Self-ONNs demonstrate competitive behaviour
at certain mid-SNR conditions, they generally lag behind
PadéNets across both extreme and moderate noise levels.
The consistently high accuracy observed for PadéNets at
SNR values not explicitly encountered during training fur-
ther indicates strong generalization to previously unseen
noise conditions. These findings suggest that the PadéNet
architecture offers enhanced noise robustness that remains
consistent across different sensing modalities.

Computational Complexity Analysis

The computational demands of the 1D CNN, 1D Self-
ONN, and 1D PadéNet models were evaluated through
their number of trainable parameters and average infer-
ence times, as summarized in Table 13. These metrics
are critical for assessing the feasibility of deploying fault
diagnosis models on resource-constrained devices, where

computational efficiency must be balanced against diagnos-
tic accuracy. For each configuration, the trainable parameter
count, FLOPs (floating-point operations), inference dura-
tion per 1000-sample window measured with TensorFlow
Lite on a Raspberry Pi 4 Model B (mean + s.d. over 100
runs), and the serialized model sizes for Float32 and 8-bit
dynamic-range quantized TFLite exports are provided.
The baseline 1D CNN (P=1,Q=0) requires the fewest
parameters (58,376) and is the fastest at 3.159 £ 0.050 ms
per window, while the highest-accuracy PadéNet set-
tings evaluated—P=2,Q=1 and P=1,Q=2—run in
8.578 + 0.224 ms and 9.591 + 0.098 ms, respectively. This
corresponds to a throughput of roughly 100-320 windows/s
across all variants, indicating that the models satisfy real-
time constraints on our edge platform. Model footprints
span 228-568 KB for Float32 and 78—187 KB for the quan-
tized TFLite models, which fit within the flash budgets of
many Cortex-M—class MCUs. FLOPs are computed on fro-
zen TensorFlow graphs using the TensorFlow profiler.

While increasing the degree of the numerator (P) and
denominator (Q) generally enhances fault diagnosis accu-
racy, it also results in increased computational complexity
for the 1D PadéNet models. Nevertheless, with moderate
values of P and Q, the increase in trainable parameters
remains manageable, and the inference time stays within
a few milliseconds, making 1D PadéNets a competitive
option for fault diagnosis systems that can be deployed on
the edge devices.
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Conclusions

This study proposed 1D Padé Approximant Neural Net-
works (PadéNets) for classifying mechanical and electri-
cal faults in three-phase induction motors using vibration
and acoustic data. By leveraging rational-function-based
nonlinearities, PadéNets consistently outperformed tradi-
tional CNNs and Self-ONNs across all sensor inputs. The
best performance was achieved on the first accelerometer
with an average accuracy of 99.96%, while acoustic-based
classification reached 98.33%, highlighting the potential of
ID PadéNets for both contact and non-contact condition
monitoring. The models demonstrated strong generalization
across sensor positions, with lower complexity and faster
inference compared to state-of-the-art alternatives. These
results establish PadéNets as effective and efficient tools
for real-time fault diagnosis. Future work could focus on
extending 1D PadéNets to variable-speed operating condi-
tions and integrating multi-sensor data fusion to advance
intelligent fault diagnosis in electrical machines.
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