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ABSTRACT

DISTRIBUTION THEORY OF RUNS AND
RUN-RELATED STATISTICS IN SEQUENCES OF

DEPENDENT TRIALS

FEMİN YALÇIN

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. İsmihan Bayramoğlu

Co-Supervisor: Prof. Dr. Serkan Eryılmaz

July 2013

Runs and run-related statistics have been successfully used in various applied

fields including system reliability, statistical process control, and hypothesis test-

ing. Various methods have been developed in the literature to investigate both

exact and asymptotic distributions of runs not only for independent trials but

also for a sequence of dependent trials.

In this thesis, two different types of dependence have been considered one of

which is the Markovian type of dependence. According to the other dependence

model, the outcome of the present trial depends on the total number of suc-

cessful trials so far. Distributions of some run statistics under these dependence

types have been obtained and applications of the theoretical results have been

established with illustrative examples.

Keywords: Runs, Bernoulli trials, Exact distributions, Markov chain, Previous-

sum dependent model.
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ÖZ

BAĞIMLI DENEME DİZİLERİNDE TEKRARLAR VE
TEKRARLARLA İLGİLİ İSTATİSTİKLERİN DAĞILIM

TEORİSİ

FEMİN YALÇIN

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Danışmanı: Prof. Dr. İsmihan Bayramoğlu

İkinci Tez Danışmanı: Prof. Dr. Serkan Eryılmaz

Temmuz 2013

Tekrarlar ve tekrarlarla ilgili istatistikler, sistem güvenilirliği, istatistiksel

süreç kontrolü ve hipotez testi gibi çeşitli uygulamalı alanlarda kullanılmaktadır.

Literatürde hem bağımsız hem de bağımlı deneme dizileri üzerinde tanımlanan

tekrarların dağılımlarını elde etmek için çeşitli yöntemler geliştirilmiştir.

Bu tezde, biri Markov bağımlılık olmak üzere iki farklı bağımlılık türü

ele alınmıştır. Diğer bağımlılık modeline göre bir denemenin başarılı ya da

başarısız olması, kendisinden önceki denemelerdeki toplam başarılı deneme

sayısına bağlıdır. Bazı tekrar istatistiklerinin dağılımları elde edilmiş ve teorik

sonuçların uygulamaları açıklayıcı örneklerle pekiştirilmiştir.

Anahtar Kelimeler : Tekrarlar, Bernoulli denemeleri, Dağılımlar, Markov zinciri,

Geçmiş toplama dayalı bağımlılık modeli.
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Güvenç Arslan for many helpful discussions and comments.

I have to thank the other members of my thesis monitoring committee, Asst.

Prof. Dr. Uğur Madran and Asst. Prof. Dr. Halil Tanıl for their helpful advices

and suggestions in general.

I also extend my thanks to my current and former colleagues Demet Ersoy
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Chapter 1

Introduction

Studies based on runs in a sequence consisting of two-state (Bernoulli) trials were

started in the areas of hypothesis testing ([67] and [89]) and statistical quality

control ([68] and [90]) in 1940’s. During the late 1980’s and early 1990’s, the

concept of runs became very popular again in many fields including reliability

theory (see [16] and the review articles [15] and [24]), start-up demonstration

testing ([44]), DNA sequence matching ([43]), and radar astronomy ([79]).

Various definitions of a success run of length k in a sequence consisting of

successes and failures have been proposed in the literature (see [36]). These

definitions differ from each other through the counting scheme used. Which

counting scheme should be used depends on the problem. The four best-known

counting schemes are:

(i) Counting the number of success runs of length exactly k (Mood [67]);

(ii) Counting the number of non-overlapping success runs of length k (Feller

[33]);

(iii) Counting the number of overlapping success runs of length k (Ling [56]);

(iv) Counting the number of success runs of length at least k (Goldstein [43]).

1



CHAPTER 1. INTRODUCTION 2

In this thesis, we define the term success run to be an uninterrupted sequence

of successes (“1”s) bordered at each end by failures (“0”s) or by the beginning or

by the end of the complete sequence. This definition is a reduced (to Bernoulli

trials) version of run definition that belongs to Balakrishnan and Koutras [11] and

it is based on the first counting scheme stated above. The term failure run can

be defined analogously. For example, in a sequence of twelve trials 110110001111

we have a success run of length two followed by a failure run of length one, then a

success run of length two again, a failure run of length three and finally a success

run of length four.

Some well-known and often used run-statistics defined in a sequence of n

Bernoulli trials are:

(i) Sn, total number of successes;

(ii) Nn,k, number of non-overlapping consecutive k successes;

(iii) Mn,k, number of overlapping consecutive k successes;

(iv) En,k, number of success runs of length exactly k;

(v) Gn,k, number of success runs of length greater than or equal to k;

(vi) T
(r)
k , waiting time for the r-th occurrence of consecutive k successes;

(vii) Ln, length of the longest success run.

In order to make these definitions clear consider the sequence of n = 12 trials

110110001111. Then, for k = 2, S12 = 8, N12,2 = 4, M12,2 = 5, E12,2 = 2,

G12,2 = 3, T
(1)
2 = 2, T

(2)
2 = 5, T

(3)
2 = 10, and L12 = 4. The following relationships

between these run statistics always hold (see [37]):

En,k ≤ Gn,k ≤ Nn,k ≤Mn,k,

En,k = Gn,k −Gn,k+1,

Ln < k ⇐⇒ Nn,k = 0,

T
(1)
k ≤ n ⇐⇒ Ln ≥ k.
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Distribution theory of runs has been studied whenever the elements of the

sequence are independent and identically distributed (i.i.d.) (see, e.g. [46], [74],

[41], and [42]), independent but nonidentically distributed (i.n.i.d) (see, e.g. [1],

[17], [36], and [53]) , exchangeable ([78], [28], [61], [58], [62], and [63]), partially

exchangeable ([26] and [31]), homogeneous Markov dependent (see, e.g. [76], [47],

[2], [3], and [57]), nonhomogeneous Markov dependent ([19]), and dependent in a

form which is other than the Markovian type dependence ([85] and [18]).

In 1983, with the paper of Schwager [79] runs were started to be studied

intensively in a sequence of multi-state trials as well as two-state trials. In a

sequence consisting of multi-state trials the distributions of number of runs have

been studied for i.i.d., i.n.i.d., homogeneous and nonhomogeneous Markov depen-

dent sequences by Fu [35], for exchangeable sequences by Eryilmaz [22] and for

partially exchangeable sequences by Inoue, Aki and Hirano [50]. Since the main

interest of this thesis is runs defined in a sequence of two-state trials, for more

details on runs in a sequence of multi-state trials see the above references and the

papers of Han and Aki [45], Antzoulakos [6], Vaggelatou [84], and Inoue and Aki

[49].

More recently, Eryilmaz [21] extended the concept of runs to the continuous-

valued sequences. See also the works of Eryilmaz and Fu [29], Eryilmaz and

Stepanov [30], Fan, Wang and Ding [32], and Stepanov [82] for contributions to

runs in continuous-valued sequences.

The rest of the thesis is organized as follows. In Chapter 2 we present the

distributions of most common and useful run statistics in independent sequences

that are obtained in the literature using different techniques. Main results are

given in Chapter 3 and Chapter 4. In Chapter 3 the distributions of some run

statistics in Markov dependent sequences are obtained and in Chapter 4 runs are

studied under a different dependence model. Numerical examples are also given

to illustrate further the theoretical results in both Chapter 3 and Chapter 4.

Throughout the thesis, for integers n and m and real number x, let
(
n
m

)
and

bxc denote the binomial coefficients and the greatest integer less than or equal to
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x, respectively. We also assume for convenience that if a > b, then
b∑
i=a

= 0 and

b∏
i=a

= 1.



Chapter 2

Runs and Run-related Statistics

in Independent Sequences

Distribution theory of runs and run-related statistics under the assumption of

independent Bernoulli trials have been very popular in the literature. The tri-

als may be either independent and identically distributed (i.i.d.) with common

success probability p and failure probability q = 1−p or independent but noniden-

tically distributed with varying success probabilities pi and failure probabilities

qi = 1− pi, i = 1, 2, . . . .

The simplest run statistic in a sequence of n trials may be Sn, the total number

of successes. For i.i.d. trials the distribution of Sn is called Binomial distribution

(for n ≥ 2) and Bernoulli distribution (for n = 1).

Nn,k, the number of non-overlapping consecutive k successes, was introduced

by Feller [33]. For i.i.d. Bernoulli trials its distribution is called (type I) binomial

distribution of order k and its exact distribution was obtained independently by

Hirano [46] and Philippou and Makri [74] as

P {Nn,k = x} =
k−1∑
i=0

∑
x1+2x2+···+kxk=n−i−kx

(
x1 + · · ·+ xk + x

x1, . . . , xk, x

)
pn
(
q

p

)x1+···+xk

5



CHAPTER 2. RUN STATISTICS IN INDEPENDENT SEQUENCES 6

for x = 0, 1, . . . , bn
k
c.

Godbole [41] derived the following alternative formula for the distribution of

Nn,k which is computationally more efficient.

P {Nn,k = x} =
∑

bn−kxk c≤y≤n−kx
qypn−y

(
y + x

x

) ∑
0≤j≤bn−kx−yk c

(−1)j
(
y + 1

j

)

×
(
n− kx− jk

y

)
for x = 0, 1, . . . , bn

k
c.

Fu and Koutras [36] proposed a new approach different from the combinatorial

one to derive the distributions of run-related statistics. Their method is based

on a finite Markov chain imbedding (FMCI ) technique. This approach is an

extension of an earlier study of Fu [34] and has also been used in the papers

of Koutras and Alexandrou [53] and Lou [57], and in the book of Fu and Lou

[37]. The results cover the case of i.n.i.d. trials in addition to the case of i.i.d.

trials. Before giving the details of FMCI technique, it would be good to introduce

the concepts of finite Markov chain and finite Markov chain imbeddable random

variable.

Let Ω = {1, 2, . . . ,m} (m <∞) be a finite state space and {Yt}t≥0 a sequence

of random variables defined on Ω. The sequence {Yt}t≥0 is called a finite Markov

chain if, for any sequence i0, i1, . . . , it, t = 1, 2, . . . , we have

P {Yt = it|Yt−1 = it−1, . . . , Y0 = i0} = P {Yt = it|Yt−1 = it−1} ,

that is, the future state depends only on the present state and it is independent

of the past states. The conditional probabilities

P {Yt = j|Yt−1 = i} = pij (t) ,
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i, j ∈ Ω, are called (one-step) transition probabilities at time t, the m×m matrices

Mt =


p11 (t) p12 (t) · · · p1m (t)

p21 (t) · · · · · · · · ·
...

. . . . . . · · ·
pm1 (t) · · · · · · pmm (t)


m×m

,

t = 1, 2, . . . , are called (one-step) transition probability matrices, and the proba-

bilities at time 0, P {Y0 = i}, i = 1, . . . ,m, are called the initial probabilities or

the initial distribution of the Markov chain {Yt}t≥0.

The Markov chain {Yt}t≥0 is said to be homogeneous if the transition proba-

bilities are constant in time, i.e., P {Yt = j|Yt−1 = i} = pij for any i, j ∈ Ω, and

t = 1, 2, . . . . If the Markov chain is homogeneous, then its transition probability

matrix is also independent of the time index t, that is,

M =


p11 p12 · · · p1m

p21 · · · · · · · · ·
...

. . . . . . · · ·
pm1 · · · · · · pmm


m×m

.

Let Xn (Λ) be the number of occurrences of a pattern Λ in a sequence of n

Bernoulli trials, Γn = {0, 1, . . . , n} an index set, and Ω = {a1, a2, . . . , am} a finite

state space. The non-negative integer valued random variable Xn (Λ) is said to

be finite Markov chain imbeddable if:

(i) there exists a finite Markov chain {Yt : t ∈ Γn} defined on the finite state

space Ω with initial probability vector ξ0,

(ii) there exists a finite partition {Cx : x = 0, 1, . . . , ln} on the state space Ω,

and

(iii) for every x = 0, 1, . . . , ln, we have

P {Xn (Λ) = x} = P {Yn ∈ Cx|ξ0} .
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Theorem 2.1 ([37]) If Xn (Λ) is finite Markov chain imbeddable, then

P {Xn (Λ) = x} = ξ0

(
n∏
t=1

Mt

)
U ′ (Cx) ,

where U (Cx) =
∑

r:ar∈Cx
er, er is a 1 × m unit row vector corresponding to state

ar, ξ0 is the initial probability vector, and Mt, t = 1, . . . , n are the transition

probability matrices of the imbedded Markov chain.

Fu and Lou [37] defined a finite Markov chain {Yt : t = 0, 1, . . . , n} on the

state space Ω = {(x, i) : x = 0, 1, . . . , ln and i = 0, 1, . . . , k − 1} by

Yt = (Nt,k, Et) , t = 1, 2, . . . , n, (2.1)

where ln =
⌊
n
k

⌋
, Nt,k is the number of non-overlapping consecutive k successes

in the first t trials, and Et = m mod k, where m, 0 ≤ m < k represents the

number of trailing successes that exist in the sequence after the first t trials. For

example, in the sequence of n = 10 trials 0100111011, for k = 2, the realization

of the Markov chain {Yt : t = 1, 2, . . . , 10} is {Y1 = (0, 0), Y2 = (0, 1), Y3 = (0, 0),

Y4 = (0, 0), Y5 = (0, 1), Y6 = (1, 0), Y7 = (1, 1), Y8 = (1, 0), Y9 = (1, 1),

Y10 = (2, 0)} and it is unique. Define

Cx = {(x, i) : i = 0, 1, . . . , k − 1}

for x = 0, 1, . . . , ln. The collection of subsets {Cx : x = 0, 1, . . . , ln} forms a par-

tition of the state space Ω.

From the definition of the imbedded Markov chain given in (2.1), the one-step

transition probabilities in Mt (Nn,k) for i.n.i.d. trials are given by

p(x,i)(y,j) (t) = P {Yt = (y, j) |Yt−1 = (x, i)}
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=



qt
if y = x and j = 0 for x = 0, 1, . . . , ln and

i = 0, 1, . . . , k − 1,

pt
if y = x and j = i+ 1 for x = 0, 1, . . . , ln and

i = 0, 1, . . . , k − 2,

pt
if y = x+ 1 and j = 0 for i = k − 1 and

x = 0, 1, . . . , ln − 1,

1 if y = x = ln and j = i = k − 1,

0 otherwise

for t = 1, 2, . . . , n. In general, Mt (Nn,k) are matrices of the form

Mt (Nn,k) =



At Bt 0 · · · 0

0 At Bt
. . .

...
...

. . . . . . . . . 0
...

...
. . . At Bt

0 0 · · · 0 A∗t


d×d

for t = 1, 2, . . . , n, where

At =



qt pt 0 · · · 0

qt 0 pt · · · ...
...

...
. . . . . . 0

... 0 · · · . . . pt

qt 0 0 · · · 0


k×k

, (2.2)

Bt is a k × k matrix having pt at the entry (k, 1) and zero elsewhere,

A∗t =



qt pt 0 · · · 0

qt 0 pt · · · ...
...

...
. . . . . . 0

qt 0 · · · 0 pt

0 0 · · · 0 1


k×k

,



CHAPTER 2. RUN STATISTICS IN INDEPENDENT SEQUENCES 10

and d = k (ln + 1). Hence by Theorem 2.1,

P {Nn,k = x} = ξ0

(
n∏
t=1

Mt (Nn,k)

)
U ′ (Cx)

for x = 0, 1, . . . , ln, where ξ0 = (1, 0, . . . , 0)1×d and U ′ (Cx) is the transpose of the

vector U (Cx) = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) with ones at the locations associated

with the states in Cx.

Mn,k, the number of overlapping consecutive k successes, was introduced by

Ling ([56]). For i.i.d. Bernoulli trials its distribution is called type II binomial

distribution of order k and Ling obtained two formulae one of which is recursive.

These are

P {Mn,k = x} =


pn if x = n− k + 1,

2pn−1q if x = n− k (> 0) ,
x+k∑
j=1

pj−1qP {Mn−j,k = x−max (0, j − k)} if 0 ≤ x < n− k

and

P {Mn,k = x} =
n∑
i=0

∑
x1+2x2+···+nxn+i=n

max(0,i−k+1)+
n∑

j=k+1
(j−k)xj=x

(
x1 + x2 + · · ·+ xn
x1, x2, . . . , xn

)
pn
(
q

p

) n∑
i=1

xi

.

Godbole [42] derived a simpler formula for the distribution of Mn,k in the case

of i.i.d. trials
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P {Mn,k = x} =



pn if x = n− k + 1,

n∑
y=bnkc

qypn−y
bn−yk c∑
j=0

(−1)j
(
y+1
j

)(
n−jk
y

)
if x = 0,

∑
y

qypn−y
∑
v

(
y
v

)
×

{∑
j

(−1)j
(
y−v
j

)(
x−j(n−k)−1

y−v−1

)
×
∑
m

(−1)m
(
v+1
m

)(
n−x−k(y−v+m)

v

)
+
∑
j

(−1)j
(
y−v+1

j

)(
x−j(n−k)−1

y−v

)
×
∑
m

(−1)m
(
v
m

)(
n−x−k(y−v+1+m)

v−1

)}
if 1 ≤ x ≤ n− k.

Chryssaphinou, Papastavridis and Tsapelas [17] obtained the distribution of

Mn,k in the case of i.n.i.d. trials as

P {Mn,k = x} =



n∏
i=1

pi if x = n− k + 1,

(q1pn + qnp1)
n−1∏
i=2

pi if x = n− k,

x+k−1∑
i=0

(
n+1∏

m=n−i+1

pm

)
qn−1

×P {Mn−i−1,k = x−max (0, i− k + 1)}
if 0 ≤ x < n− k.

Fu and Lou ([37]) obtained the distribution of Mn,k using the imbedded

Markov chain

Yt = (Mt,k, Et) , t = 1, 2, . . . , n,

on the state space

Ω = {(x, i) : x = 0, 1, . . . , ln − 1 and i = γ, 0, 1, . . . , k − 1}
⋃
{(ln, γ)}−{(0, γ)} ,

where ln = n− k + 1, Mt,k is the number of overlapping consecutive k successes

in the first t trials, and
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Et =

{
m if m = 0, 1, . . . , k − 1,

γ if m ≥ k

is the ending block variable keeping track of the number of trailing successes. For

example, in the sequence of n = 12 trials 010011011101, for k = 2, the realization

of the Markov chain {Yt : t = 1, 2, . . . , 12} is {Y1 = (0, 0), Y2 = (0, 1), Y3 = (0, 0),

Y4 = (0, 0), Y5 = (0, 1), Y6 = (1, γ), Y7 = (1, 0), Y8 = (1, 1), Y9 = (2, γ),

Y10 = (3, γ), Y11 = (3, 0), Y12 = (3, 1)}. They constructed the following partition

for Ω:

C0 = {(0, i) : i = 0, 1, . . . , k − 1} ,

Cx = {(x, i) : i = γ, 0, 1, . . . , k − 1} for x = 1, 2, . . . , ln − 1,

Cln = {(ln, γ)} .

The one-step transition probabilities in Mt (Mn,k) for i.n.i.d. trials are given by

p(x,i)(y,j) (t) =



qt
if y = x and j = 0 for x = 0, 1, . . . , ln and

i = γ, 0, 1, . . . , k − 1,

pt
if y = x and j = i+ 1 for x = 0, 1, . . . , ln and

i = 0, 1, . . . , k − 2,

pt if y = x+ 1, j = γ, and i = k − 1 for x = 0, 1, . . . , ln − 1,

pt if y = x+ 1 and j = i = γ for x = 0, 1, . . . , ln − 1,

1 if y = x = ln and j = i = γ,

0 otherwise

for t = 1, 2, . . . , n. In general, Mt (Mn,k) are matrices of the form
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Mt (Mn,k) =



At pte
′
k 0 0 0 · · · · · · · · · 0

0 0 qte1 pt 0 0 · · · · · · 0

0 0 At pte
′
k 0

. . . . . .
...

...
...

...
. . . 0 qte1 pt

. . . . . .
...

...
...

...
. . . . . . . . . . . . . . .

...
...

...
...

...
. . . . . . . . . . . . 0

...
...

...
...

...
. . . 0 qte1 pt

...
...

...
...

...
...

. . . At pte
′
k

0 0 · · · · · · · · · · · · · · · 0 1


d×d

for t = 1, 2, . . . , n, where At is given in (2.2), e1 = (1, 0, . . . , 0) and ek =

(0, . . . , 0, 1) are 1× k unit row vectors, and d = ln (k + 1).

Fu and Lou ([37]) also obtained the distributions of Gn,k and En,k. In the

following, we will give the imbedded Markov chains used, the one-step transition

probabilities in Mt (Gn,k) and Mt (En,k), and the form of the matrices Mt (Gn,k).

The imbedded Markov chain used for Gn,k on the state space

Ω = {(x, i) : x = 0, 1, . . . , ln and i = γ, 0, 1, . . . , k − 1} − {(0, γ)}

is

Yt = (Gt,k, Et) , t = 1, 2, . . . , n,

where ln =
⌊
n+1
k+1

⌋
, Gt,k is the number of success runs of length greater than or

equal to k in the first t trials, and

Et =

{
m if m = 0, 1, . . . , k − 1,

γ if m ≥ k

is the ending block variable. For example, in the sequence of n = 12 trials

010011011101, for k = 2, the realization of the Markov chain {Yt : t = 1, 2, . . . , 12}
is {Y1 = (0, 0), Y2 = (0, 1), Y3 = (0, 0), Y4 = (0, 0), Y5 = (0, 1), Y6 = (1, γ),
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Y7 = (1, 0), Y8 = (1, 1), Y9 = (2, γ), Y10 = (2, γ), Y11 = (2, 0), Y12 = (2, 1)}. They

constructed the following partition for Ω:

C0 = {(0, i) : i = 0, 1, . . . , k − 1} ,

Cx = {(x, i) : i = γ, 0, 1, . . . , k − 1} for x = 1, 2, . . . , ln.

The one-step transition probabilities in Mt (Gn,k) for i.n.i.d. trials are given by

p(x,i)(y,j) (t) =



qt
if y = x and j = 0 for x = 0, 1, . . . , ln and

i = γ, 0, 1, . . . , k − 1,

pt if y = x and j = i = γ for x = 0, 1, . . . , ln,

pt
if y = x and j = i+ 1 for x = 0, 1, . . . , ln and

i = γ, 0, 1, . . . , k − 2,

pt if y = x+ 1, i = k − 1, and j = γ for x = 0, 1, . . . , ln − 1,

1 if y = x = ln and j = i = k − 1,

0 otherwise

for t = 1, 2, . . . , n. In general, Mt (Gn,k) are matrices of the form

Mt (Gn,k) =



At pte
′
k 0 0 0 · · · · · · 0

0 pt qte1 0 0 · · · · · · 0

0 0 At pte
′
k 0

. . . . . .
...

...
...

. . . pt qte1
. . . . . .

...
...

...
...

. . . . . . . . . . . .
...

...
...

...
...

. . . . . . . . . 0
...

...
...

...
...

. . . pt qte1

0 0 · · · · · · · · · · · · 0 A∗t


d×d

for t = 1, 2, . . . , n, where At is given in (2.2), e1 = (1, 0, . . . , 0) and ek =

(0, . . . , 0, 1) are 1× k unit row vectors, and d = (ln + 1) (k + 1)− 1.

The imbedded Markov chain used for En,k on the state space

Ω = {(x, i) : x = 0, 1, . . . , ln and i = β, γ, 0, 1, . . . , k − 1} − {(0, γ)}
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is

Yt = (Et,k, Et) , t = 1, 2, . . . , n,

where ln =
⌊
n+1
k+1

⌋
, Et,k is the number of success runs of length exactly k in the

first t trials, and

Et =


m if m = 0, 1, . . . , k − 1,

γ if m = k,

β if m > k

is the ending block variable with two ending block states

(i) waiting state (x, γ), x = 1, 2, . . . , ln:

Yt = (x, γ) means that m = k and that the x-th success run of size k has

occurred at the t-th trial, and

(ii) overflow state (x, β), x = 1, 2, . . . , ln:

Yt = (x, β) means that m > k and that exactly x success runs of size k have

appeared prior to the last m+ 1 trials.

They constructed the following partition for Ω:

C0 = {(0, i) : i = β, 0, 1, . . . , k − 1} ,

Cx = {(x, i) : i = γ, β, 0, 1, . . . , k − 1} for x = 1, 2, . . . , ln.

The one-step transition probabilities in Mt (En,k) for i.n.i.d. trials are given by

p(x,i)(y,j) (t) =



qt
if y = x and j = 0 for x = 0, 1, . . . , ln and

i = γ, β, 0, 1, . . . , k − 1,

pt
if y = x and j = i+ 1 for x = 0, 1, . . . , ln and

i = 0, 1, . . . , k − 2,

pt if y = x+ 1, j = γ, and i = k − 1 for x = 0, 1, . . . , ln − 1,

pt if y = x− 1, j = β, and i = γ for x = 0, 1, . . . , ln,

pt if y = x and j = i = β for x = 0, 1, . . . , ln,

1 if y = x = ln and j = i = k − 1,

0 otherwise
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for t = 1, 2, . . . , n.

The distribution of Ln, the length of the longest success run, for i.i.d. Bernoulli

trials has also attracted the interest of many authors because of its wide range of

applications. The most common application of the length of the longest success

run is the reliability studies of consecutive k-out-of-n:F system. A consecutive

k-out-of-n:F system consists of n components and fails if and only if at least k

consecutive components fail. The reliability of the system is then defined by

Rn,k = P {Ln < k} .

It should be noted that, here, we consider the failure of the i-th component as a

success and functioning of the i-th component as a failure so that Ln denotes the

length of the longest run of failed components.

Burr and Cane [13], Lambiris and Papastavridis [55], and Hwang [48] obtained

the distribution of Ln for the case of i.i.d. trials as

P {Ln < k} =

bn+1
k+1c∑
m=0

(−1)m pmkqm−1
((

n−mk
m− 1

)
+ q

(
n−mk
m

))
.

Schilling [77] derived the distribution of Ln in a different way. Let C
(x)
n (k) be

the number of sequences of length n in which exactly x successes occur, but no

more than k of these successes occur consecutively. Then

P {Ln ≤ k} =

 qn if k = 0,
n∑
x=0

C
(x)
n (k) pxqn−x if 1 ≤ k ≤ n,

where

C(x)
n (k) =


k∑
j=0

C
(x−j)
n−1−j (k) if k < x < n,(

n
x

)
if x ≤ k ≤ n,

0 if k < x = n.
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The distribution of Ln for the case of i.n.i.d. trials has been obtained by Fu

and Lou [37] in the following theorem.

Theorem 2.2 For 0 ≤ k ≤ n,

P {Ln ≤ k} = ξ

(
n∏
i=1

Nt

)
1′1×(k+1),

where ξ = (1, 0, . . . , 0) is a 1× (k + 1) unit row vector, and Nt is, as indicated be-

low, the (k + 1)×(k + 1) essential submatrix of the following transition probability

matrix:

Mt =

0

1
...
...

k

α



qt pt 0 · · · 0 0

qt 0 pt · · · 0 0
...

...
. . . . . .

...
...

...
...

. . . . . . . . .
...

qt 0 · · · · · · 0 pt

0 0 · · · · · · 0 1


(k+2)×(k+2)

=

[
Nt Ct

0 1

]
.

Fu and Lou [37] also obtained a recursive formula for 1 ≤ k < n,

P {Ln ≤ k} = qnP {Ln−1 ≤ k}+
k∑
i=1

qn−i

n∏
j=n−i+1

pjP {Ln−i−1 ≤ k}

with P {Ln = 0} =
n∏
j=1

qj and P {Ln ≤ n} ≡ 1 for k = n. For the length of the

longest success run and its applications, we also refer to the works of Philippou

and Makri [73][74], Muselli [70], and Makri, Philippou and Psillakis [60].

Another important run statistic is T
(r)
k , the waiting time for the r-th appear-

ance of a success run of length k. For i.i.d. Bernoulli trials the distributions for

r = 1 and r ≥ 2 were first studied respectively by Philippou and Muwafi [75] and

Philippou, Georghiou and Philippou [72]. Their distributions are called geometric

distribution of order k and negative binomial distribution of order k, respectively.

For an extensive review on distributions of order k, see, for instance [51], [4], and

[71].
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Philippou and Muwafi [75] showed that

P
{
T

(1)
k = x

}
=
∑

x1,...,xk

(
x1 + · · ·+ xk
x1, . . . , xk

)
px
(
q

p

)x1+···+xk
for x ≥ k, where the summation is over all nonnegative integers x1, . . . , xk such

that x1 + 2x2 + · · ·+ kxk = x− k.

Uppuluri and Patil [83] derived another formula which involves single sum-

mations and binomial coefficients. For x ≥ k,

P
{
T

(1)
k = x

}
= pk

∞∑
j=0

(−1)j
(
x− k − jk

j

)(
qpk
)j

− pk+1

∞∑
j=0

(−1)j
(
x− k − jk − 1

j

)(
qpk
)j
.

Muselli [69] obtained a simpler formula that contains a single summation

P
{
T

(1)
k = x

}
=

bx+1
k+1c∑
j=1

(−1)j−1 pjkqj−1
[(
x− jk − 1

j − 2

)
− q
(
x− jk − 1

j − 1

)]
.

Balakrishnan and Koutras [11] obtained an exact formula for the distribution

of T
(1)
k for the case of i.i.d. trials using the finite Markov chain imbedding tech-

nique. Let Ω = {0, 1, . . . , k} be a finite state space and assume that the chain

enters state i ∈ Ω − {k} at trial t if i consecutive successes have been observed

at trials t− i+ 1, . . . , t. Then, for x ≥ 1,

P
{
T

(1)
k = x

}
= pe1Λ

x−1e′k,
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where

Λ =



q p 0 · · · 0 0

q 0 p · · · 0 0
...

...
. . . . . .

...
...

...
...

. . . . . . . . .
...

q 0 · · · · · · 0 p

0 0 · · · · · · 0 1


(k+1)×(k+1)

,

e1 = (1, 0, . . . , 0), and ek = (0, . . . , 0, 1, 0) are 1× k + 1 unit row vectors.

Balakrishnan, Balasubramanian and Viveros [10] obtained the distribution of

T
(1)
k for the case of i.n.i.d. trials by letting f (x) = P

{
T

(1)
k = x

}
as

f (x) =



0 if x = 0, 1, . . . , k − 1,

pk0 if x = k,

q0p
k
1 if x = k + 1,

(1 + p0) f (k + 1)− q0pk+1
1 if x = k + 2,

(1 + p0) f (x− 1)− p0f (x− 2) if x = k + 3, . . . , 2k,

(1 + p0) f (2k)− p0f (2k − 1)

−q0pk0pk1
if x = 2k + 1,

(1 + p0) f (2k + 1)− p0f (2k)

−q1pk1f (k + 1) + q0p
k
0p
k+1
1

if x = 2k + 2,

(1 + p0) f (x− 1)− p0f (x− 2)

−q1pk1f (x− k − 1)

+p0q1p
k
1f (x− k − 2)

if x = 2k + 3, 2k + 4, . . . .



Chapter 3

Runs and Run-related Statistics

in Markovian Sequences

In distribution theory of runs and run-related statistics under the assumption of

dependent trials, most of the results are based on Markovian type dependence

because this type of dependence has been found useful and flexible for modeling

stochastic events appearing in many areas of science. Some of these areas in

natural sciences are biology and physics and in social sciences are economics and

psychology.

Runs of Markovian sequences have been first considered in the paper of Ra-

jarshi [76]. Then, almost 20 years later, Hirano and Aki [47] obtained the dis-

tribution of number of success runs of length k (under the counting schemes

overlapping and at least) and Aki and Hirano [2] obtained the distributions of

numbers of failures and successes until the first occurrence of consecutive k suc-

cesses in n trials. Joint distributions of the numbers of failures, successes, and

success runs of length less than k until the first occurrence of consecutive k suc-

cesses have been studied by Aki and Hirano [3] and Lou [57]. Waiting time for

the r-th occurrence of a success run of length k ([66], [52], and [5]) and exact dis-

tribution and bounds for the distribution of the longest run statistic ([57], [38],

20
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and [20]) have also been studied. Lou [57] used the finite Markov chain imbed-

ding technique, introduced in Chapter 2, to obtain the conditional distributions

of the two most commonly used run statistics Rn, the number of success runs,

and Ln, the length of the longest success run, given the number of successes in n

trials. She derived the critical regions under the null hypothesis H0 = the trials

are independent and identically distributed and the powers under the alternative

hypothesis HA = the trials are one-step homogeneous Markov dependent.

More recently, Antzoulakos and Chadjiconstantinidis [7] established some for-

mulae for the probability generating function, probability mass function, and

moments of the number of success runs of length k (under the counting schemes

non-overlapping, overlapping and at least) in n trials and Eryilmaz [23] consid-

ered the mean success run length which is the arithmetic mean of the lengths of

the success runs in n trials.

Throughout this chapter, runs and run-related statistics under the assumption

of Markov dependent trials is our main interest. In Section 3.1, after presenting

some important results from literature, we derive the distributions of the extreme

distances between failures whenever the trials are Markov dependent. Then, in

Section 3.2, we introduce a new run statistic and obtain its distribution whenever

the trials are independent and identically distributed and Markov dependent.

Applications such as system reliability and waiting time between extreme events

and numerical results are given in Section 3.3.

3.1 Extreme distances between failures

In sequences consisting of independent and identically distributed (i.i.d.) and

exchangeable n binary trials, Makri [59] studied the minimum and maximum

numbers of successes between two successive failures and called them minimum

distance and maximum distance, respectively. As noted in [59] the corresponding

run statistics are potentially useful in various areas including hypothesis testing
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and system reliability. In fact, these extremes are quite useful to elicit informa-

tion about the minimum and maximum duration between two successive extreme

events, e.g. two extreme floods or rainfalls. These statistics could also be useful

to test if there is a clustering among the elements of a sequence. The need for this

kind of test arises in many fields involving DNA sequence matching and animal

learning studies.

Let {Xi}i≥1 be a sequence of trials with two possible outcomes either a success

(“1”) or a failure (“0”) which include among them at least two failures. For

n ≥ 2, denote by X
(1)
n and X

(n)
n the minimum distance between successive failures

in the first n trials of {Xi}i≥1 and the maximum distance between successive

failures in the first n trials of {Xi}i≥1, respectively. Let n = 15 and the trials be

110111001011001. Then X
(1)
15 = 0 and X

(15)
15 = 3. Let us first give the result of

Makri, Philippou and Psillakis [61] which will be useful in our developments.

Lemma 3.1 ([61]) The number of allocations of α indistinguishable balls into r

distinguishable cells, in such a way that each of m (0 ≤ m ≤ r) specified cells is

occupied by at most k balls, is given by

Hm (α, r, k) =

b α
k+1c∑
j=0

(−1)j
(
m

j

)(
α− (k + 1) j + r − 1

α− (k + 1) j

)
,

for α ≥ 0, r > 0 and Hm (α, r, k) = 0, otherwise.

It should be noted that Hm (α, r, k) coincides with the number of integer

solutions to the equation z1 + · · · + zr = α such that 0 ≤ z1 ≤ k, . . . , 0 ≤ zm ≤
k, zm+1 ≥ 0, . . . , zr ≥ 0.

Makri [59] derived the exact probability mass functions of X
(1)
n and X

(n)
n when

{Xi}i≥1 consists of i.i.d. binary trials with success probability p = P {Xi = 1}
and failure probability q = 1− p = P {Xi = 0}.



CHAPTER 3. RUN STATISTICS IN MARKOVIAN SEQUENCES 23

Theorem 3.2 ([59]) For k = 0, 1, . . . , n− 2, it holds

P
{
X(1)
n = k

}
=

bn+kk+1 c∑
y=2

pn−yqy
[(

n−(y−1)k
y

)
−
(
n−(y−1)(k+1)

y

)]
1− pn − nqpn−1

.

Theorem 3.3 ([59]) It holds

(a) P
{
X

(n)
n = 0

}
=

n∑
y=2

(n+1−y)pn−yqy

1−pn−nqpn−1 ;

(b) for k = 1, 2, . . . , n− 2,

P
{
X(n)
n = k

}
=

n−k∑
y=2

pn−yqy
y1∑
i=1

(
y−1
i

)
Hy−i−1 (n− y − ik, y − i+ 1, k − 1)

1− pn − nqpn−1
,

where y1 = min
(
y − 1,

⌊
n−y
k

⌋)
.

Makri [59] provided expressions for the mean values of X
(1)
n and X

(n)
n as

E
(
X

(1)
n

)
= (n− 2)−

n−3∑
k=0

F
X

(1)
n

(k) and E
(
X

(n)
n

)
= (n− 2)−

n−3∑
l=0

F
X

(n)
n

(l) ,

where

F
X

(1)
n

(k) = 1−

bn+k+1
k+2 c∑
y=2

pn−yqy
(
n−(y−1)(k+1)

y

)
1− pn − nqpn−1

and

F
X

(n)
n

(l) =

n∑
y=2

pn−yqy
bn−yl+1 c∑
j=0

(−1)j
(
y−1
i

)(
n−(l+1)j
n−y−(l+1)j

)
1− pn − nqpn−1

.

Makri [59] also obtained the exact joint probability mass function and joint

cumulative distribution of X
(1)
n and X

(n)
n (see [59]).
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3.1.1 Extreme distances in Markov dependent trials

Let {Xi}i≥1 be a time-homogeneous Markov chain with transition probability

matrix

P =

[
p00 p01

p10 p11

]
and initial probabilities p0 = P {X1 = 0} and p1 = P {X1 = 1} = 1− p0. Denote

by Sn, Rn and θi, i = 1, 2, . . . , Rn the number of successes, the number of suc-

cess runs and the length of the i-th success run in X1, X2, . . . , Xn, respectively.

Assume that Zn is a success run statistic defined on X1, X2, . . . , Xn, that is,

Zn = φ (θ1, . . . , θRn) .

Throughout this chapter, we will use the following result of Eryilmaz [23].

Theorem 3.4 ([23]) Let Zn be a success run statistic based on a sequence of n

Markov-dependent Bernoulli trials with transition probability matrix P and initial

probabilities p0 and p1. Then

P {Zn ∈ B} =
∑
r

∑
l

|Iφ (B)| g (n, r, l) , (3.1)

where Iφ (B) = {(i1, . . . , ir) : i1 + · · ·+ ir = l;φ (i1, . . . , ir) ∈ B}, B is a Borel

set, |A| denotes the cardinality of the set A,

g (n, r, l) =
1∑
t=0

1∑
s=0

(
n− l − 1

r − t− s

)
pl−r11 p

r−t
01 p

r−s
10 pn−l−r+t+s−100 pt,

and g (n, 1, n) = p1p
n−1
11 .

As it is seen from Theorem 3.4, it is enough to compute the cardinality of

the set Iφ (B) to derive the distribution of any success run statistic defined in

a sequence of Markov-dependent Bernoulli trials. Hence finding the distribution

of any success run statistic Zn in a sequence of Markov-dependent Bernoulli

trials is a combinatorial problem which is, specifically, the determination of the

total number of integer solutions to the equation i1 + · · · + ir = l such that
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φ (i1, . . . , ir) ∈ B. As a motivational example let us obtain the distribution of Ln

in a sequence of Markov dependent trials. Since Ln stands for the longest success

run,

Ln = φ (θ1, . . . , θRn) = max (θ1, . . . , θRn) .

Then

P {Ln < k} = P

{
max

1≤i≤Rn
θi < k

}
=

∑
r

P

{
max

1≤i≤Rn
θi < k

∣∣∣∣Rn = r

}
P {Rn = r}

=
∑
r

P

{
max
1≤i≤r

θi < k,Rn = r

}
=

∑
r

∑
l

P

{
max
1≤i≤r

θi < k,Rn = r, Sn = l

}
=

∑
r

∑
l

∑
· · ·
∑

i1+···+ir=l
0<ij<k, j=1,...,r

P {θ1 = i1, . . . , θr = ir}

The occurrence of the event P

{
max
1≤i≤r

θi < k,Rn = r, Sn = l

}
has four possible

forms:

(1)

0<i1<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

y1>0

0<i2<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

y2>0

. . .

0<ir−1<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

yr−1>0

0<ir<k︷ ︸︸ ︷
11 . . . 1

(2)

0<i1<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

y1>0

0<i2<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

y2>0

. . .

0<ir−1<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

yr−1>0

0<ir<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

yr>0

(3) 0 . . . 0︸ ︷︷ ︸
y1>0

0<i1<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

y2>0

0<i2<k︷ ︸︸ ︷
11 . . . 1 . . .

0<ir−1<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

yr>0

0<ir<k︷ ︸︸ ︷
11 . . . 1

(4) 0 . . . 0︸ ︷︷ ︸
y1>0

0<i1<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

y2>0

0<i2<k︷ ︸︸ ︷
11 . . . 1 . . .

0<ir−1<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

yr>0

0<ir<k︷ ︸︸ ︷
11 . . . 1 0 . . . 0︸ ︷︷ ︸

yr+1>0

.
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Using Lemma 3.1, we obtain the total number of integer solutions to the equation

i1 + · · ·+ ir = l

s.t. 0 < ij < k, j = 1, . . . , r

as

Hr (l − r, r, k − 2) =

b l−rk−1c∑
j=0

(−1)j
(
r

j

)(
l − (k − 1) j + r − 1

r − 1

)
.

The number of arrangements of the form (1) is
(
n−l−1
r−2

)
Hr (l − r, r, k − 2) for 2 ≤

r ≤
⌊
n+1
2

⌋
and r ≤ l ≤ n− 1 which is the total number of integer solutions to the

equation

y1 + · · ·+ yr−1 = n− l
s.t. yj > 0, j = 1, . . . , r − 1

multiplied by Hr (l − r, r, k − 2) and each sequence in the form of (1) has the

probability of occurrence p1p
l−r
11 p

r−1
10 pr−101 pn−l−r+1

00 .

The number of arrangements of the forms (2) and (3) are
(
n−l−1
r−1

)
Hr (l − r, r, k − 2)

for 1 ≤ r ≤
⌊
n
2

⌋
and r ≤ l ≤ n− 1 which is the total number of integer solutions

to the equation

y1 + · · ·+ yr = n− l
s.t. yj > 0, j = 1, . . . , r

multiplied by Hr (l − r, r, k − 2). Each sequence in the form of (2) has the proba-

bility of occurrence p1p
l−r
11 p

r
10p

r−1
01 pn−l−r00 and each sequence in the form of (3) has

the probability of occurrence p0p
l−r
11 p

r−1
10 pr01p

n−l−r
00 .

The number of arrangements of the form (4) is
(
n−l−1
r

)
Hr (l − r, r, k − 2) for

1 ≤ r ≤
⌊
n
2

⌋
and r ≤ l ≤ n− 2 which is the total number of integer solutions to

the equation

y1 + · · ·+ yr+1 = n− l
s.t. yj > 0, j = 1, . . . , r + 1

multiplied by Hr (l − r, r, k − 2) and each sequence in the form of (4) has the

probability of occurrence p0p
l−r
11 p

r
10p

r
01p

n−l−r−1
00 .
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Hence we obtain

P {Ln < k} =

bn+1
2 c∑

r=2

min(n−1,n−r+1)∑
l=r

(
n− l − 1

r − 2

)
Hr (l − r, r, k − 2)

×p1pl−r11 p
r−1
10 pr−101 pn−l−r+1

00

+

bn2 c∑
r=1

min(n−1,n−r)∑
l=r

(
n− l − 1

r − 1

)
Hr (l − r, r, k − 2)

×pl−r11 p
r−1
10 pr−101 pn−l−r00 (p1p10 + p0p01)

+

bn2 c∑
r=1

min(n−2,n−r−1)∑
l=r

(
n− l − 1

r

)
Hr (l − r, r, k − 2)

×p0pl−r11 p
r
10p

r
01p

n−l−r−1
00

+p0p
n−1
00

for 2 ≤ k ≤ n. For k = 1, we have P {Ln < k} = p0p
n−1
00 .

In the following two theorems we derive respectively the exact distributions

of X
(1)
n and X

(n)
n for Markov dependent trials.

Theorem 3.5 Let {Xi}i≥1 be a time-homogeneous Markov chain with transition

probability matrix P and initial probabilities p0 and p1. Then for k = 1, 2, . . . , n−
2,

P
{
X(1)
n ≥ k

}
=

1

P (n)

1∑
i=0

1∑
j=0

u∑
y=2

(
n− k(y − 1)− 2

y − i− j

)
pn−2y+i+j−111 py−i10 p

y−j
01 (1−pi),

where u =
⌊
n+k−2+i+j

k+1

⌋
and P (n) = 1−p1pn−111 −p0p01pn−211 −(n−2)p1p10p01p

n−3
11 −

p1p
n−2
11 p10.

Proof. Let Yn be the number of failures in a binary sequence of length n consisting

at least two failures. Then it is true that

P
{
X(1)
n ≥ k

}
=

1

P {Yn ≥ 2}
∑
y≥2

P
{
X(1)
n ≥ k, Yn = y

}
. (3.2)

For y ≥ 2, the four possible forms for the occurrence of the event
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{
X

(1)
n ≥ k, Yn = y

}
are:

(A)

z1>0︷ ︸︸ ︷
11 . . . 10

z2≥k︷ ︸︸ ︷
11 . . . 10 . . .

zy≥k

0
︷ ︸︸ ︷
11 . . . 10

zy+1>0︷ ︸︸ ︷
11 . . . 1

(B)

z1>0︷ ︸︸ ︷
11 . . . 10

z2≥k︷ ︸︸ ︷
11 . . . 10 . . .

zy≥k

0
︷ ︸︸ ︷
11 . . . 10

(C) 0

z1≥k︷ ︸︸ ︷
11 . . . 10

z2≥k︷ ︸︸ ︷
11 . . . 10 . . .

zy−1≥k

0
︷ ︸︸ ︷
11 . . . 10

zy>0︷ ︸︸ ︷
11 . . . 1

(D) 0

z1≥k︷ ︸︸ ︷
11 . . . 10

z2≥k︷ ︸︸ ︷
11 . . . 10 . . .

zy−1≥k

0
︷ ︸︸ ︷
11 . . . 10.

The number of arrangements of the form (A) is
(
n−k(y−1)−2

y

)
which is the total

number of integer solutions to the equation

z1 + · · ·+ zy+1 = n− y
s.t. z1 > 0, z2 ≥ k, . . . , zy ≥ k, zy+1 > 0

and each sequence in the form of (A) has the probability of occurrence

p1p
n−2y−1
11 py10p

y
01.

The number of arrangements of the form (B) is
(
n−k(y−1)−2

y−1

)
which is the total

number of integer solutions to the equation

z1 + · · ·+ zy = n− y
s.t. z1 > 0, z2 ≥ k, . . . , zy ≥ k

and each sequence in the form of (B) has the probability of occurrence

p1p
n−2y
11 py10p

y−1
01 .

The number of arrangements of the form (C) is
(
n−k(y−1)−2

y−1

)
which is the total

number of integer solutions to the equation

z1 + · · ·+ zy = n− y
s.t. z1 ≥ k, . . . , zy−1 ≥ k, zy > 0

and each sequence in the form of (C) has the probability of occurrence

p0p
n−2y
11 py−110 py01.

The number of arrangements of the form (D) is
(
n−k(y−1)−2

y−2

)
which is the total
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number of integer solutions to the equation

z1 + · · ·+ zy−1 = n− y
s.t. z1 ≥ k, . . . , zy−1 ≥ k

and each sequence in the form of (D) has the probability of occurrence

p0p
n−2y+1
11 py−110 py−101 .

We obtain

∑
y≥2

P
{
X(1)
n ≥ k, Yn = y

}
=

bn+k−2
k+1 c∑
y=2

(
n− k(y − 1)− 2

y

)
p1p

n−2y−1
11 py10p

y
01

+

bn+k−1
k+1 c∑
y=2

(
n− k(y − 1)− 2

y − 1

)
p1p

n−2y
11 py10p

y−1
01

+

bn+k−1
k+1 c∑
y=2

(
n− k(y − 1)− 2

y − 1

)
p0p

n−2y
11 py−110 py01

+

bn+kk+1 c∑
y=2

(
n− k(y − 1)− 2

y − 2

)
p0p

n−2y+1
11 py−110 py−101 .

On the other hand,

P (n) = P {Yn ≥ 2}

= 1− P {Yn = 0} − P {Yn = 1}

= 1− p1pn−111 − p0p01pn−211 − (n− 2)p1p10p01p
n−3
11 − p1pn−211 p10. (3.3)

The proof is completed by using the last two equations in (3.2).

Theorem 3.6 Let {Xi}i≥1 be a time-homogeneous Markov chain with transition

probability matrix P and initial probabilities p0 and p1. Then for k = 2, 3, . . . , n−
1,

P
{
X(n)
n < k

}
= P

{
X(n)
n = 0

}
+

1

P (n)

1∑
i=0

1∑
j=0

n−i−j−1∑
y=2

min(n−y,y+i+j−1)∑
r=i+j+1

(
y − 1

r − i− j

)
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×Hr−i−j(n− y − r, r, k − 2)pn−y−r11 pr−i10 p
r−j
01 py−r+i+j−100 pj

and

P
{
X(n)
n < 1

}
= P

{
X(n)
n = 0

}
=

1

P (n)

[
n−2∑
y=2

(n− y − 1)p1p
n−y−2
11 p10p01p

y−1
00

+
n−1∑
y=2

p1p
n−y−1
11 p10p

y−1
00 +

n−1∑
y=2

p0p
n−y−1
11 p01p

y−1
00 + p0p

n−1
00

]
,

where P (n) = 1− p1pn−111 − p0p01pn−211 − (n− 2)p1p10p01p
n−3
11 − p1pn−211 p10.

Proof. First consider the case when k = 2, 3, . . . , n− 1 noting that

P
{
X(n)
n < k

}
= P

{
X(n)
n = 0

}
+ P

{
0 < X(n)

n < k
}
. (3.4)

Let Yn be the number of failures and Rn the number of success runs in a binary

sequence of length n consisting at least two failures. Then it is true that

P
{

0 < X(n)
n < k

}
=

1

P {Yn ≥ 2}
∑
y≥2

∑
r≥1

P
{

0 < X(n)
n < k, Yn = y,Rn = r

}
.

(3.5)

For y ≥ 2, the four possible forms for the occurrence of the event{
0 < X

(n)
n < k, Yn = y,Rn = r

}
are:

(A′)

z1>0︷ ︸︸ ︷
11 . . . 1

y1>0︷ ︸︸ ︷
00 . . . 0

0<z2<k︷ ︸︸ ︷
11 . . . 1 . . .

0<zr−1<k︷ ︸︸ ︷
11 . . . 1

yr−1>0︷ ︸︸ ︷
00 . . . 0

zr>0︷ ︸︸ ︷
11 . . . 1

(B′)

z1>0︷ ︸︸ ︷
11 . . . 1

y1>0︷ ︸︸ ︷
00 . . . 0

0<z2<k︷ ︸︸ ︷
11 . . . 1 . . .

yr−1>0︷ ︸︸ ︷
00 . . . 0

0<zr<k︷ ︸︸ ︷
11 . . . 1

yr>0︷ ︸︸ ︷
00 . . . 0

(C′)

y1>0︷ ︸︸ ︷
00 . . . 0

0<z1<k︷ ︸︸ ︷
11 . . . 1

y2>0︷ ︸︸ ︷
00 . . . 0 . . .

0<zr−1<k︷ ︸︸ ︷
11 . . . 1

yr>0︷ ︸︸ ︷
00 . . . 0

zr>0︷ ︸︸ ︷
11 . . . 1

(D′)

y1>0︷ ︸︸ ︷
00 . . . 0

0<z1<k︷ ︸︸ ︷
11 . . . 1

y2>0︷ ︸︸ ︷
00 . . . 0 . . .

yr>0︷ ︸︸ ︷
00 . . . 0

0<zr<k︷ ︸︸ ︷
11 . . . 1

yr+1>0︷ ︸︸ ︷
00 . . . 0.

The number of arrangements of the form (A′) is

(
y − 1

r − 2

)
Hr−2(n− y− r, r, k− 2)
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for r ≥ 3 and y ≤ n − 3 which is the total number of integer solutions to the

equation

z1 + · · ·+ zr = n− y
s.t. z1 > 0, 0 < z2 < k, . . . , 0 < zr−1 < k, zr > 0

multiplied by the total number of integer solutions to the equation

y1 + · · ·+ yr−1 = y

s.t. yi > 0, i = 1, . . . , r − 1

and each sequence in the form of (A′) has the probability of occurrence

p1p
n−y−r
11 pr−110 pr−101 py−r+1

00 .

The number of arrangements of the form (B′) is

(
y − 1

r − 1

)
Hr−1(n− y− r, r, k− 2)

for r ≥ 2 and y ≤ n − 2 which is the total number of integer solutions to the

equation

z1 + · · ·+ zr = n− y
s.t. z1 > 0, 0 < z2 < k, . . . , 0 < zr < k

multiplied by the total number of integer solutions to the equation

y1 + · · ·+ yr = y

s.t. yi > 0, i = 1, . . . , r

and each sequence in the form of (B′) has the probability of occurrence

p1p
n−y−r
11 pr10p

r−1
01 py−r00 .

The number of arrangements of the form (C′) is

(
y − 1

r − 1

)
Hr−1(n− y− r, r, k− 2)

for r ≥ 2 and y ≤ n − 2 which is the total number of integer solutions to the

equation

z1 + · · ·+ zr = n− y
s.t. 0 < z1 < k, . . . , 0 < zr−1 < k, zr > 0

multiplied by the total number of integer solutions to the equation

y1 + · · ·+ yr = y

s.t. yi > 0, i = 1, . . . , r

and each sequence in the form of (C′) has the probability of occurrence
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p0p
n−y−r
11 pr−110 pr01p

y−r
00 .

The number of arrangements of the form (D′) is

(
y − 1

r

)
Hr(n − y − r, r, k − 2)

for r ≥ 1 and y ≤ n − 1 which is the total number of integer solutions to the

equation

z1 + · · ·+ zr = n− y
s.t. 0 < zi < k, i = 1, . . . , r

multiplied by the total number of integer solutions to the equation

y1 + · · ·+ yr+1 = y

s.t. yi > 0, i = 1, . . . , r + 1

and each sequence in the form of (D′) has the probability of occurrence

p0p
n−y−r
11 pr10p

r
01p

y−r−1
00 .

We obtain

∑
y≥2

∑
r≥1

P
{

0 < X(n)
n < k, Yn = y,Rn = r

}
=

n−3∑
y=2

min(n−y,y+1)∑
r=3

(
y − 1

r − 2

)
Hr−2(n− y − r, r, k − 2)p1p

n−y−r
11 pr−110 pr−101 py−r+1

00

+
n−2∑
y=2

min(n−y,y)∑
r=2

(
y − 1

r − 1

)
Hr−1(n− y − r, r, k − 2)p1p

n−y−r
11 pr10p

r−1
01 py−r00

+
n−2∑
y=2

min(n−y,y)∑
r=2

(
y − 1

r − 1

)
Hr−1(n− y − r, r, k − 2)p0p

n−y−r
11 pr−110 pr01p

y−r
00

+
n−1∑
y=2

min(n−y,y−1)∑
r=1

(
y − 1

r

)
Hr(n− y − r, r, k − 2)p0p

n−y−r
11 pr10p

r
01p

y−r−1
00 .

For k = 2, 3, . . . , n − 1, the proof follows by using the last equation and (3.3) in

(3.5) and then using the result in (3.4). Now, consider the case when k = 1. It is

true that

P
{
X(n)
n < 1

}
= P

{
X(n)
n = 0

}
=

1

P {Yn ≥ 2}
∑
y≥2

P
{
X(n)
n = 0, Yn = y

}
. (3.6)
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For y ≥ 2, the four possible forms for the occurrence of the event{
X

(n)
n = 0, Yn = y

}
are:

(A′′)

z1>0︷ ︸︸ ︷
11 . . . 1

2≤y≤n−2︷ ︸︸ ︷
00 . . . 0

z2>0︷ ︸︸ ︷
11 . . . 1

(B′′)

n−y︷ ︸︸ ︷
11 . . . 1

2≤y≤n−1︷ ︸︸ ︷
00 . . . 0

(C′′)

2≤y≤n−1︷ ︸︸ ︷
00 . . . 0

n−y︷ ︸︸ ︷
11 . . . 1

(D′′)

y=n︷ ︸︸ ︷
00 . . . 0.

The number of arrangements of the form (A′′) is n − y − 1 which is the total

number of integer solutions to the equation

z1 + z2 = n− y
s.t. zi > 0, i = 1, 2

and each sequence in the form of (A′′) has the probability of occurrence

p1p
n−y−2
11 p10p01p

y−1
00 .

There is only one possible arrangement of the form (B′′) and this sequence has

the probability of occurrence p1p
n−y−1
11 p10p

y−1
00 .

There is only one possible arrangement of the form (C′′) and this sequence has

the probability of occurrence p0p
n−y−1
11 p01p

y−1
00 .

There is only one possible arrangement of the form (D′′) and this sequence has

the probability of occurrence p0p
n−1
00 .

We obtain

∑
y≥2

P
{
X(n)
n = 0, Yn = y

}
=

n−2∑
y=2

(n− y − 1)p1p
n−y−2
11 p10p01p

y−1
00 + p0p

n−1
00

+
n−1∑
y=2

p1p
n−y−1
11 p10p

y−1
00 +

n−1∑
y=2

p0p
n−y−1
11 p01p

y−1
00 .

Using the last equation and (3.3) in (3.6) completes the proof.
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3.2 Mean distance between failures

In this section we first study the distribution of a different run statistic, namely

the mean distance, for a sequence consisting of i.i.d. trials. Then we extend the

result to the case of Markov dependent trials. Additionally, we obtain an explicit

expression for the expected value of the mean distance for the case of i.i.d. trials.

Let {Xi}i≥1 be a sequence of Bernoulli trials with two possible outcomes either

a success (“1”) or a failure (“0”) which include among them at least two failures.

For n ≥ 2, denote by Xn the mean distance between successive failures in the

first n trials of {Xi}i≥1. For an illustration, consider the sequence of n = 15 trials

110111001011001. Then X15 = 3+0+1+2+0
5

= 6
5
. Before we proceed further, it

should be noted that the range set of Xn is{
0,

i

n− i− 1
,

i

n− i− 2
, . . . , i; i = 1, 2, . . . , n− 2

}
.

3.2.1 Independent and identically distributed trials

Theorem 3.7 Let {Xi}i≥1 be a sequence of i.i.d. binary trials with p =

P {Xi = 1}, i ≥ 1. Then, for 0 ≤ x ≤ n− 2,

P
{
Xn ≤ x

}
=

1

Q(n)

n∑
y=2

n−y∑
a=0

(a+ 1)

(
n− a− 2

y − 2

)
pn−y(1−p)yI

(
n− y − a
y − 1

≤ x

)
,

where Q(n) = 1 − pn − npn−1(1 − p), I (A) = 1 if A occurs, and I (A) = 0,

otherwise.

Proof. In a sequence consisting of y ≥ 2 failures, let Zi be the number of successes

between (i − 1)-st and i-th failures, that is, the distance between (i − 1)-st and

i-th failures, i = 2, . . . , y. Denote by Z1 the number of successes before the first
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failure and Zy+1 the number of successes after the y-th failure. Then

P
{
Xn ≤ x

}
=

1

P {Yn ≥ 2}
∑
y≥2

P
{
Xn ≤ x, Yn = y

}
=

1

P {Yn ≥ 2}
∑
y≥2

P

{
Z2 + · · ·+ Zy

y − 1
≤ x, Yn = y

}
=

1

P {Yn ≥ 2}
∑
y≥2

P

{
n− y − Z1 − Zy+1

y − 1
≤ x, Yn = y

}
=

1

P {Yn ≥ 2}
∑
y≥2

P {Z1 + Zy+1 ≥ n− y − b(y − 1)xc , Yn = y} .

(3.7)

It is clear that

P {Z1 + Zy+1 ≥ n− y − b(y − 1)xc , Yn = y}

=
∑
z1≥0

∑
zy+1≥0

n−y−b(y−1)xc≤z1+zy+1≤n−y

P {Z1 = z1, Zy+1 = zy+1, Yn = y} (3.8)

and that

P {Z1 = z1, Zy+1 = zy+1, Yn = y} =

(
n− z1 − zy+1 − 2

y − 2

)
pn−y(1− p)y (3.9)

for z1 ≥ 0, zy+1 ≥ 0, and z1 + zy+1 ≤ n − y since
(
n−z1−zy+1−2

y−2

)
is the number of

integer solutions to the equation

z2 + · · ·+ zy = n− y − z1 − zy+1

s.t. zi ≥ 0, i = 2, . . . , y

and pn−y(1− p)y is the probability of getting y failures and n− y successes in n

i.i.d. trials.

Substituting (3.9) into (3.8) and letting z1 + zy+1 = a, we have

P {Z1 + Zy+1 ≥ n− y − b(y − 1)xc , Yn = y}
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=
∑
z1≥0

∑
zy+1≥0

n−y−b(y−1)xc≤z1+zy+1≤n−y

(
n− z1 − zy+1 − 2

y − 2

)
pn−y(1− p)y

=

n−y∑
a=0

(a+ 1)

(
n− a− 2

y − 2

)
pn−y(1− p)yI

(
n− y − a
y − 1

≤ x

)

since a+ 1 is the number of integer solutions to the equation

z1 + zy+1 = a

s.t. z1 ≥ 0, zy+1 ≥ 0.

On the other hand,

P {Yn ≥ 2} = 1− P {Yn = 0} − P {Yn = 1}

= 1− pn − npn−1(1− p). (3.10)

The required result is obtained using the last two equations in (3.7).

Proposition 3.8 Let {Xi}i≥1 be a sequence of i.i.d. binary trials with p =

P {Xi = 1}, i ≥ 1. Then, for n ≥ 2,

E(Xn) =
p

1− p

1−

(
n

2

)
pn−2(1− p)2

1− pn − npn−1(1− p)

 .

Proof. By the definition of Xn,

E(Xn) =
1

P {Yn ≥ 2}

n∑
y=2

E

(
n− y − Z1 − Zy+1

y − 1

∣∣∣∣Yn = y

)(
n

y

)
pn−y(1− p)y.

(3.11)

It is clear that

E

(
n− y − Z1 − Zy+1

y − 1

∣∣∣∣Yn = y

)
=
n− y
y − 1

− 1

y − 1
E (Z1 + Zy+1 | Yn = y) (3.12)
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and that

E (Z1 + Zy+1 | Yn = y) =

n−y∑
a=0

aP {Z1 + Zy+1 = a | Yn = y}

=

n−y∑
a=0

a
P {Z1 + Zy+1 = a, Yn = y}

P {Yn = y}

=

n−y∑
a=0

a

(a+ 1)

(
n− a− 2

y − 2

)
pn−y(1− p)y(

n

y

)
pn−y(1− p)y

=
1(
n

y

) n−y∑
a=0

a(a+ 1)

(
n− a− 2

y − 2

)

= 2
(n− y)

y + 1
. (3.13)

Using (3.13) in (3.12), we obtain

E

(
n− y − Z1 − Zy+1

y − 1

∣∣∣∣Yn = y

)
=

n− y
y − 1

− 1

y − 1

2(n− y)

y + 1

=
(n− y)

y + 1
(3.14)

Thus the proof is completed by using the last equation and (3.10) in (3.11).

From Proposition 3.8, it is obvious that

E(Xn)→ p

1− p
as n→∞.

3.2.2 Markov dependent trials

Theorem 3.9 Let {Xi}i≥1 be a time-homogeneous Markov chain with transition

probability matrix P and initial probabilities p0 and p1. Then, for 0 ≤ x ≤ n− 2,

P
{
Xn ≤ x

}
=

1

P (n)

[
n−2∑
y=2

(n− y − 1)p1p
n−y−2
11 p10p01p

y−1
00 +

n−1∑
y=2

p1p
n−y−1
11 p10p

y−1
00
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+
n−1∑
y=2

p0p
n−y−1
11 p01p

y−1
00 + p0p

n−1
00 + U1 + U2 + U3 + U4

]
,

where

U1 =
n−3∑
y=2

min(n−y,y+1)∑
r=3

n−y−r+2∑
a=2

(a− 1)
(
n−y−a−1

r−3

)(
y−1
r−2

)
p1p

n−y−r
11 pr−110 pr−101 py−r+1

00

×I
(
n−y−a
y−1 ≤ x

)
,

U2 =
n−2∑
y=2

min(n−y,y)∑
r=2

n−y−r+1∑
a=1

(
n−y−a−1

r−2

)(
y−1
r−1

)
p1p

n−y−r
11 pr10p

r−1
01 py−r00 I

(
n−y−a
y−1 ≤ x

)
,

U3 =
n−2∑
y=2

min(n−y,y)∑
r=2

n−y−r+1∑
a=1

(
n−y−a−1

r−2

)(
y−1
r−1

)
p0p

n−y−r
11 pr−110 pr01p

y−r
00 I

(
n−y−a
y−1 ≤ x

)
,

U4 =
n−1∑
y=2

min(n−y,y−1)∑
r=1

(
n−y−1
r−1

)(
y−1
r

)
p0p

n−y−r
11 pr10p

r
01p

y−r−1
00 I

(
n−y
y−1 ≤ x

)
,

P (n) = 1− p1pn−111 − p0p01pn−211 − (n− 2)p1p10p01p
n−3
11 − p1pn−211 p10, I (A) = 1 if A

occurs, and I (A) = 0, otherwise.

Proof. It is clear that

P
{
Xn ≤ x

}
= P

{
Xn = 0

}
+ P

{
0 < Xn ≤ x

}
(3.15)

=
1

P {Yn ≥ 2}
∑
y≥2

P
{
Xn = 0, Yn = y

}
+

1

P {Yn ≥ 2}
∑
y≥2

P
{

0 < Xn ≤ x, Yn = y
}
.

For y ≥ 2, the four possible forms for the occurrence of the event{
Xn = 0, Yn = y

}
are given by (A′′)-(D′′) in the proof of Theorem 3.6. Thus

P
{
Xn = 0

}
= P

{
X(n)
n = 0

}
= P

{
X(n)
n < 1

}
=

1

P (n)

[
n−2∑
y=2

(n− y − 1)p1p
n−y−2
11 p10p01p

y−1
00 + p0p

n−1
00

+
n−1∑
y=2

p1p
n−y−1
11 p10p

y−1
00 +

n−1∑
y=2

p0p
n−y−1
11 p01p

y−1
00

]
, (3.16)

where P (n) = 1− p1pn−111 − p0p01pn−211 − (n− 2)p1p10p01p
n−3
11 − p1pn−211 p10.
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On the other hand, for y ≥ 2, the four possible forms for the occurrence of the

event
{

0 < Xn ≤ x, Yn = y
}

are:

(A′′′)

z1>0︷ ︸︸ ︷
11 . . . 1

y1>0︷ ︸︸ ︷
00 . . . 0

z2>0︷ ︸︸ ︷
11 . . . 1 . . .

zr−1>0︷ ︸︸ ︷
11 . . . 1

yr−1>0︷ ︸︸ ︷
00 . . . 0

zr>0︷ ︸︸ ︷
11 . . . 1

(B′′′)

z1>0︷ ︸︸ ︷
11 . . . 1

y1>0︷ ︸︸ ︷
00 . . . 0

z2>0︷ ︸︸ ︷
11 . . . 1 . . .

yr−1>0︷ ︸︸ ︷
00 . . . 0

zr>0︷ ︸︸ ︷
11 . . . 1

yr>0︷ ︸︸ ︷
00 . . . 0

(C′′′)

y1>0︷ ︸︸ ︷
00 . . . 0

z1>0︷ ︸︸ ︷
11 . . . 1

y2>0︷ ︸︸ ︷
00 . . . 0 . . .

zr−1>0︷ ︸︸ ︷
11 . . . 1

yr>0︷ ︸︸ ︷
00 . . . 0

zr>0︷ ︸︸ ︷
11 . . . 1

(D′′′)

y1>0︷ ︸︸ ︷
00 . . . 0

z1>0︷ ︸︸ ︷
11 . . . 1

y2>0︷ ︸︸ ︷
00 . . . 0 . . .

yr>0︷ ︸︸ ︷
00 . . . 0

zr>0︷ ︸︸ ︷
11 . . . 1

yr+1>0︷ ︸︸ ︷
00 . . . 0.

Considering the forms (A′′′)-(D′′′), we have

1

P {Yn ≥ 2}
∑
y≥2

P
{

0 < Xn ≤ x, Yn = y
}

=
1

P {Yn ≥ 2}

[∑
y≥2

∑
r≥3

P

{
Z2 + · · ·+ Zr−1

y − 1
≤ x, Yn = y,Rn = r

}
+
∑
y≥2

∑
r≥2

P

{
Z2 + · · ·+ Zr

y − 1
≤ x, Yn = y,Rn = r

}
+
∑
y≥2

∑
r≥2

P

{
Z1 + · · ·+ Zr−1

y − 1
≤ x, Yn = y,Rn = r

}

+
∑
y≥2

∑
r≥1

P

{
Z1 + · · ·+ Zr

y − 1
≤ x, Yn = y,Rn = r

}]
. (3.17)

For the form (A′′′):

P

{
Z2 + · · ·+ Zr−1

y − 1
≤ x, Yn = y,Rn = r

}
= P {Z1 + Zr ≥ n− y − b(y − 1)xc , Yn = y,Rn = r}

=
∑
z1>0

∑
zr>0

n−y−b(y−1)xc≤z1+zr≤n−y−r+2

P {Z1 = z1, Zr = zr, Yn = y,Rn = r} .(3.18)
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It is clear that

P {Z1 = z1, Zr = zr, Yn = y,Rn = r} =

(
n− y − z1 − zr − 1

r − 3

)(
y − 1

r − 2

)
×p1pn−y−r11 pr−110 pr−101 py−r+1

00 (3.19)

for z1 > 0, zr > 0, and z1 + zr ≤ n− y − r + 2 since
(
n−y−z1−zr−1

r−3

)
is the number

of integer solutions to the equation

z2 + · · ·+ zr−1 = n− y − z1 − zr
s.t. zi > 0, i = 2, . . . , r − 1,

(
y−1
r−2

)
is the number of integer solutions to the equation

y1 + · · ·+ yr−1 = y

s.t. yi > 0, i = 1, . . . , r − 1,

and each sequence in the form of (A′′′) has the probability of occurrence

p1p
n−y−r
11 pr−110 pr−101 py−r+1

00 .

Substituting (3.19) into (3.18), we have

P

{
Z2 + · · ·+ Zr−1

y − 1
≤ x, Yn = y,Rn = r

}
=

∑
z1>0

∑
zr>0

n−y−b(y−1)xc≤z1+zr≤n−y−r+2

(
n− y − z1 − zr − 1

r − 3

)(
y − 1

r − 2

)
p1p

n−y−r
11 pr−110

×pr−101 py−r+1
00

=

n−y−r+2∑
a=2

(a− 1)

(
n− y − a− 1

r − 3

)(
y − 1

r − 2

)
p1p

n−y−r
11 pr−110 pr−101 py−r+1

00

×I
(
n− y − a
y − 1

≤ x

)
. (3.20)

Note that, here we let z1 + zr = a, then a− 1 is the number of integer solutions

to the equation

z1 + zr = a

s.t. z1 > 0, zr > 0.
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For the form (B′′′):

P

{
Z2 + · · ·+ Zr

y − 1
≤ x, Yn = y,Rn = r

}
= P {Z1 ≥ n− y − b(y − 1)xc , Yn = y,Rn = r}

=
∑
z1>0

n−y−b(y−1)xc≤z1≤n−y−r+1

P {Z1 = z1, Yn = y,Rn = r} . (3.21)

It is clear that

P {Z1 = z1, Yn = y,Rn = r} =

(
n− y − z1 − 1

r − 2

)(
y − 1

r − 1

)
p1p

n−y−r
11 pr10p

r−1
01 py−r00

(3.22)

for z1 > 0 and z1 ≤ n−y−r+1 since
(
n−y−z1−1

r−2

)
is the number of integer solutions

to the equation

z2 + · · ·+ zr = n− y − z1
s.t. zi > 0, i = 2, . . . , r,(

y−1
r−1

)
is the number of integer solutions to the equation

y1 + · · ·+ yr = y

s.t. yi > 0, i = 1, . . . , r,

and each sequence in the form of (B′′′) has the probability of occurrence

p1p
n−y−r
11 pr10p

r−1
01 py−r00 .

Substituting (3.22) into (3.21), we have

P

{
Z2 + · · ·+ Zr

y − 1
≤ x, Yn = y,Rn = r

}
=

∑
z1>0

n−y−b(y−1)xc≤z1≤n−y−r+1

(
n− y − z1 − 1

r − 2

)(
y − 1

r − 1

)
p1p

n−y−r
11 pr10p

r−1
01 py−r00

=

n−y−r+1∑
a=1

(
n− y − a− 1

r − 2

)(
y − 1

r − 1

)
p1p

n−y−r
11 pr10p

r−1
01 py−r00 I

(
n− y − a
y − 1

≤ x

)
.

(3.23)
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Note that, here we let z1 = a and there is only one integer solution to the equation

z1 = a

s.t. z1 > 0.

For the form (C′′′):

P

{
Z1 + · · ·+ Zr−1

y − 1
≤ x, Yn = y,Rn = r

}
= P {Zr ≥ n− y − b(y − 1)xc , Yn = y,Rn = r}

=
∑
zr>0

n−y−b(y−1)xc≤zr≤n−y−r+1

P {Zr = zr, Yn = y,Rn = r} . (3.24)

It is clear that

P {Zr = zr, Yn = y,Rn = r} =

(
n− y − zr − 1

r − 2

)(
y − 1

r − 1

)
p0p

n−y−r
11 pr−110 pr01p

y−r
00

(3.25)

for zr > 0 and zr ≤ n−y−r+1 since
(
n−y−zr−1

r−2

)
is the number of integer solutions

to the equation

z1 + · · ·+ zr−1 = n− y − zr
s.t. zi > 0, i = 1, . . . , r − 1,(

y−1
r−1

)
is the number of integer solutions to the equation

y1 + · · ·+ yr = y

s.t. yi > 0, i = 1, . . . , r,

and each sequence in the form of (C′′′) has the probability of occurrence

p0p
n−y−r
11 pr−110 pr01p

y−r
00 .

Substituting (3.25) into (3.24), we have

P

{
Z1 + · · ·+ Zr−1

y − 1
≤ x, Yn = y,Rn = r

}
=

∑
zr>0

n−y−b(y−1)xc≤zr≤n−y−r+1

(
n− y − zr − 1

r − 2

)(
y − 1

r − 1

)
p0p

n−y−r
11 pr−110 pr01p

y−r
00
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=

n−y−r+1∑
a=1

(
n− y − a− 1

r − 2

)(
y − 1

r − 1

)
p0p

n−y−r
11 pr−110 pr01p

y−r
00 I

(
n− y − a
y − 1

≤ x

)
.

(3.26)

Note that, here we let zr = a and there is only one integer solution to the equation

zr = a

s.t. zr > 0.

For the form (D′′′):

P

{
Z1 + · · ·+ Zr

y − 1
≤ x, Yn = y,Rn = r

}
=

(
n− y − 1

r − 1

)(
y − 1

r

)
p0p

n−y−r
11 pr10p

r
01p

y−r−1
00 I

(
n− y
y − 1

≤ x

)
(3.27)

since
(
n−y−1
r−1

)
is the number of integer solutions to the equation

z1 + · · ·+ zr = n− y
s.t. zi > 0, i = 1, . . . , r,

(
y−1
r

)
is the number of integer solutions to the equation

y1 + · · ·+ yr+1 = y

s.t. yi > 0, i = 1, . . . , r + 1,

and each sequence in the form of (D′′′) has the probability of occurrence

p0p
n−y−r
11 pr10p

r
01p

y−r−1
00 .

Using the four results (3.20), (3.23), (3.26), and (3.27) in (3.17), we have

P
{

0 < Xn ≤ x
}

=
1

P {Yn ≥ 2}
∑
y≥2

P
{

0 < Xn ≤ x, Yn = y
}

=
1

P (n)
[U1 + U2 + U3 + U4] , (3.28)

where

U1 =
n−3∑
y=2

min(n−y,y+1)∑
r=3

n−y−r+2∑
a=2

(a− 1)
(
n−y−a−1

r−3

)(
y−1
r−2

)
p1p

n−y−r
11 pr−110 pr−101 py−r+1

00
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×I
(
n−y−a
y−1 ≤ x

)
,

U2 =
n−2∑
y=2

min(n−y,y)∑
r=2

n−y−r+1∑
a=1

(
n−y−a−1

r−2

)(
y−1
r−1

)
p1p

n−y−r
11 pr10p

r−1
01 py−r00 I

(
n−y−a
y−1 ≤ x

)
,

U3 =
n−2∑
y=2

min(n−y,y)∑
r=2

n−y−r+1∑
a=1

(
n−y−a−1

r−2

)(
y−1
r−1

)
p0p

n−y−r
11 pr−110 pr01p

y−r
00 I

(
n−y−a
y−1 ≤ x

)
,

U4 =
n−1∑
y=2

min(n−y,y−1)∑
r=1

(
n−y−1
r−1

)(
y−1
r

)
p0p

n−y−r
11 pr10p

r
01p

y−r−1
00 I

(
n−y
y−1 ≤ x

)
,

and P (n) = 1− p1pn−111 − p0p01pn−211 − (n− 2)p1p10p01p
n−3
11 − p1pn−211 p10.

Substituting (3.16) and (3.28) into (3.15) we have the desired result.

3.3 Applications and numerical results

3.3.1 System reliability

A consecutive k-within-m-out-of-n:F system consists of n components and it fails

if and only if there are at least k failed components among any m consecutive

components (k ≤ m ≤ n). For m = n and m = k, consecutive k-within-m-

out-of-n:F system coincides with the well-known k-out-of-n:F and consecutive

k-out-of-n:F systems, respectively.

Let Xi denote the state of component i as either working (“1”) or failed (“0”)

and Rm,n the reliability of consecutive 2-within-m-out-of-n:F system. As stated in

[59] the reliability of a consecutive 2-within-m-out-of-n:F system is closely related

to the random variable X
(1)
n , which is given by

Rm,n = [1− P {Yn ≥ 2}] + P
{
X(1)
n ≥ m− 1

}
P {Yn ≥ 2} .

Assume that the components of the consecutive 2-within-m-out-of-n:F system are

dependent in a Markovian fashion. That is, the probability that i-th component

fails (operates) depends upon, and only upon, the state of (i− 1)-st component.

In Table 3.1 we compute Rm,n, the exact reliability of consecutive 2-within-m-

out-of-n:F system, (using Theorem 3.5) for n = 10, 20 and m = 2, 3, 5 for the
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following two cases:

Case I: The components are independent with common success

probability p = 0.9,

Case II: The components are Markov dependent with p1 = 0.9,

p11 = 0.85, and p01 = 0.5.

Case I Case II
n m Rm,n Rm,n

10 2 0.9197 0.5335
3 0.8662 0.5047
5 0.8007 0.4688

20 2 0.8388 0.2598
3 0.7350 0.2304
5 0.6098 0.1940

Table 3.1: Reliability of a consecutive 2-within-m-out-of-n:F system

3.3.2 Waiting time between extreme events

The occurrences of extreme events are highly important in the context of risk

management. For example, extreme floods and rainfalls are important extreme

events in insurance, and stock market crashes are important extreme events in

finance. For analyzing a certain stochastic process, the distance (or the time)

between two successive critical events may be a good indicator. Assume that

associated with a certain stochastic process {Yi}i≥1, if the value of this process

exceeds a critical level c at any time, then a failure (“0”) occurs, which means

that an extreme event occurs. That is,

Xi =

{
0 if Yi ≥ c (or Yi ≤ c depending on the problem),

1 otherwise.
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Thus the random variables X
(1)
n , X

(n)
n , and Xn represent respectively the mini-

mum distance, the maximum distance, and the mean distance between the oc-

currences of successive critical events. Obviously, the distributional properties of

these statistics are helpful for understanding the behavior of the corresponding

stochastic process.

In Table 3.2 we compute the distributions of X
(1)
5 and X

(5)
5 for Markov de-

pendent trials with p1 = 0.9, p11 = 0.85, and p01 = 0.5. Table 3.3 includes the

distribution of X5 for Case I and Case II defined in 3.3.1.

k = 0 k = 1 k = 2 k = 3 E(.)

P
{
X

(1)
5 = k

}
0.8719 0.0644 0.0437 0.0200 0.2118

P
{
X

(5)
5 = k

}
0.7761 0.1367 0.0672 0.0200 0.3311

Table 3.2: Distributions of the extremes for Markov dependent trials

x = 0 x = 1
3

x = 1
2

x = 1 x = 2 x = 3 E(X5)
Case I 0.3901 0.0033 0.0398 0.2983 0.1790 0.0895 0.9458
Case II 0.7761 0.0208 0.0513 0.0880 0.0436 0.0202 0.2681

Table 3.3: Distribution of X5 for i.i.d. and Markov dependent trials

In Table 3.4 we present exact (E) and simulated (S) values of P
{
X10 ≤ x

}
for Case II considering all possible values of x. The exact results are consistent

with the simulation results. Table 3.5 includes the expected values of X
(1)
n , Xn,

and X
(n)
n for Case I and Case II.
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x E S x E S
0 0.4304 0.4323 1 0.7276 0.7258
1/8 0.4312 0.4375 5/4 0.7354 0.7340
1/7 0.4339 0.4390 4/3 0.7567 0.7602
1/6 0.4395 0.4418 3/2 0.7859 0.7903
1/5 0.4497 0.4475 5/3 0.8028 0.8080
1/4 0.4669 0.4635 2 0.8660 0.8602
2/7 0.4688 0.4702 5/2 0.8869 0.8869
1/3 0.5004 0.4989 3 0.9276 0.9252
2/5 0.5110 0.5132 7/2 0.9352 0.9342
1/2 0.5663 0.5696 4 0.9563 0.9581
3/5 0.5761 0.5760 5 0.9734 0.9709
2/3 0.6018 0.6024 6 0.9866 0.9851
3/4 0.6185 0.6223 7 0.9958 0.9961
4/5 0.6242 0.6251 8 1.0000 1.0000

Table 3.4: Exact and simulated values of P
{
X10 ≤ x

}
for Case II

Case I Case II

n E(X
(1)
n ) E(Xn) E(X

(n)
n ) E(X

(1)
n ) E(Xn) E(X

(n)
n )

5 0.9048 0.9458 0.9877 0.2118 0.2681 0.3311
10 2.1097 2.3937 2.6943 0.5511 0.9790 1.6216
20 3.5404 4.7803 6.1921 0.7502 2.2277 5.0731
50 3.1446 8.2740 15.6502 0.1532 3.2783 12.8481

Table 3.5: Expected values of X
(1)
n , Xn, and X

(n)
n
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Previous-Sum Dependent Model

Let {Xi}i≥1 be a sequence of Bernoulli trials with two possible outcomes either

a success (“1”) or a failure (“0”) satisfying

P
{
Xn = 1

∣∣X1, X2, . . . , Xn−1
}

= an + bnSn−1, (4.1)

for n ≥ 2; and an and bn satisfy 0 < an < 1 and 0 < an+(n− 1) bn < 1 for n ≥ 1,

where Sn, n ≥ 1, denotes the total number of successes in X1, X2, . . . , Xn, and

for convenience P {S0 = 0} = 1. The model given by (4.1) was first considered

by Vellaisamy [85] to get new generalized binomial distributions. Vellaisamy and

Sankar [86] called the model (4.1) the previous-sum dependent model and used

it for modeling a dependent production process. When ai = pi and bi = 0, for

i ≥ 2, the model (4.1) corresponds to independent but nonidentically distributed

Bernoulli trials with probability of success pi.

As a direct consequence of (4.1), we have

P
{
Xn = 1

∣∣Sn−1} = an + bnSn−1 (4.2)

(see [87]).

A start-up demonstration test is a procedure by which a vendor elicits in-

formation about the reliability of a power generation equipment (unit) before

48
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purchasing it. Lawn mowers, water pumps, car batteries, and outboard motors

are examples of units that are placed on start-up demonstration tests. A start-up

demonstration test consists of attempting to start-up the unit under test several

times, and observing the outcomes, either a success (“1”) or a failure (“0”). It

should be noted that observing a success means the unit turned on and a failure

means it did not.

Start up demonstration testing was first discussed by Hahn and Gage [44]

in 1983. They considered the CS (Consecutive Successes) type start-up demon-

stration test in which the testing continued until k consecutive successes are

observed and assumed that the start-ups are independent and identically dis-

tributed. Viveros and Balakrishnan [88], Balakrishnan, Balasubramanian and

Viveros [10], and Balakrishnan, Mohanty and Aki [12] studied the same type of

test assuming that the start-ups are Markov dependent. CS type test has been

found to be impractical because in this type of test only consecutive number of

successful start-ups is considered and the number of unsuccessful start-ups is not

taken into account. Koutras and Balakrishnan [54] suggested an alternative start-

up demonstration test using a simple scan-based statistic. This type of test has

two rejection criteria. One of them is based on observation of early unsuccessful

start-ups and the other one is based on unsuccessful start-ups that are close to

each other. If neither of them occurs, then the unit is accepted.

In 2000, Balakrishnan and Chan [9] proposed a new type of start-up demon-

stration test, CSTF (Consecutive Successes Total Failures), and studied this type

of test under the assumption of i.i.d. start-ups. According to CSTF type test, the

unit is accepted if k consecutive successful start-ups are observed before a total

of d failures and rejected if d failures are observed before k consecutive successes.

Martin [64] and Smith and Griffith [80] considered CSTF type test in the case of

first order Markov dependent trials. Smith and Griffith [80] and Chan, Ng and

Balakrishnan [14] studied estimation of the success probability p in CSTF type

test with i.i.d. start-ups using different methods. Eryilmaz and Chakraborti [27]

studied CSTF type test assuming that the start-ups are exchangeable.

Smith and Griffith [81] proposed two different types of start-up demonstration
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test, which are TSTF (Total Successes Total Failures) and CSCF (Consecutive

Successes Consecutive Failures). According to TSTF (CSCF) type test, the unit

is accepted if k (consecutive) successful start-ups are observed before d (con-

secutive) failures and rejected if d (consecutive) failures are observed before k

(consecutive) successes. They also compared various types of start-up demon-

stration tests and showed that TSTF type test performs very well and in many

cases it is more desirable than other types of test. Martin [65] studied TSTF,

CSCF, CSTF, and TSCF (Total Successes Consecutive Failures) types of start-up

demonstration tests assuming that the start-ups are Markov dependent of gen-

eral order. Antzoulakos, Koutras and Rakitzis [8] introduced another type of test

CSDF (Consecutive Successes Distance Failures), which is based on the number

of consecutive successes and the distance between failures. According to CSDF

type test, the unit is accepted if k consecutive successes are observed before two

failures separated by at most r−2 successes and rejected if two failures separated

by at most r− 2 successes are observed before k consecutive successes. It should

be noted that this rejection criteria is similar to the second criteria of Koutras

and Balakrishnan [54].

Recently, Eryilmaz [25] studied TSTF and CSTF types of tests in the case

of first order Markov dependent start-ups, obtained the distributions of the test

lengths in a nonrecursive form, and estimated the expected test lengths. Gera

[39][40] improved the CSTF type test to two new types of start-up demonstra-

tion tests TSCSTF (Total Successes Consecutive Successes Total Failures) and

TSCSTFCF (Total Successes Consecutive Successes Total Failures Consecutive

Failures) and studied them in case of i.i.d. start-ups. According to TSCSTF

(TSCSTFCF) test, if either kcs consecutive or a total of ks successful start-ups

are observed before (either kcf consecutive or) a total of kf failures, then the

unit is accepted, otherwise it is rejected. Gera [39][40] proposed TSCSTF and

TSCSTFCF because these types of tests will significantly reduce the test length

which is beneficial from practical and financial aspects.

So far, in the literature, only the Markovian type dependence has been used

to model dependent start-ups. In this chapter, we study TSTF type test under
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the model (4.1), the previous-sum dependent model. In view of (4.1), the out-

come of the present start-up depends on the total number of successful start-ups

so far. This model exhibits a stronger form of dependence than the Markovian

type dependence, and hence it may be more appropriate when the outcome of

the present start-up depends on all previous start-ups instead of only the imme-

diately previous one. The magnitude of the dependence can be adjusted using

the parameters of the model. The reason behind the choice of TSTF type test is

twofold. First, based on the detailed analysis and comparison of various types of

start-up demonstration tests in [81], this type of test has been shown to be more

desirable than the others. Second, the TSTF type tests is easy to apply because

it requires the vendor to keep track of only two things while conducting the test,

which are total number of successes and total number of failures.

4.1 Characteristics of TSTF type test under

previous-sum dependent model

In this section, we will derive the characteristics of TSTF type test using the

recurrence

P {Sn = x} = (an + bn (x− 1))P {Sn−1 = x− 1}+(1− an − bnx)P {Sn−1 = x} .

See Appendix A for the proofs of the results for previous-sum dependent trials.

Appendix A also includes the results for the case of i.i.d. trials.

Let Zk,d denote the total number of start-ups until termination of the experi-

ment, that is, the test length. The distribution and the expected value of Zk,d are

important characteristics in the context of start-up demonstration testing. As it

is mentioned before, the unit under TSTF type test is accepted if k successful

start-ups are observed before d failures and rejected if d failures are observed

before k successes. Therefore

Zk,d = min
(
W

(1)
k ,W

(0)
d

)
,
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where W
(1)
k is the total number of start-ups until the first k successes (waiting

time for the first k successes) and W
(0)
d is the total number of start-ups until the

first d failures (waiting time for the first d failures).

For z = min(k, d), . . . , k+ d− 1, the probability mass function of Zk,d can be

computed from

P {Zk,d = z} = P {Zk,d ≥ z} − P {Zk,d ≥ z + 1} ,

where

P {Zk,d ≥ z} =
k−1∑

i=max(0,z−d)

P {Sz−1 = i} .

The expected test length can be found using

E (Zk,d) =
k+d−1∑

z=min(k,d)

z P {Zk,d = z} .

The probability of acceptance of a unit is given by

P {Acceptance} =
k+d−1∑
i=k

[ai + bi (k − 1)]P {Si−1 = k − 1} .

The conditional probability of the test length Zk,d given that the unit is ac-

cepted in the end is

P
{
Zk,d = z

∣∣Acceptance
}

=

{
[az+bz(k−1)]P{Sz−1=k−1}

P{Acceptance} if k ≤ z ≤ k + d− 1,

0 otherwise

and the conditional probability of the test length Zk,d given that the unit is

rejected in the end is

P
{
Zk,d = z

∣∣Rejection
}

=

{
[1−az−bz(z−d)]P{Sz−1=z−d}

1−P{Acceptance} if d ≤ z ≤ k + d− 1,

0 otherwise.
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4.2 Illustrations and numerical computations

Suppose that a vendor wishes to demonstrate the reliability of a power generation

equipment. This demonstration is done by starting-up the unit several times

and using TSTF type test on the basis of the observed successes and failures.

Consider the model (4.1) with ai = (1− θi) pi and bi = θi/ (i− 1) for i ≥ 2 so

that P {X1 = 1} = p1 and for i ≥ 2

P
{
Xi = 1

∣∣X1, X2, . . . , Xi−1
}

= (1− θi) pi +
θi

(i− 1)
Si−1, (4.3)

where

max

(
p1 − 1

p1
,

p1
p1 − 1

)
≤ θi ≤ 1. (4.4)

Under the model (4.3), the random variables X1, X2, . . . are identically dis-

tributed with success probability P {Xi = 1} = p1, i ≥ 1 (see [85]). It should

be noted that, if θi = 0, i ≥ 1, then X1, X2, . . . are independent and identically

distributed.

For θi > 0 (θi < 0), Xi is stochastically increasing (decreasing) in Si−1,

i ≥ 2, which implies a positive (negative) dependence between Xi and Si−1. The

correlation between Xi and Si−1 can be computed from

Cor (Xi, Si−1) =
θi
i−1E

(
S2
i−1
)
− p21θi (i− 1)√

p1 (1− p1)
[
E
(
S2
i−1
)
− (i− 1)2 p21

]
for i ≥ 2 (see [85]).

Assume that a unit is started-up ten times and the following two realizations

are obtained X = (1011101111) and Y = (1001001101). Intuitively, under the

positive dependence among the start-ups, a successful start-up is more likely to

occur in X than in Y in the future. According to the model (4.3), if θi > 0, then

the probability of observing a success in the next start-up in X is greater than

that in Y . This result is a direct consequence of the positive dependence between

Xi and Si−1 when θi > 0. Since the case θi < 0 seems irrational in the context
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of start-up demonstration testing (because θi < 0 implies that the probability

of observing a success in the next start-up in Y is greater than that in X), we

consider only the case θi > 0.

Let probability of observing a successful start-up be p1 = 0.7. Then from

(4.4) we have −3/7 ≤ θi ≤ 1. In Table 4.1 we compute the correlation between

Xi and Si−1 for θi ∈ {−0.4, 0.1, 0.5, 0.9}, i ≥ 2.

i θi = −0.4 θi = 0.1 θi = 0.5 θi = 0.9
2 -0.4000 0.1000 0.5000 0.9000
3 -0.0838 0.0363 0.2372 0.5203
4 -0.0508 0.0242 0.1864 0.4756
5 -0.0370 0.0185 0.1582 0.4542
6 -0.0293 0.0150 0.1390 0.4400
7 -0.0243 0.0126 0.1248 0.4291
8 -0.0208 0.0109 0.1136 0.4203
9 -0.0181 0.0096 0.1046 0.4128
10 -0.0161 0.0086 0.0971 0.4062

Table 4.1: Correlation between Xi and Si−1

From Table 4.1 we observe that the dependence between Xi and Si−1 decreases

in i for θi > 0, which means that in the long term the effect of Si−1 onXi decreases.

In Table 4.2 and Table 4.3 we compute and present respectively the probability

of acceptance of a particular unit and the expected test length for various values

of k and d when θi ∈ {0, 0.1, 0.5, 0.9}, i ≥ 2. For all cases, success probabilities

of individual start-ups are the same with P {Xi = 1} = 0.7, i ≥ 1.

We observe that the probability of acceptance of the unit is decreasing in k

and increasing in d, whereas the expected test length is increasing in both k and

d. As it can be seen from Table 4.3, expected test length gets smaller as θi, i ≥ 2

get larger, i.e., the start-ups get more dependent.
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k d θi = 0 θi = 0.1 θi = 0.5 θi = 0.9
8 4 0.5696 0.5704 0.5968 0.6727

5 0.7237 0.7085 0.6661 0.6835
6 0.8346 0.8117 0.7221 0.6919
7 0.9067 0.8832 0.7684 0.6989

9 4 0.4925 0.5012 0.5600 0.6662
5 0.6543 0.6456 0.6325 0.6778
6 0.7805 0.7605 0.6914 0.6866
7 0.8689 0.8448 0.7403 0.6938

Table 4.2: Probability of acceptance of a particular unit

k d θi = 0 θi = 0.1 θi = 0.5 θi = 0.9
8 4 9.3133 9.1396 8.2369 7.1096

5 10.2345 10.0503 8.9956 7.5141
6 10.7858 10.6358 9.6046 7.8991
7 11.0968 10.9954 10.0985 8.2701

9 4 10.0169 9.8386 8.9481 7.8178
5 11.1692 10.9616 9.8129 8.2396
6 11.9008 11.7131 10.5115 8.6386
7 12.3380 12.1955 11.0823 9.0220

Table 4.3: Expected length of TSTF type test

Additionally, in Table 4.4 and Table 4.5 we compute respectively the prob-

ability of acceptance of a particular unit and the expected test length for two

non-stationary models: M1 when ai = 1
i

and bi = 1
i+1

, and M2 when ai = 1
i

and

bi = 1
2i

in (4.2). For both models, success probabilities of individual start-ups are

the same with P {Xi = 1} = 0.7, i ≥ 1.
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k d M1 M2
8 4 0.5679 0.1566

5 0.6216 0.2021
6 0.6638 0.2451
7 0.6978 0.2851

9 4 0.5374 0.1067
5 0.5920 0.1434
6 0.6354 0.1797
7 0.6707 0.2148

Table 4.4: Probability of acceptance of a particular unit for models M1 and M2

k d M1 M2
8 4 8.0751 7.7307

5 8.7756 8.8982
6 9.3531 9.9568
7 9.8430 10.9267

9 4 8.7253 7.9620
5 9.5100 9.2249
6 10.1593 10.3852
7 10.7116 11.4605

Table 4.5: Expected length of TSTF type test for models M1 and M2

The probability of acceptance of the unit for the model M1 is substantially

greater than that for M2 because the conditional probability of a successful start-

up in M1 is larger than that in M2.
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Conclusion

In this thesis, distributions of runs and run-related statistics have been studied

under various dependence structures of random binary sequences. The distri-

butions of extreme distances between successive failures have been obtained for

Markov dependent trials. These results extend the results in Makri [59]. The

distribution of mean distance between successive failures has also been obtained

for both independent and identically distributed trials and Markov dependent

trials.

Start-up demonstration testing, an application of the theory of runs, has been

considered under a different dependence model given by

P
{
Xn = 1

∣∣X1, X2, . . . , Xn−1
}

= an + bnSn−1, (5.1)

for n ≥ 2; such that an and bn satisfy 0 < an < 1 and 0 < an + (n− 1) bn < 1 for

n ≥ 1, where Sn, n ≥ 1, denotes the total number of successes in X1, X2, . . . , Xn,

and for convenience P {S0 = 0} = 1.

One can easily see that the outcome of the present start-up depends on the

total number of successful start-ups so far and hence this model is called the

previous-sum dependent model. The model (5.1) exhibits a stronger form of de-

pendence than the Markov dependence so it may be more appropriate to use in

57
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real life applications.

As a future work, we plan to study the distributions of various run statistics

under the model given by (5.1). The characteristics of these run statistics under

the same model can also be derived.



Appendix A

Calculations of characteristics of

TSTF type test for previous-sum

dependent and i.i.d. trials

If Sz and S
(0)
z denote respectively the number of successes and failures in z start-

ups, then we have

P {Zk,d ≥ z} = P
{

min
(
W

(0)
d ,W

(1)
k

)
≥ z
}

= P
{
W

(0)
d ≥ z,W

(1)
k ≥ z

}
= P

{
S
(0)
z−1 ≤ d− 1, Sz−1 ≤ k − 1

}
= P {z − 1− Sz−1 ≤ d− 1, Sz−1 ≤ k − 1}

= P {Sz−1 ≥ z − d, Sz−1 ≤ k − 1}

= P {z − d ≤ Sz−1 ≤ k − 1}

=
k−1∑

i=max(0,z−d)

P {Sz−1 = i}

It should be noted that, for i.i.d. trials, we have

P {Sn = x} =

(
n

x

)
px (1− p)n−x .

59
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Hence

P {Zk,d ≥ z} =
k−1∑

i=max(0,z−d)

P {Sz−1 = i}

=
k−1∑

i=max(0,z−d)

(
z − 1

i

)
pi (1− p)z−i−1 .

The probability of acceptance of the unit can be computed from

P {Acceptance} = P
{
W

(1)
k < W

(0)
d

}
=

∑
i

P
{
W

(1)
k < W

(0)
d

∣∣W (1)
k = i

}
P
{
W

(1)
k = i

}
=

∑
i

P
{
W

(0)
d > i,W

(1)
k = i

}
=

∑
i

P
{
S
(0)
i ≤ d− 1,W

(1)
k = i

}
=

∑
i

P
{
i− Si ≤ d− 1,W

(1)
k = i

}
=

∑
i

P
{
Si ≥ i− d+ 1,W

(1)
k = i

}
=

∑
i

P {Xi = 1, Si−1 = k − 1, Si ≥ i− d+ 1}

=
k+d−1∑
i=k

P {Xi = 1, Si−1 = k − 1} .

We have, for previous-sum dependent trials

P {Acceptance} =
k+d−1∑
i=k

P {Xi = 1, Si−1 = k − 1}

=
k+d−1∑
i=k

P
{
Xi = 1

∣∣Si−1 = k − 1
}
P {Si−1 = k − 1}

=
k+d−1∑
i=k

[ai + bi (k − 1)]P {Si−1 = k − 1}
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and for i.i.d. trials

P {Acceptance} =
k+d−1∑
i=k

P {Xi = 1, Si−1 = k − 1}

=
k+d−1∑
i=k

(
i− 1

k − 1

)
pk−1(1− p)i−1−(k−1)p

=
d−1∑
i=0

(
i+ k − 1

k − 1

)
pk(1− p)i.

The conditional probabilities of Zk,d given acceptance and rejection of the unit

can be computed, respectively, from

P
{
Zk,d = z

∣∣Acceptance
}

= P
{
Zk,d = z

∣∣W (1)
k < W

(0)
d

}
=

P
{
Zk,d = z,W

(1)
k < W

(0)
d

}
P
{
W

(1)
k < W

(0)
d

}
=

P
{

min
(
W

(0)
d ,W

(1)
k

)
= z,W

(1)
k < W

(0)
d

}
P {Acceptance}

=
P
{
W

(1)
k = z,W

(0)
d > z

}
P {Acceptance}

=
P
{
W

(1)
k = z,W

(0)
d ≥ z + 1

}
P {Acceptance}

=
P
{
S
(0)
z ≤ d− 1,W

(1)
k = z

}
P {Acceptance}

=
P
{
z − Sz ≤ d− 1,W

(1)
k = z

}
P {Acceptance}

=
P
{
Sz ≥ z − d+ 1,W

(1)
k = z

}
P {Acceptance}

=
P {Xz = 1, Sz−1 = k − 1, Sz ≥ z − d+ 1}

P {Acceptance}

=

{
P{Xz=1,Sz−1=k−1}

P{Acceptance} if k ≤ z ≤ k + d− 1,

0 otherwise
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and from

P
{
Zk,d = z

∣∣Rejection
}

= P
{
Zk,d = z

∣∣W (0)
d < W

(1)
k

}
=

P
{
Zk,d = z,W

(0)
d < W

(1)
k

}
P
{
W

(0)
d < W

(1)
k

}
=

P
{

min
(
W

(0)
d ,W

(1)
k

)
= z,W

(0)
d < W

(1)
k

}
P {Rejection}

=
P
{
W

(0)
d = z,W

(1)
k > z

}
1− P {Acceptance}

=
P
{
W

(0)
d = z,W

(1)
k ≥ z + 1

}
1− P {Acceptance}

=
P
{
Sz ≤ k − 1,W

(0)
d = z

}
1− P {Acceptance}

=
P
{
Xz = 0, S

(0)
z−1 = d− 1, Sz ≤ k − 1

}
1− P {Acceptance}

=
P {Xz = 0, Sz−1 = z − 1− (d− 1) , Sz ≤ k − 1}

1− P {Acceptance}

=
P {Xz = 0, Sz−1 = z − d, Sz ≤ k − 1}

1− P {Acceptance}

=

{
P{Xz=0,Sz−1=z−d}
1−P{Acceptance} if d ≤ z ≤ k + d− 1,

0 otherwise.

If the trials are previous-sum dependent, then

P
{
Zk,d = z

∣∣Acceptance
}

=

{
P{Xz=1,Sz−1=k−1}

P{Acceptance} if k ≤ z ≤ k + d− 1,

0 otherwise,

=


P

{
Xz=1

∣∣Sz−1=k−1
}
P{Sz−1=k−1}

P{Acceptance} if k ≤ z ≤ k + d− 1,

0 otherwise,

=

{
[az+bz(k−1)]P{Sz−1=k−1}

P{Acceptance} if k ≤ z ≤ k + d− 1,

0 otherwise
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and

P
{
Zk,d = z

∣∣Rejection
}

=

{
P{Xz=0,Sz−1=z−d}
1−P{Acceptance} if d ≤ z ≤ k + d− 1,

0 otherwise,

=


P

{
Xz=0

∣∣Sz−1=z−d
}
P{Sz−1=z−d}

1−P{Acceptance} if d ≤ z ≤ k + d− 1,

0 otherwise,

=

{
[1−az−bz(z−d)]P{Sz−1=z−d}

1−P{Acceptance} if d ≤ z ≤ k + d− 1,

0 otherwise.

If the trials are i.i.d., then

P
{
Zk,d = z

∣∣Acceptance
}

=

{
P{Xz=1,Sz−1=k−1}

P{Acceptance} if k ≤ z ≤ k + d− 1,

0 otherwise,

=



(
z − 1

k − 1

)
pk−1(1−p)z−1−(k−1)p

d−1∑
i=0

(
i+ k − 1

k − 1

)
pk(1−p)i

if k ≤ z ≤ k + d− 1,

0 otherwise,

=



(
z − 1

k − 1

)
pk(1−p)z−k

d−1∑
i=0

(
i+ k − 1

k − 1

)
pk(1−p)i

if k ≤ z ≤ k + d− 1,

0 otherwise,

=



(
z − 1

k − 1

)
(1−p)z−k

d−1∑
i=0

(
i+ k − 1

k − 1

)
(1−p)i

if k ≤ z ≤ k + d− 1,

0 otherwise

and

P
{
Zk,d = z

∣∣Rejection
}
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=

{
P{Xz=0,Sz−1=z−d}
1−P{Acceptance} if d ≤ z ≤ k + d− 1,

0 otherwise,

=



(
z − 1

z − d

)
pz−d(1−p)z−1−(z−d)(1−p)

1−
d−1∑
i=0

(
i+ k − 1

k − 1

)
pk(1−p)i

if d ≤ z ≤ k + d− 1,

0 otherwise,

=



(
z − 1

d− 1

)
pz−d(1−p)d

d−1∑
i=0

(
i+ k − 1

k − 1

)
pk(1−p)i

if d ≤ z ≤ k + d− 1,

0 otherwise.
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