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ABSTRACT

GENERALIZED INVARIANTS AND HILBERT IDEAL
IN MODULAR INVARIANT THEORY

DENİZ ERDEMİRCİ ERKUŞ

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Asst. Prof. Dr. Uğur Madran

August 2015

The Hilbert ideal is the ideal of the polynomial ring generated by positive-

degree invariants. It has been conjectured that the Hilbert ideal is generated by

polynomial invariants of degree at most the group order, which is known as the

Hilbert ideal conjecture.

In this thesis, we mainly consider two problems. In the first problem, we prove

that the conjecture holds for a modular indecomposable representation of a cyclic

group in a restricted dimension giving two approaches for the open problem.

The other study of this thesis is about generalized invariants. We introduce

the definition of generalized invariants to arbitrary finite group as a new view

for modular invariant theory, in which the characteristic of ground field divides

the group order. Further, we determine explicitly the structural properties of

generalized invariants of a cyclic group for lower dimensional indecomposable

representations. Moreover, we show an analogy of Hilbert ideal conjecture for

generalized invariants of these representations. As one of the main results, we

give a structural theorem for generalized invariant module of any finite group.

Finally, we determine the condition under which generalized invariants coincide

with usual invariants.

Keywords: Modular invariant theory, polynomial invariants, Noether number,

Hilbert ideal, generalized invariants.
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ÖZ

MODÜLER DEĞİŞMEZ TEORİSİNDE
GENELLEŞTİRİLMİŞ DEĞİŞMEZLER VE HİLBERT

İDEALİ

DENİZ ERDEMİRCİ ERKUŞ

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Danışmanı: Yrd. Doç. Dr. Madran

Ağustos 2015

Hilbert ideali, pozitif dereceli değişmezler ile üretilen polinom halkasının bir

idealidir. Hilbert idealinin derecesi en fazla grubun mertebesi olan değişmezler

ile üretilebileceği iddia edilmiştir, ve bu varsayım Hilbert ideali sanısı olarak bil-

inmektedir.

Bu tezde başlıca iki problemden bahsedilecektir. Birinci problemde devirli

bir grubun kısıtlanmış bir boyutta verilen modüler, parçalanamaz temsilleri için

Hilbert ideali sanısını iki farklı yaklaşım kullanarak kanıtlayacağız.

Bu tezdeki diğer bir çalışma genelleştirilmiş değişmezler üzerinedir. Cismin

karakteristiği grubun mertebesini böldüğü durumla tanımlanan modüler değişmez

teorisine yeni bir bakış olarak herhangi bir sonlu grup için genelleştirilmiş

değişmezleri tanıtacağız. Daha sonra, devirli grubun küçük boyutlu parçalanamaz

temsilleri için genelleştirilmiş değişmezlerin yapısal özelliklerini açık bir şekilde

göstereceğiz. Ayrıca Hilbert ideali sanısının bir analojisini devirli grubun

genelleştirilmiş değişmezleri için kanıtlayacağız. Ana sonuçlardan biri olarak bir

sonlu grubun genelleştirilmiş değişmez modülü için yapısal teoremini vereceğiz.

Son olarak, genelleştirilmiş değişmezlerin hangi koşulda alışılmış değişmezlere

karşılık geldiğini göstereceğiz.

Anahtar Kelimeler : Modüler değişmez teorisi, polinom değişmezleri, Noether

sayısı, Hilbert ideali, genelleştirilmiş değişmezler.
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Chapter 1

Introduction

In order to classify mathematical objects with respect to some property, the con-

struction of invariants is required. Invariant theory is concerned with a special

situation of this classification problem. It primarily benefits from representation

theory. Representation theory may be considered in two cases. Let V be an

n-dimensional representation of a finite group G over a field F. In the first case,

the representation V is called non-modular if the characteristic of the field F does

not divide the group order |G| (or equivalently, |G| is invertible in F); otherwise,

it is said to be a modular representation as the second case. It can be asserted

that non-modular representations are more understandable than the others. In-

deed, the representations in non-modular case can be classified by decomposing

completely into irreducible pieces due to Maschke’s theorem. However, this the-

orem fails in the modular case. Because of this, many unsolved and interesting

problems occur in modular invariant theory. In this thesis, we will discuss mod-

ular representations. For a prime p dividing |G|, the ground field F will have the

characteristic p.

Invariant theory is generally interested in the algebraic properties of the struc-

ture obtained from the action of G on the polynomial ring F[V ] generated by

x1, . . . , xn which are a basis of the dual space V ∗. The action of G on F[V ] is

induced from the action on V defining as (σ · f)(v) = f(σ−1 · v) for each σ ∈ G,

v ∈ V and f ∈ F[V ]. The set of polynomials in F[V ] fixed under the group action

1



CHAPTER 1. INTRODUCTION 2

is a central object of invariant theory. This set is denoted by F[V ]G and it has a

ring structure, so it is called the invariant ring or the ring of invariants. More

explicitly,

F[V ]G = { f ∈ F[V ] | σ · f = f ∀σ ∈ G }.

Each element of F[V ]G is said to be an invariant (or a G-invariant) in F[V ].

Although the polynomial ring F[V ] is a finitely generated F-algebra, its sub-

algebras may not be finitely generated. Therefore, the finiteness of the invariant

ring became a big problem in the nineteenth century, which is known as Hilbert’s

finiteness theorem. Firstly, it was proved by Gordan [16] in 1868 for the special

linear group SL2 over the field of characteristic zero. Then Hilbert gave a non-

constructive proof for reductive groups in 1890 ([18]) and a constructive one in

1893 ([19]). The abstract methods of both papers contain many important basics

of commutative algebra such as Hilbert Nullstellensatz, Noether normalization

lemma, Hilbert syzygy theorem. Hilbert’s finiteness theorem was showed in char-

acteristic zero by Noether [32] in 1915. Finally, she proved it in 1926 for all finite

groups in arbitrary characteristic (see [33]).

After it is revealed that the invariant ring is finitely generated, the maximum

degree of a polynomial in a minimal generating set of the invariant ring becomes

the other interesting problem. Noether [32] in characteristic zero, Fogarty [14]

and Fleischmann [12] in non-modular case proved that the invariant ring can be

generated by polynomials of degree at most the group order. This degree bound

is called Noether bound in the literature. However, Noether bound does not hold

for modular representations. It was showed by Symonds in [49] that there is an

invariant ring that required a generator of degree n(|G| − 1) depending on the

dimension n.

As a related structure with the invariant ring, the Hilbert ideal h is the ideal

of F[V ] generated by invariants in positive degree:

h = 〈 f ∈ F[V ]G | deg f > 0 〉.

It was observed that this ideal satisfies the Noether bound in the cases that it
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fails for the invariant ring. Then, it was conjectured that the Hilbert ideal is

generated by polynomials of degree at most the group order (see [8, Conjecture

3.8.6 (b)]).

The Hilbert ideal conjecture is a famous open problem of this century. Fleis-

chmann and Fogarty also proved that the conjecture holds in non-modular case

in [12], [14], respectively. Actually, they obtained this result in the proof of the

Noether bound for the invariant ring. In Section 3.1, we give Fogarty’s proof

simplified by Benson since he used an elegant polynomial identity inspiring from

an argument in [32]. This polynomial identity will become a useful tool to our

targets in this thesis.

Moreover, the conjecture is proved for permutation representations by Fleis-

chmann in 2004 [13]. In order to get this result, Fleischmann also defined an

important polynomial identity as Benson’s. The identity is a special tool to

reach our results (see Section 3.3.2).

Campbell and Hughes in [3] gave the generators for the ring of vector invari-

ants F[mV2]Cp of the cyclic group Cp of order p, where V2 is an indecomposable

two dimensional representation and mV2 denotes the m-copy of V2 with the di-

agonal action of G. Indeed, it is conjectured and showed by Richman in [35] that

the invariant ring needs a generator of degree m(p−1) which violates the Noether

bound for sufficiently many copies of V2. However, Shank and Wehlau in [42] are

proved that the Hilbert ideal conjecture holds for the corresponding Hilbert ideal

of F[mV2]Cp .

Also, Sezer in [38] has studied on the Hilbert ideal of indecomposable repre-

sentations for Cp and showed that the conjecture is true for these representations.

The technique he used is similar to Benson’s method. We frequently benefit from

his results along this thesis. He recovered the statement of the conjecture as that

the Hilbert ideal is generated by polynomials of degree at most the group order

for indecomposable representations.

Besides, the calculations in all cases given in [39] satisfy the Hilbert ideal

conjecture. In this thesis, we also show that the examples considered in [53]
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confirm the conjecture.

Not only the degree bound of Hilbert ideal, but also its structure is studied in

the literature. Kohls and Sezer in [24] considered the Gröbner basis of the Hilbert

ideal for a class of Dihedral groups. The Hilbert ideals of vector invariants of the

regular representation of the symmetric group Sn was examined by Sezer and

Ünlü in [40].

The cyclic p-group Cpr is a fundamental group for the open problems in mod-

ular invariant theory. Shank and Wehlau gave the relation of representations of

Cp with their subrepresentations in [44]. The invariants of the cyclic group Cp2

were studied for its indecomposable representations and for its p+ 1 dimensional

representations in [30] and [43], respectively.

In Section 3.3, we are interested in the Hilbert ideal conjecture for indecompos-

able representations of Cp2 . One of the main results of this thesis is that the con-

jecture holds for the representations with the dimension n satisfying n ≥ p2− 2p

or n ≤ 4p.

Beside a generating set of the invariant ring F[V ]G, there are also studies on its

structure. Shephard, Todd and Chevalley proved that in the non-modular case,

F[V ]G is a polynomial algebra if and only if G is generated by pseudo-reflections

which are linear automorphisms s : V → V of finite order fixing a hyperplane.

The sufficient condition of the statement also holds for modular representations

(see [37]). But, the necessary part is not satisfied if p divides the order of the

group (for example, see [27]). Kac and Peterson recovered this part in [21] using

the concept of the ideal of generalized invariants. Also, Neumann, Neusel and

Smith studied this ideal in [28].

In Section 4.2, we define a new concept, generalized invariants, not only for

pseudoreflection groups but for any group. Our definition is completely different

from Kac-Peterson’s definition although we inspire from it. Thus, it brings a

new perspective in modular invariant theory. We call a polynomial f ∈ F[V ] a

generalized invariant if for each 1 6= σ ∈ G, there exists a positive integer ` such

that (σ−1)`·f = 0 provided that (σ−1)` is non-zero. We denote the set consisting
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of generalized invariants of F[V ] by F[V ]G∆. Note that an element f ∈ F[V ] is G-

invariant if (σ− 1) · f = 0 for all σ ∈ G. Thus, generalized invariants can be seen

as a natural extension of the invariant ring F[V ]G. However, the set F[V ]G∆ will

provide a different structure from the invariant ring since it has an F[V ]G-module

structure by the twisted derivation property of σ − 1, see Section 4.3. Moreover,

this module is finitely generated over the ring F[V ]G. We expect that the concept

of generalized invariants may give a solution to some problems in invariant theory

because generalized invariants are more common and computable. During the

thesis studies, we support our hypothesis and ideas by calculations in Magma

([2]) producing examples or counterexamples (see [26]).

Recently, Grosshans and Walcher publish their study [17] on modules of higher

order invariants which arise as an algebraic result of the work [15] on a problem

in ordinary differential equations. As well as the definition of these modules are

similiar to generalized invariant modules, their concept is defined for linear alge-

braic groups and we have different results which are complement of their studies.

Moreover, the paper [17] of Grosshans-Walcher is important as an application of

generalized invariants in various areas of mathematics.

In order to understand the module structure of generalized invariants, we

start with investigating the generalized invariants of the cyclic group Cp, as a

basic step, in Chapter 5. We show that the necessary and sufficient condition to

be Cp-generalized invariant is being in the kernel Ker TrCp of the transfer map

of Cp, where the transfer map TrG : F[V ] → F[V ]G is defined by TrG(f) =∑
σ∈G σ · f for f ∈ F[V ] and it is a powerful tool to construct G-invariants,

especially in the non-modular case. Moreover, the n-th cohomology group of

Cp corresponds to the quotient F[V ]Cp/Im TrCp if n is even, and to the quotient

Ker TrCp/Im(σ − 1) = F[V ]
Cp

∆ /Im(σ − 1) if n is odd, where σ is a generator of

Cp. Thus, the generalized invariants of Cp provide an important structure in

modular invariant theory. In Section 5.2, we describe the structure of generalized

invariants of Cp for lower dimensional indecomposable representations, and show

that for these representations, F[V ]
Cp

∆ is a free module over a polynomial ring

generated by a homogeneous system of parameters while at the same time, the

corresponding invariant ring is Cohen-Macaulay. Also, we prove an analogy of
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the Hilbert ideal conjecture for the case of generalized invariants, see Section 5.3.

The structure of generalized invariants becomes more complicated for higher

dimensional representations, even for indecomposable ones. Therefore, it is dif-

ficult to give an explicit description of generalized invariants as in Section 5.2.

Instead of this, we find core structures of generalized invariant modules for any

group G, and we give them in a general form in Chapter 6. To do this, we

investigate some subgroup relations of generalized invariants for a finite group.

In Section 4.4, we prove that in the non-modular case, generalized invariants

correspond to usual invariants. We demonstrate in Chapter 7 the condition in

which these two structures coincide for modular representations. In order to show

this, we benefit from the ladder method which is a powerful technique especially

for representations in zero characteristic (see [25], [34], [52]).

The results about the indecomposable representations of the cyclic group of

order p2 have been published in [9], the first results about generalized invariants

of cyclic groups have been published in [10] and some of the last results have been

submitted for possible publication [11].



Chapter 2

Basic Notations and

Constructions

In this chapter, we introduce basic definitions, tools and notations required for

the thesis. These are split up into four main topics: group theory, module and

ring theory, representation theory, and invariant theory.

2.1 Group Theory

Unless otherwise stated, we always consider finite groups. Generally, we denote

a finite group by G, but now, we give the definition of some basic groups with

their notations for our aim.

Reflection Groups: A linear automorphism s : V → V is called a reflection if

(i) s 6= 1,

(ii) s2 = 1,

(iii) s fixes a codimension one subspace which is called the hyperplane of s.

7
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A reflection group is a subgroup of the general linear group GL(V ) generated by

reflections.

Dihedral Groups: The dihedral group D2n is the set of all symmetries of a

regular n-gon, where a symmetry is any rigid motion of the n-gon. The group

D2n has order 2n and the following presentation

D2n = 〈 r, s | rn = s2 = (rs)2 = 1 〉

where it is generated by the rotation r and the reflection s. Now, let s1 = s,

s2 = rs. Then the presentation can be written with reflections as follows

D2n = 〈 s1, s2 | s2
1 = s2

2 = (s1s2)n = 1 〉.

Coxeter Groups: A Coxeter group is a group given by the presentation

〈 s1, . . . , sn | (sisj)mij = 1 〉

where mii = 1 and mij ≥ 2 for all i 6= j. Coxeter in [7] proved that every

reflection group is a Coxeter group.

Symmetric Groups: The group Sn of all permutations of the set {1, 2, . . . , n}
is the symmetric group on n letters. The symmetric group Sn is a Coxeter group

as follows

〈 s1, . . . , sn−1 | s2
i = (sisi+1)3 = (sisj)

2 = 1 ∀ i 6= j 〉

where si denotes the adjacent transposition (i i+ 1). As a consequence, dihedral

groups, symmetric groups and reflection groups are Coxeter groups.

Sylow Subgroups: If G is a group of order prm, where p is a prime and p - m,

then a subgroup P of order pr is called a Sylow p-subgroup (or a Sylow subgroup)

of G.

Example 2.1. For any prime p dividing the order |G|, the group G has a Sylow

p-subgroup.
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Characteristic Groups: A subgroup N of a group G is called characteristic in

G if every automorphism of G maps N to itself.

Lemma 2.1 A characteristic subgroup N of a group G is normal.

Proof. Consider the automorphism ϕ : σ 7→ gσg−1 of G for any g ∈ G. By the

definition of a characteristic subgroup, N is invariant under ϕ:

ϕ(N) ⊆ N.

Therefore, we have gNg−1 = N for each g ∈ G.

Group Actions: A left action of a group G on a set A is a map from G × A
to A, written (g, a) 7→ g · a for all g ∈ G and a ∈ A, satisfying the following

properties

(i) g1 · (g2 · a) = (g1g2) · a for all g1, g2 ∈ G and a ∈ A,

(ii) 1 · a = a for all a ∈ A.

The kernel of the action is the set of elements of G that act trivially on each

element of A:

{ g ∈ G | g · a = a ∀ a ∈ A }.

An action is faithful if its kernel is trivial.

A map between two sets commuting with the action of a group G is said to

be G-equivariant or equivariant map. More precisely, if G acts on the sets A and

B, and f : A→ B is an equivariant map, then for all g ∈ G, a ∈ A,

f(g · a) = g · f(a).
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2.2 Representation Theory

Definition. Let V be a finite dimensional vector space over a field F. A finite

dimensional representation ρ of a group G on V is a group homomorphism

ρ : G→ GL(V )

defined by ρ(σ)(v) = σ · v for all σ ∈ G and v ∈ V , where GL(V ) is the group of

automorphisms of V . The vector space V may be assigned as a representation ρ in

the text. The dimension (or degree) of the representation is the dimension of the

vector space V . From now on, we denote ρ(σ)(v) by σ(v) when the representation

is clear from the context.

If the group homomorphism ρ above is injective, then the representation is

called a faithful representation. If a representation is not faithful, we can get an

injective homomorphism by setting

ρ : G/Ker(ρ) ↪→ GL(V ).

Thus, we can always consider faithful representations in this thesis.

Suppose that G acts on a finite set A. Let V be a vector space having a basis

(ea)a∈A. For σ ∈ G, let ρ(σ) : V → V be the linear map which sends ea 7→
eσa. The resulting representation of G is called permutation representation of G

associated with A. If we take itself of G instead of A, the obtained representation

is called the regular representation of G.

Let V G denote the set of vectors fixed by the action of the group G:

V G = { v ∈ V |σ(v) = v ∀σ ∈ G }.

The dual vector space V ∗ of V is the set, HomF(V,F), of all linear functions

from V to F. The action of G on V given above induces a left action of G on the
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dual space V ∗ defined by

(
σ(x)

)
(v) = x

(
σ−1(v)

)
for all σ ∈ G, x ∈ V ∗ and v ∈ V . Indeed, for all σ, τ ∈ G,(

σ
(
τ(x)

))
(v) =

(
τ(x)

)(
σ−1(v)

)
= x

(
τ−1
(
σ−1(v)

))
= x

(
(τ−1σ−1)(v)

)
= x

(
(στ)−1(v)

)
=
(
(στ)(x)

)
(v).

A subspaceW of the vector space V is calledG-invariant (or simply invariant)

if for all σ ∈ G,

σ(W ) ⊆ W.

The restriction of ρ to a G-invariant subspace W ⊆ V is called a subrepresentation

of V . A representation ρ of V is said to be irreducible if it has only trivial

subrepresentations V and {0}. An indecomposable representation V means that V

cannot be decomposed into a direct sum of proper nontrivial subrepresentations.

It follows that every irreducible representation is indecomposable.

The subgroup of the general linear group GLn(V ) given by a system of alge-

braic equations is called a linear algebraic group. For example,

SLn(V ) = {σ ∈ GLn(V ) | det(σ) = 1}.

A linear algebraic group G is said to be reductive if each representation V of G

is completely reducible, i.e. every G-invariant subspace W ⊆ V has a G-invariant

complement U :

V = W ⊕ U.

The following is a famous and useful result in representation theory. However,
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it holds only for a special case which is defined below.

Theorem 2.2 (Maschke’s Theorem) If G is a group and F is a field whose char-

acteristic does not divide the group order |G|, then each representation of G over

F is completely reducible.

A representation of G over F satisfying the condition given in Maschke’s the-

orem (or equivalently, when |G| is invertible in F) is called a non-modular repre-

sentation. A representation of the group G is said to be a modular representation

if the characteristic char(F) of F divides the group order |G|. In representation

theory, there is a dichotomy as modular and non-modular cases. Many of the

problems in invariant theory is better understood in non-modular case due to

Maschke’s theorem, while modular invariant theory of finite groups over finite

fields presents many open problems.

The following well-known lemma is required for the results in this thesis.

Lemma 2.3 If q = pr is a prime power and k ∈ Z+, then

∑
`∈Fq

`k =

{
−1 if q − 1 | k,
0 if q − 1 - k.

Proof. Let a be a generator of Fq. Then Fq\{0} = {1, a, a2, . . . , aq−2} and

∑
`∈Fq

`k =

q−2∑
i=0

(ai)k =

q−2∑
i=0

(ak)i.

Note that the element of Fq, ak is a root of the following polynomial

xq−1 − 1 = (x− 1)(xq−2 + · · ·+ x+ 1).

If q − 1 | k, then ak = 1 and the sum is equal to q − 1 ≡ −1. If q − 1 - k, then

ak 6= 1 and so ak is a root of xq−2 + · · ·+ x+ 1. Thus, the sum is zero.
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2.3 Module and Ring Theory

Integral Extensions: Let B be a subring of a ring A. An element a ∈ A is

called integral over B if it is a root of a monic polynomial with coefficients in B,

i.e.

an + b1a
n−1 + · · ·+ bn = 0,

where bi ∈ B. The ring A is called an integral extension of B if each element of

A is integral over B.

FG-Modules: Let V be a representation of a finite group G. Note that FG is

a group ring and the G-action on the vector space V constructs an FG-module

structure on V . Therefore, a representation V of G can also be called an FG-

module.

Projective Modules: An A-module M is said to be a projective module if

every epimorphism ϕ : N → M for any A-module N splits, i.e., there exists a

homomorphism ψ : M → N such that ϕ ◦ ψ = 1M .

Noetherian Modules: A module M over a ring A is called Noetherian if every

A-submodule of M is finitely generated.

Lemma 2.4 An A-module M is Noetherian if and only if N and M/N are

Noetherian A-modules for any submodule N of M .

Proof. Suppose that M is a Noetherian A-module. Let N ≤ M . Then N is

Noetherian since every submodule of N is also submodule of M . Let K/N ≤
M/N for N ≤ K ≤ M . Since M is Noetherian, K is finitely generated. Also so

is K/N . Hence, M/N is Noetherian.

For the converse, suppose that N is a submodule of M and both N and

M/N are Noetherian. Let K be a submodule of M . Then the epimorphic im-

age of K in M/N is finitely generated, say m1, . . . ,mr ∈ K generate this im-

age. Thus, for any m ∈ K, we have m ≡
∑r

i=1 aimi mod N for some ai ∈ A.

Then, m −
∑r

i=1 aimi ∈ K ∩ N . However, since K ∩ N ≤ N and N is Noethe-

rian, K ∩ N is generated by some elements n1, . . . , ns. Therefore, we obtain
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that m =
∑r

i=1 aimi +
∑s

j=1 bjnj where bj ∈ A. Hence, K is generated by

m1, . . . ,mr, n1, . . . , ns and M is Noetherian.

Lemma 2.5 A finite sum of Noetherian modules is Noetherian.

Proof. Let M =
∑n

i=1 Ni with Ni are Noetherian submodules of M . By induction

on n, suppose that

K =
n−1∑
i=1

Ni

is Noetherian. Then we have M/Nn = (K + Nn)/Nn
∼= K/K ∩ Nn. Since K

is Noetherian, so is K/K ∩ Nn and hence also M/Nn. The submodule Nn is

Noetherian. Thus, the result follows from the previous lemma.

Lemma 2.6 A finitely generated module AM over a Noetherian ring A is Noethe-

rian.

Proof. For m ∈M , we consider the A-module homomorphism

ϕm : A→M

defined by ϕm(a) = am. Then A/Kerϕm ∼= Imϕm = Am. Since A is Noetherian,

so is Am. If m1, . . . ,mn is a generating set of M , then the assertion follows from

the previous lemma as

M =
n∑
i=1

Ami.

2.4 Invariant Theory

2.4.1 Polynomial Ring

Let V be an n-dimensional representation of a finite group G over a field F and

{x1, x2, . . . , xn} a basis of the dual space V ∗. Let F[V ] denote the polynomial
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ring F[x1, . . . , xn] with n-indeterminates. Note that the polynomial ring F[V ] has

an F-algebra structure and x1, . . . , xn generate F[V ] as an F-algebra. Define the

monomial in F[V ]

xI = xi11 · · ·xinn

for a sequence I = {i1 . . . , in} of nonnegative integers. Then the total degree

i1 + . . .+ in of the monomial xI is called the degree of xI and denoted by deg(xI).

Consider a polynomial

f =
∑
j

ajx
Ij

where aj ∈ F. The polynomial f is called homogeneous of degree d if each mono-

mial xI is of degree d. Let F[V ]d be the space of homogeneous polynomials of

degree d. Then the polynomial ring F[V ] is graded by nonnegative degree:

F[V ] =
⊕
d≥0

F[V ]d.

Therefore, F[V ] has a graded algebra structure, i.e.,

(i) F[V ]d is a subspace of F[V ] for each d ≥ 0,

(ii) if f ∈ F[V ]d and f ′ ∈ F[V ]d′ , then ff ′ ∈ F[V ]d+d′ ,

We use F[V ]+ instead of
⊕

d>0 F[V ]d, the vector space generated by positive de-

gree polynomials. A graded F-algebra A is called connected if A0 = F. Therefore,

the polynomial ring F[V ] is a graded connected F-algebra.

The action of G on the dual vector space V ∗ can be defined as

(σ(f))(v) = f(σ−1(v))

for all σ ∈ G, f ∈ V ∗, v ∈ V . This action can be naturally extended to the action

of G on the polynomial ring F[V ] additively and multiplicatively as follows

σ(f + f ′) = σ(f) + σ(f ′),

σ(ff ′) = σ(f)σ(f ′)
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for all f, f ′ ∈ F[V ]. An ideal I of F[V ] is called a G-stable ideal if I is invariant

under the action of G, i.e., for all σ ∈ G, σI ⊆ I.

Let LM(f) and LT(f) denote the leading monomial and the leading term,

respectively, of a polynomial f ∈ F[V ] with respect to the given monomial order.

Unless otherwise stated, we will use the graded reverse lex-order induced by

x1 ≺ · · · ≺ xn.

A generating set X for a module M is called minimal if any proper subset of X

generates a proper submodule of M . In this thesis, we use the same term, minimal

generating set, for a minimal generating set with an additional condition that the

leading monomials of the polynomials in this generating set are minimal. The

generators in a minimal generating set are not unique, but the leading monomials

of the generators are unique for a fixed monomial order.

Although the polynomial ring F[V ] is a finitely generated F-algebra, not every

subalgebra of F[V ] need to be finitely generated as shown in the next example

given in [46].

Example 2.2. Consider the subalgebra A of the polynomial ring F[x, y] generated

by

1, xy, xy2, . . . , xyn, . . .

Observe that the generator xyn can not be in the subalgebra generated by the

remaining generators. Thus, A is an infinitely generated subalgebra of F[x, y].

2.4.2 Invariant Ring

The ring of all polynomials in F[V ] fixed by the group action of G is called the

invariant ring or ring of invariants, more precisely,

F[V ]G = { f ∈ F[V ] | σ(f) = f ∀ g ∈ G },

and is denoted by F[V ]G. This construction clearly has a ring structure, and it is

the main object in invariant theory. A polynomial in F[V ]G is called G-invariant.
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Since the polynomial ring F[V ] is a graded algebra, the subalgebra F[V ]G also

has a graded structure. Therefore, without loss of generality, we assume that all

polynomials are homogeneous polynomials unless stated otherwise. We denote

the ideal of the positive degree invariants in F[V ]G by F[V ]G,+. Notice that for a

subgroup H of G,

F[V ]G ⊆ F[V ]H .

For f ∈ F[V ] and |G| = m, consider the polynomial

∏
σ∈G

(X − σ(f)) =
m∑
i=1

(−1)isiX
m−i. (2.1)

The coefficients si of the polynomial are given by

s1 = σ1(f) + σ2(f) + · · ·+ σm(f),

s2 = σ1σ2(f) + σ1σ3(f) + · · ·+ σm−1σm(f),

...

sm = σ1σ2 · · · σm(f).

Hence, the coefficients si are in the invariant ring F[V ]G. These coefficients are

called elementary symmetric polynomials.

In the previous section, we demonstrated that a given subalgebra of F[V ] is

not necessarily finitely generated. However, now we show that the invariant ring

F[V ]G is finitely generated an F-algebra. In the literature, Gordan in 1868 proved

this statement for the group SL2 over the filed of characteristic zero. But, this

method did not generalize to the other groups. Then, Hilbert gave a proof for

linearly reductive groups in 1890 and a constructive proof in 1893. A constructive

proof when the characteristic of the field is zero or greater than the group order

was given by Noether in 1916. In 1926, she proved the result for all finite groups

in arbitrary characteristic as follows.

Theorem 2.7 (Finiteness Theorem) If G is a finite group acting as automor-

phisms of a finitely generated commutative algebra A over a field F, then AG is a

finitely generated F-algebra and A is finitely generated as a module over AG.
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Proof. Let f ∈ A. Consider the monic polynomial (2.1)

P (X) =
∏
σ∈G

(X − σ(f))

which lies in AG[X]. Note that f is a root of this polynomial. So, A is an

integral extension of AG. Finitely many generators of A are roots of the monic

polynomials P (X). Let B be the subalgebra of AG generated by the coefficients

of the polynomials P (X). Then B is a finitely generated F-algebra. Since F
is Noetherian, also so is B by Lemma 2.6. Note that A is a finitely generated

module over B by the construction of B. Thus, A is a Noetherian B-module, so

its B-submodule AG is also finitely generated. Hence, AG is a finitely generated

F-algebra. The last part is clear by the context of the proof.

As a consequence of the finiteness theorem, we obtain the following result.

Corollary 2.8 The invariant ring F[V ]G is a finitely generated F-algebra. In

particular, it is a Noetherian ring and F[V ] is a Noetherian F[V ]G-module.

2.4.3 Construction of Invariants

A powerful tool to construct an invariant for a finite group G is the transfer map

TrG : F[V ]→ F[V ]G

defined by

TrG(f) =
∑
σ∈G

σ(f)

where f ∈ F[V ]. Indeed, for all τ ∈ G, we have

τTrG(f) =
∑
σ∈G

(τσ)(f)

which is the same as the sum defining TrG(f) except for the order of the sum-

mands. Thus, TrG(f) ∈ F[V ]G for all f ∈ F[V ]. Sometimes, the transfer TrG is



CHAPTER 2. BASIC NOTATIONS AND CONSTRUCTIONS 19

called the G-transfer. Observe that the transfer TrG is an F[V ]G-module homo-

morphism: for any h ∈ F[V ]G, we have

TrG(hf) =
∑
σ∈G

hσ(f) = hTrG(f),

and it is linear by the definition of the action on the polynomial ring F[V ]. It

follows that for any f ∈ F[V ]G,

TrG(f) =
∑
σ∈G

fσ(1) = |G|f.

Thus, in the non-modular case, TrG is surjective and

RG =
1

|G|
TrG : F[V ]→ F[V ]G

is a well-defined projection onto F[V ]G. This map is called the Reynolds operator.

It satisfies the following split equation

F[V ]G ↪→ F[V ]
R
� F[V ]G.

So, we obtain the following decomposition:

F[V ] = KerRG ⊕ F[V ]G.

Similarly, we can define the relative versions of the transfer map and the

Reynolds operator as follows. Let H ≤ G be a subgroup of G. Consider the map

TrGH : F[V ]H → F[V ]G

defined by

TrGH(f) =
∑

σH∈G/H

σ(f)

where f ∈ F[V ]H . It is well-defined since F[V ]G ⊆ F[V ]H and called the relative

transfer from H to G. Sometimes we call the transfer TrG as the full transfer to
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avoid confusion. It can immediately be seen that

TrG = TrGH ◦ TrH

by the definition of the relative transfer. If the characteristic of the field does not

divide the index [G : H], then the relative transfer map TrGH is surjective and the

operator RG
H = 1

[G:H]
TrGH is a projection from F[V ]H onto F[V ]G. Also, we have

the decomposition

F[V ]H = KerRG
H ⊕ F[V ]G.

Moreover, the image ImTrG of the transfer is an ideal of F[V ]G since the

transfer map TrG is a module homomorphism. The following theorem states that

this ideal is proper in the modular case which is proved in [41, Theorem 2.2].

Theorem 2.9 If p | |G|, then the image ImTrG of transfer is properly contained

in F[V ]G.

The other tool to construct invariants of finite groups is the norm NG defined

as

NG(f) :=
∏
σ∈G

σ(f),

and the relative norm NG
H for a subgroup H ≤ G is

NG
H(f) :=

∏
σH∈G/H

σ(f).

The image ImTrG of transfer is also a nonzero ideal as shown below.

Lemma 2.10 [4, Corollary 9.0.17] For a representation V of G, the image of

the transfer TrG : F[V ]→ F[V ]G is nonzero.

Proof. We extend the action of the group G to the field of the fractions F(V ).

Since any set of field automorphisms is linearly independent, TrG is nonzero in

F(V ), i.e., there are polynomials f, h ∈ F[V ] such that

TrG(f/h) 6= 0.
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However, notice that NG(h)f/h ∈ F[V ]. Therefore, for the F[V ]G-module homo-

morphism TrG,

TrG(NG(h)f/h) = NG(h)TrG(f/h) 6= 0.

2.4.4 Cyclic p-Groups

Let G denote the cyclic group Cpr of order pr with generator σ, and let V be a

finite dimensional indecomposable representation of G of dimension n over the

field F of characteristic p. Let H be a subgroup of G of order p. Then we can

give the transfers and the norms of Cpr as follows: for all f ∈ F[V ],

(i) the full transfer of f is TrG(f) =
∑pr−1

`=0 σ`(f),

(ii) the H-transfer of f is TrH(f) =
∑p−1

`=0 σ
pr−1`(f),

(iii) the G-norm of f is NG(f) =
∏pr−1

`=0 σ`(f),

(iv) the H-norm of f is NH(f) =
∏p−1

`=0 σ
pr−1`(f),

(v) if f ∈ F[V ]H , the relative transfer of f is TrGH(f) =
∑pr−1−1

`=0 σp`(f)

which are required for the rest of the thesis. The order of G implies that σp
r

= 1.

It follows that every eigenvalue λ of σ is a pr-th root of unity in the ground field

F. Since char(F) = p, we have

(λ− 1)p
r

= λp
r − 1 = 0.

Thus, λ = 1 is the only pr-th root of unity that lies in F. Let {e1, . . . , en} be

a basis of V such that σ is in the Jordan canonical form. If σ has more than

one Jordan blocks, then V has a direct sum decomposition corresponding to the

blocks. It is a contradiction by the assumption on V . Hence, the representation
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of σ has the form

σ =



1 0 . . . 0 0

1 1 . . . 0 0
...

. . . . . .
...

0 0 . . . 1 0

0 0 . . . 1 1


and we obtain the following result.

Lemma 2.11 With the above notations, if a representation V of G with degree

n is indecomposable, then pr−1 < n ≤ pr.

Proof. The above matrix has order pr if and only if pr−1 < n ≤ pr. It completes

the proof.

Corollary 2.12 There are exactly pr-many inequivalent indecomposable repre-

sentations V1, V2, . . . , Vpr of G. Moreover, we obtain the following inclusion:

V1 ⊂ V2 ⊂ · · · ⊂ Vpr .

Since we generally use the cyclic group Cp in this thesis and for the simplicity

of the notations, the following corollary is given in a special case although it is

true for any cyclic p-group Cpr .

Corollary 2.13 If V is a finite dimensional representation of Cp, then it decom-

poses into indecomposable Cp-representations as follows

V =

p⊕
i=1

miVi

where mi is the number of the copies of Vi in V .

Lemma 2.14 The only projective indecomposable representation of Cp is Vp which

is isomorphic to the regular module FCp.

Proof. Let {e1, . . . , ep} be a basis for Vp as defined by the above lower triangular

matrix and let Vr be the subspace spanned by {ep−r+1, ep−r+2, . . . , ep} for r < p.
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Suppose, for contradiction, that Vr is projective. Define a map ϕ : Vp → Vr by

ϕ(ei) =

{
0 if i > r,

ep−r+i if i ≤ r.

Then we obtain the following exact sequence of Cp-modules

0→ Kerϕ ↪→ Vp
ϕ→ Vr → 0.

But Vr is projective. Then, the sequence splits and we get

Vp ∼= Kerϕ
⊕

Vr.

Since Vp is indecomposable, it is a contradiction. Hence, Vr is not projective.

Lemma 2.15 An invariant in a projective indecomposable Cp-module is either a

norm or a transfer of a polynomial.

Proof. The assertion follows from Lemma 2.14.

The following division about Cp-invariants is useful for the reduction of the

degrees of invariants.

Lemma 2.16 If f ∈ F[V ]Cp and f = qNCp(xn) + r, where the degree degxn r of

r in xn is less than p, then q, r ∈ F[V ]Cp.

Proof. Applying a generator σ in Cp to both sides of the above equation, we

obtain

f = σ(q)NCp(xn) + σ(r).

Since degxn(σ(r)) = degxn r < p and degxn(σ(q)) = degxn q, the uniqueness of

the remainder implies that σ(r) = r and so σ(q) = q.

For a representation V of a finite group G, let
⊕m

i=1 V be denoted by mV .

Then the invariant ring F[mV ]G is called the ring of vector invariants. The
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following result was conjectured by Richman in [35] and proved by Campbell and

Hughes in [3].

Theorem 2.17 Let mV2 be a representation of Cp with a basis {xi, yi} for each

copy of V ∗2 and for i = 1, . . . ,m. Then the invariant ring F[mV2]Cp is generated

by:

(i) x1, x2, . . . , xm,

(ii) the Cp-norms NCp(yi) = ypi − x
p−1
i yi for i = 1, . . . ,m,

(iii) uij = xjyi − xiyj for 1 ≤ i < j ≤ m,

(iv) the Cp-transfers TrCp(yk11 · · · ykmm ) with 0 ≤ ki < p.

Remark. It is proved in [42] that if k1+· · ·+km ≤ 2(p−1), then TrCp(yk11 · · · ykmm )

is in the subalgebra generated by the remaining generators above, and if we

omit the invariants satisfying above condition, F[mV2]Cp can be generated by the

remaining elements.

By the above theorem and the remark, we immediately obtain the following

results.

Corollary 2.18 The invariant ring F[V2]Cp is equal to F[x,NCp(y)].

Corollary 2.19 The invariant ring F[2V2]Cp is equal to F[x1, x2, N
Cp(y1), NCp(y2), u12]

with the notations introduced above.

2.4.5 Homogeneous Systems of Parameters

For a commutative ring A, a chain of its prime ideals

p0 ( p1 ( · · · pm

has length m. The supremum of the lengths over all chains of prime ideals in A

is called the Krull dimension of A.
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Proposition 2.20 [29, Proposition 10.17] The Krull dimension of the polynomial

ring F[V ] is equal to the dimension of V .

Definition. Let A be a finitely generated F-algebra. A set of homogeneous

elements {f1, . . . , fn} is called a homogeneous system of parameters (h.s.o.p.) of

positive degree for A if

(i) the Krull-dimension of A is n, and

(ii) A is finitely generated as a module over the ring F[f1, . . . , fn].

The following fundamental theorem, Noether Normalization Lemma ([33])

states that h.s.o.p. always exists.

Theorem 2.21 If A is a finitely generated graded connected F-algebra, then A

has an h.s.o.p.

Definition. Let A be a finitely generated F-algebra. A sequence {r1, . . . , rm} in

A is called a regular sequence if

(i) (r1, . . . , rm)A 6= A,

(ii) r1 is not a zero divisor in A,

(iii) ri is not a zero divisor in A/(r1, . . . , ri−1)A for all i = 2, . . . ,m.

2.4.6 Noether Number

In Section 2.4.2, we showed that the invariant ring F[V ]G can be minimally gen-

erated as an algebra with a finite collection of homogeneous invariants. The

maximum degree of these polynomials is said to be the Noether number. We will

consider in more detail on this number in Chapter 3. The following result asserts

that the Noether number is independent of the choice of the generating set of the

group.
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Lemma 2.22 (Graded Nakayama Lemma) The F[V ]G-module F[V ]G,+ is (mini-

mally) generated by f1, . . . , fm if and only if the quotient space F[V ]G,+/(F[V ]G,+)2

is spanned by their (linearly independent) images f̄1, . . . , f̄m.

Proof. Suppose that f̄1, . . . , f̄m span the F-vector space F[V ]G,+/(F[V ]G,+)2. Let

M =
∑m

i=1 F[V ]Gfi be the submodule of F[V ]G,+. Since fi are homogeneous, M

has a graded structure. For contradiction, assume that M 6= F[V ]G,+ and let d

be the smallest degree satisfying Md ( F[V ]G,+d . Let h be in F[V ]G,+d and not in

Md and its image

h =
m∑
i=1

kif̄i

where ki ∈ F. Then

h =
m∑
i=1

kifi +
t∑

j=1

gjh
′
j

where gj, h
′
j ∈ F[V ]G,+. We may suppose that deg(gjh

′
j) = d for each i = 1, . . . , t.

Therefore, the degree of h′j is less than d since deg gj ≥ 1, so h′j ∈ M for all

j = 1, . . . , t. It follows that h ∈ F[V ]G,+. It is a contradiction. The converse

statement is obviously true.

Corollary 2.23 The lifting of a basis for F[V ]G,+/(F[V ]G,+)2 minimally generates

the F-algebra F[V ]G.

By the previous corollary, we can say that a minimal generating set for F[V ]G is

not unique; however, the number of generators in a given degree remains stable.

Then, we obtain that the Noether number is independent of the choice of the

generators.



Chapter 3

Hilbert Ideal Conjecture

In Section 2.4.2, we proved that the invariant ring for a representation of a finite

group is finitely generated. The natural question after this result is what the

maximum degree of a polynomial in a minimal generating set of the invariant

ring is. In this chapter, we consider such upper degree bounds and give some

examples. Then we define an alternative structure to the invariant ring, the

Hilbert ideal. We mention a famous conjecture, Hilbert ideal conjecture, with

a review of some recent results on this conjecture. Further, we prove that this

conjecture holds for a restricted dimension of an indecomposable representation

of the cyclic group Cp2 which is the main result of this chapter.

3.1 Hilbert Ideal

Consider a representation V of a finite group G over the field F. With respect

to this representation, we define β(G) as the maximum degree of a generator in

a minimal generating set for the invariant ring F[V ]G. By the graded Nakayama

lemma in Section 2.4.6, this number does not depend on the choice of the minimal

generators. The number β(G) is called the Noether number for G.

27
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We show that the Noether number for the invariant ring F[V ]G of a non-

modular representation is the order |G| of group G. Originally, Noether proved

this in characteristic zero (see [32]). We give the statement of the theorem in the

general case where |G| is invertible in F. It was shown independently by Fogarty

in [14] and Fleischmann in [12]. Then, Benson simplified the proof of Fogarty

using the following elegant lemma (see [8, Section 3.8.]).

Lemma 3.1 Let A be a commutative ring with unity, and G be a finite group of

automorphisms of A. If |G| is invertible in A, and I is a G-stable ideal in A,

then

I |G| ⊆ IGA,

where IG denote the subset of G-invariants in I.

Proof. Consider the set {fg | g ∈ G} consisting of |G|-many elements of I indexed

by the group elements. For every h ∈ G, we have the following identity

∏
g∈G

(hg(fg)− fg) = 0.

Expanding each component of this product and summing over all h ∈ G, we

obtain that ∑
S⊆G

(−1)|G\S|
[(∑

h∈G

∏
g∈S

h(gfg)

)( ∏
g∈G\S

fg

)]
= 0

where S corresponds to a subset of G in each case of the sum. Note that when

S = ∅, the term is

±|G|
∏
g∈G

fg

and all other terms lie in IGA because
∑

h∈G
∏

g∈S h(gfg) is in the image of the

transfer TrG and I is a G-stable ideal. Thus,

±|G|
∏
g∈G

fg ∈ IGA.

Since |G| is invertible in F, it follows that
∏

g∈G fg ∈ IGA.
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The following is an important object in invariant theory. Benson used this

concept in the proof of the Theorem 3.2 below.

Definition. The ideal of F[V ] generated by the positive degree polynomials in

F[V ]G is called the Hilbert ideal and denoted by h, i.e.,

h = 〈 f ∈ F[V ]G,+ 〉 ≤ F[V ].

Theorem 3.2 For a representation V of a finite group G, if |G| is invertible in

F, then F[V ]G is generated by polynomials of degree at most |G|. In particular,

β(G) ≤ |G|.

Proof. Put A = F[V ] and I = F[V ]+ in Lemma 3.1. Thus, (F[V ]+)|G| ⊆ h. We

claim that the Hilbert ideal h is generated by polynomials of degree at most

|G|. Since F[V ] is a Noetherian ring, there are finitely many invariants f1, . . . , fr

which generate h. Suppose that f1, . . . , fr is a minimal generating set for h. If

the degree of fi is greater than |G| for some i, then

fi =
n∑
j=1

fijxj

for some fij ∈ F[V ]. So, deg(fij) ≥ |G| and fij ∈ h by Lemma 3.1. Since

deg(fij) < deg(fi), for each j, fij is in the ideal of F[V ] generated by the set

{f1, . . . , f̂i, . . . , fr} obtained by omitting fi. It contradicts with the minimality of

the generating set. Thus, the Noether number of the Hilbert ideal, β(h) = |G|.

Now, consider an invariant f of degree > |G|. Then f ∈ h by Lemma 3.1.

Thus,

f =
r∑
i=1

kifi,

where ki is a polynomial in F[V ]+ and fi ∈ F[V ]G. Since |G| is invertible, by the
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Reynolds operator, we have

f =
1

|G|

|G|∑
j=1

gj(f)

=
1

|G|

|G|∑
j=1

r∑
i=1

gj(kifi)

=
1

|G|

|G|∑
j=1

r∑
i=1

gj(ki)fi

=
1

|G|

r∑
i=1

fi
( |G|∑
j=1

gj(ki)
)

Since
∑|G|

j=1 gj(ki) ∈ F[V ]G,+ for each i, f cannot be in a minimal generating set

of F[V ]G.

Definition. The upper bound given in Theorem 3.2 is called the Noether’s bound.

In the modular case, Noether’s bound does not hold. By Richman in [36], the

vector invariant ring F[mV2]G of the cyclic group of order p needs a generator of

degree m(p − 1). Thus, it shows that the Noether bound does not satisfied for

decomposable representations mV2 of dimension large enough. As a more explicit

example:

Example 3.1. Consider the representation C2 ↪→ GL6(V ) given by the permu-

tation matrix 

0 1

1 0
0 0

0
0 1

1 0
0

0 0
0 1

1 0


If the characteristic is different from 2, then the invariant ring F[x1, y1, x2, y2, x3, y3]C2
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is generated by

fi = xi + yi for i ∈ {1, 2, 3},

hi = xiyi for i ∈ {1, 2, 3},

ui = xjxk + yjyk for distinct i, j, k ∈ {1, 2, 3}.

But in our case, when char(F) = 2, since

x1x2x3 + y1y2y3 =
1

2
(f1f2f3 − u1f1 − u2f2 − u3f3)

is not defined, the following cubic polynomial is required for the generating set

v = x1x2x3 + y1y2y3.

Now, we will consider a new structure defined above and which is similar to

the invariant ring, Hilbert ideal. In the proof of Theorem 3.2, we also showed the

following result.

Corollary 3.3 For non-modular representations, the Hilbert ideal h is generated

by polynomials of degree at most the group order.

Even though the vector invariants F[mV2]G have generators of arbitrary large

degrees, the corresponding Hilbert ideal needs only the generators of degree at

most the group order (proved in [43]) as shown in the following example.

Example 3.2. We consider the representation given in Example 3.1. In this

example, it is required a generator v for F[V ]G when char(F) = 2. We can write

v as follows:

v = x1x2x3 + y1y2y3

= f1f2f3 + x2y3f1 + x3u3 + y2u2

Hence, it is in the Hilbert ideal h = 〈f1, f2, f3, h1, h2, h3, u1, u2, u3〉. Therefore, h

satisfies Noether bound.
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As a generalization of the Noether bound for the invariant ring, it is conjec-

tured that the Noether bound holds for the Hilbert ideal (see [8, Conjecture 3.8.6

(b)]).

Conjecture 3.4 (Hilbert Ideal Conjecture) Let V be a representation of a finite

group G. Then the corresponding Hilbert ideal is generated by polynomials of

degree at most |G|.

3.2 Recent Studies on the Hilbert Ideal

The Hilbert ideal conjecture is an interesting problem in the invariant theory.

There are many studies about this conjecture. However, the conjecture is proved

only for special cases in these studies. Until now, it has been not achieved to

show it for all representations. In this section, we will list the studies about the

Hilbert ideal supporting the conjecture.

1. Due to Noether, Fleischmann and Fogarty, the conjecture holds for non-

modular representations (Corollary 3.3).

2. Due to Fleischmann, the conjecture holds for permutation representations

([12, Theorem 4.1]).

3. Due to Shank and Wehlau, the conjecture holds for vector invariants

F[mV2]Cp of the cyclic group Cp ([43]).

4. Due to Sezer, the conjecture holds for the indecomposable representations

of Cp ([38]).

5. Due to Sezer and Shank, the conjecture holds for some given examples of

decomposable representations of Cp ([39]).

6. Due to a result of Wehlau, the conjecture holds for given examples of de-

composable representations of Cp ([53]).



CHAPTER 3. HILBERT IDEAL CONJECTURE 33

7. Due to Erdemirci Erkuş and Madran, the conjecture holds for indecompos-

able representations of Cp2 having dimension ≤ 4 or ≥ p2 − 2p (see Section

3.3).

3.3 Hilbert Ideal of the Cyclic Group Cp2

Beside the cyclic group Cp, the cyclic group Cp2 of order p2 and its invariants were

studied especially for indecomposable representations and for p + 1-dimensional

representations (see [30], [43]). Now, we examine the Hilbert ideal of the group

Cp2 for indecomposable representations in two different approaches. In Section

3.3.1, we give the first approach by considering the representations in dimension

p + 1. Here, we obtain invariants in an inductive way, increasing the degree of

a representation and identifying the invariants of the extended representation,

Vn+1 ⊃ Vn. Then, Section 3.3.2 include the other approach given for a more

general case. Although the result of the second one covers the result of the first

one, we provide this direct approach to initiate an inductive argument which we

expect to provide a more general and complete result.

In the rest of this section, let G = Cp2 be the cyclic group of order p2 and H be

its subgroup of order p. Let Vn denote the n-dimensional indecomposable faithful

representation of G. If the dimension is clear in the context, we will denote it

by V for simplicity of notations. For a faithful indecomposable representation, n

must be in the interval p < n ≤ p2 (see Lemma 2.11). Because of this constraint,

our first step starts with the representations in p+ 1-dimension.

For the representation V of G, we consider the corresponding polynomial

ring F[V ] = F[x1, . . . , xn] with indeterminates x1, . . . , xn. If ρ is the faithful

representation of G with ρ(σ) = [αi,j(σ)] ∈ GL(n,F) for all σ ∈ G, then the
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action of G on F[V ] is given by
σ · x1

σ · x2

...

σ · xn

 =


α1,1(σ) α1,2(σ) . . . α1,n(σ)

α2,1(σ) α2,2(σ) . . . α2,n(σ)
...

...
...

αn,1(σ) αn,2(σ) . . . αn,n(σ)




x1

x2

...

xn

 .

Along this section, the monomial ordering is the graded reverse lex order with

xi+1 � xi for i = 1, 2, . . . , n − 1. Let σ be a generator for the group G. It is

showed in Section 2.4.4 that σ has the following Jordan canonical form

σ =



1 0 . . . 0 0

1 1 . . . 0 0
...

. . . . . .
...

0 0 . . . 1 0

0 0 . . . 1 1


and hence

σ(xi) =

{
x1 if i = 1,

xi + xi−1 if 2 ≤ i ≤ n.

Setting ∆ := σ − 1, we obtain

∆(xi) =

{
0 if i = 1,

xi−1 if 2 ≤ i ≤ n.

The main aim of the section is to prove the Hilbert ideal conjecture for in-

decomposable representations of the cyclic group G. For this, it is essential to

know about the generators of the invariant ring F[V ]G. Therefore, the following

theorem of Symonds given in [48] is a necessary tool in the section. We restate

the theorem in our notations as follows:

Theorem 3.5 The invariant ring F[V ]G is generated by the G-norm NG(xn) and

invariants of degree less than p2 modulo modules which are projective relative to

the proper subgroups of G.
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Corollary 3.6 The invariant ring F[V ]G is generated by the norm NG(xn), in-

variants of degree less than p2, and the image of the relative transfer TrGH .

Proof. Since the only nontrivial proper subgroup of G is H and Im TrG ⊆ Im TrGH ,

we obtain that the fixed points of the projective modules not in the ideal generated

by G-norms are in the image of the relative transfer TrGH by Lemma 2.15. Then

F[V ]G is generated by the G-norm NG(xn), invariants of degree less than p2, and

the image of the relative transfer TrGH .

By the previous result, in order to prove the Hilbert ideal conjecture, the only

obstacle may be the image of relative transfer. Thus, in two approaches, we try

to show that the image of the relative transfer can be written with elements of

Hilbert ideal of degree at most the group order, p2. For the rest of the section,

the Hilbert ideal h denotes the ideal in F[V ] generated by the G-invariants in

positive degree.

3.3.1 Hilbert Ideal in F[Vp+1]

Suppose that the dimension of the representation V is p + 1. Let A denote the

proper subalgebra F[x1, x2, . . . , xp] of F[V ]. Note that by the canonical form of

σ, the generator σp of the group H has the following form in p+ 1 dimension

σp =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

1 0 . . . 1

 .

Then, it can immediately be seen that every element of A is H-invariant since

x1, x2, . . . , xp ∈ F[V ]H .

Now, we construct an auxiliary polynomial in F[V ] as a polynomial generated

by H-transfers given in [38].
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Construction of the Polynomial: Consider a monomial m = w1w2 · · ·wp−1 in

A of degree p− 1. For any subset S of {1, 2, . . . , p− 1}, let

mS :=
∏
j∈S

wj

and let S ′ denote the complement of S in {1, 2, . . . , p− 1}. For such a monomial

m and a polynomial f in F[V ]H , we define

Fm,f =
∑

S⊆{1,2,...,p−1}

(−1)|S|mS′TrGH(fmS). (3.1)

Note that the polynomial Fm,f is in the Hilbert ideal h since mS ∈ F[V ]H for each

S ⊆ {1, 2, . . . , p− 1} and the image of the relative transfer TrGH lies in F[V ]G.

Other Constructions: For the monomial m = w1w2 · · ·wp−1, define the follow-

ing monomial

∆m := ∆(w1)∆(w2) · · ·∆(wp−1)

of degree p− 1 or zero. Let B be the subalgebra F[x1, x2, . . . , xp−1] of F[V ], and

Bi denote the vector subspace of B consisting of homogeneous polynomials of

degree i. Thus, we obtain that ∆m is either 0 or a monomial in Bp−1.

Recall that we denote the leading term of a polynomial f with LT(f), leading

monomial of f with LM(f), and leading coefficient of f with LC(f).

Some technical properties of the polynomial constructed above is given in

the following two deductions. Indeed, these two results can be derived from [38,

Lemma 2, Lemma 3] considering the action on the algebra A instead of F[V ].

Lemma 3.7 With the above notations, the polynomial Fm,f given in (3.1) has

the following properties:

(i) Fm,f = 0 if ∆m = 0,

(ii) LT(Fm,f ) = −∆m LT(f) if ∆m 6= 0,

(iii) Fm,f ∈ Bp−1 · F[V ].
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Proof. Expand the product
∏p−1

i=1

(
wi − σ`(wi)

)
and apply σ`. Then, we obtain

σ`(f)
( p−1∏
i=1

(
wi − σ`(wi)

))
=

∑
S⊆{1,2,...,p−1}

(−1)|S|mS′σ
`(fmS)

for each 0 ≤ ` ≤ p − 1. Since the relative transfer is TrGH =
∑p−1

`=0 σ
`, summing

over ` yields
p−1∑
`=0

σ`(f)
( p−1∏
i=1

(
wi − σ`(wi)

))
= Fm,f . (3.2)

If ∆m = 0, then ∆(wi) = 0 for some 1 ≤ i ≤ p− 1. Therefore, by the definition

of ∆, wi − σ`(wi) = 0 for all ` = 0, 1, . . . , p − 1. Thus, the summands in the

polynomial Fm,f become zero. So the property (i) is satisfied.

Now assume that ∆m 6= 0. From the identity

1− σ` = (1 + σ + σ2 + · · ·+ σ`−1) · (1− σ),

we obtain

wi − σ`(wi) = (1 + σ + σ2 + · · ·+ σ`−1)(−∆(wi)). (3.3)

Since the action of σ respects the monomial order, in the sense that LT(σ(f)) =

LT(f), we get

LT
(
wi − σ`(wi)

)
= −`∆(wi).

Hence, the leading term of σ`(f)
(∏p−1

i=1

(
wi − σ`(wi)

))
is computed as

LT(f)(−`)p−1

p−1∏
i=1

∆(wi) = LT(f)`p−1∆m.

Summing over ` proves the part (ii) since
∑p−1

`=0 `
p−1 = −1 (Lemma 2.3).

By the equation (3.3), we can say that the variables that appear in wi−σ`(wi)
are in the algebra B. Then, if ∆m 6= 0, the product

∏p−1
i=1

(
wi−σ`(wi)

)
is of degree

p − 1. Thus, the product is in Bp−1. Hence, Fm,f ∈ Bp−1 · F[V ], completing the

proof.

Lemma 3.8 The subspace Bp−1 is in the Hilbert ideal h.
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Proof. Suppose, for contradiction that Bp−1 \ h is nonempty. Let f be a polyno-

mial in Bp−1 \ h with minimal leading monomial u. Then u is not in h. Indeed,

if u were in h, the polynomial f − LC(f)u would be in Bp−1 \ h, and this would

contradict with the minimality of f . Moreover, since u ∈ Bp−1, there exists a

monomial m ∈ A such that ∆m = u. Now, consider the polynomial Fm,1. By

Lemma 3.7, LT(Fm,1) = −∆m = −u. Therefore, the leading monomial of u+Fm,1

is strictly smaller than u. Since Fm,1 ∈ h, we have u+Fm,1 ∈ Bp−1 \h. But again

this contradicts to the minimality of f . Therefore Bp−1 ⊆ h.

For k ∈ Z+, let

h≤k := 〈f ∈ h | deg(f) ≤ k〉

denote the ideal of F[V ] generated by polynomials in h of degree at most k. As a

consequence of Lemma 3.7 and Lemma 3.8, we can deduce the following desired

result.

Proposition 3.9 The polynomial Fm,f is in the ideal h≤p2.

Proof. It follows from Lemma 3.7 (iii) and Lemma 3.8.

By the above representation of σp, we have

σp(xi) =

{
xi if 1 ≤ i ≤ p,

x1 + xi if i = p+ 1.

Therefore, the invariant ring F[V ]H is generated by x1, x2, . . . , xp,N
H(xp+1):

F[V ]H ∼= F[x1, x2, . . . , xp,N
H(xp+1)].

Notation 3.1. We use the following notations for simplicity.

(i) For a polynomial f ∈ F[V ], degxi(f) denotes the maximum degree of f in

xi.

(ii) For a monomial m ∈ F[V ], degA(m) denotes the total degree of m with

respect to variables in A.
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Proposition 3.10 If a polynomial f and a monomial m are given as above,

TrGH(fm) is in the ideal h≤p2.

Proof. We can rewrite the polynomial Fm,f as:

Fm,f = TrGH(fm) +
∑

S({1,2,...,p−1}

(−1)|S|mS′TrGH(fmS).

Notice that deg(fmS) is strictly less than deg(fm) for each proper subset S of

{1, 2, . . . , p − 1}. If degxp+1
(TrGH(fmS)) > p2, then we can reduce it by dividing

NG(xp+1) using Lemma 2.16. Otherwise, degxp+1
(TrGH(fmS)) ≤ p2 − p, so it can

be written as a product of an H-invariant (possibly containing NH(xp+1)) and a

monomial of degree at least p in A. Therefore, using induction on deg(fm), we

obtain that TrGH(fm) ∈ h≤p2 .

Definition. A polynomial f ∈ F[V ]H of degree greater than p2 is called an

invariant with enough invariants in A = F[x1, . . . , xp], or shortly said it has

enough invariants in A if f =
∑`

i=1 fimi such that for each i,

(i) mi is a monomial in A with deg(mi) = p− 1,

(ii) fi ∈ F[V ]H .

Lemma 3.11 If f has enough invariants in A, then TrGH(f) is in the ideal h≤p2.

Proof. By the linearity of the relative transfer, we have

TrGH(f) = TrGH(
∑̀
i=1

fimi) =
∑̀
i=1

TrGH(fimi).

Thus, by Proposition 3.10, we obtain the result.

Proposition 3.12 If f ∈ F[V ]H is of degree greater than p2 and degxp+1
(f) < p2,

then f has enough invariants in A.

Proof. Suppose that f ∈ L is of degree greater than p2 and degp+1(f) < p2. Then

degp+1(f) is a multiple of p because degxp+1
(NH(xp+1)) = p. Therefore, f can be
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written as a sum of polynomials which are a product of H-norm, NH(xp+1) and

some monomial of degree at least p in A. Thus, f has enough invariants in A.

Proposition 3.13 For any f ∈ F[V ]H , the image of the relative transfer TrGH(f)

is in the ideal h≤p2.

Proof. If f ∈ L is of degree greater than p2 and degxp+1
(f) < p2, then by Propo-

sition 3.12 and Lemma 3.11, we have TrGH(f) ∈ h≤p2 . If degxp+1
(f) ≥ p2, the

polynomial f has the form f = NG(xp+1)g+h for some polynomials g, h ∈ F[V ]H

with degxp+1
(h) < p2 by Lemma 2.16. Thus, h and NG(xp+1) are in h≤p2 . Hence

so is f . Finally, if deg(f) ≤ p2, the result is clearly true.

Hence, we obtain the following main result in this section.

Theorem 3.14 For an indecomposable representation Vp+1 of G, the correspond-

ing Hilbert ideal h is generated by invariants of degree at most p2.

Proof. By Corollary 3.6, F[V ]G is generated by the norm NG(xp+1), invariants

of degree less than p2, and the image of the relative transfer TrGH . Hence by

Proposition 3.13, we get the desired result.

3.3.2 Hilbert Ideal in F[Vn]

In this section, we analyze the Hilbert ideal for a more general case. For the rest

of this section, let V denote the n-dimensional indecomposable faithful represen-

tation of the cyclic group G of order p2.

We need two technical results from [13]. The first one is obtained by taking

G = Cp2 with H as the nontrivial proper subgroup in [13, Lemma 2.2].

Lemma 3.15 If m = ww0 · · ·wp2−1 is a monomial in F[V ] with degree greater

than p2, then

TrG(m) =
∑

S({0,1,...,p2−1}

(−1)|S|+1
∏
i/∈S

σi(wi)TrG(w
∏
i∈S

wi).
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Proof. For fixed ` ∈ {0, 1, . . . , p2 − 1}, consider the following equality

p2−1∏
i=0

(σi(wi)− σ`(wi)) = 0.

Expanding this eqution, we obtain that

∑
S⊆{0,1,...,p2−1}

(−1)|S|
∏
i/∈S

σi(wi)
(∏
i∈S

σ`(wi)
)

= 0.

Multiplying by σ`(w) for the fixed ` and summation over ` ∈ {0, 1, . . . , p2 − 1}
gives

p2−1∑
`=0

σ`(ww0w1 · · ·wp2−1)+
∑

S({0,1,...,p2−1}

(−1)|S|
∏
i/∈S

σi(wi)
(p2−1∑
`=0

σ`(w)
∏
i∈S

σ`(wi)
)
= 0.

It means that

TrG(m) =
∑

S({0,1,...,p2−1}

(−1)|S|+1
∏
i/∈S

σi(wi)TrG(w
∏
i∈S

wi).

Lemma 3.16 If f, f0, . . . , fp−1 ∈ F[V ]H , then

TrGH(ff0f1 · · · fp−1) =
∑

S({0,1,...,p−1}

(−1)|S|+1
∏
i/∈S

σi(fi)TrGH(f
∏
i∈S

fi).

Proof. Consider the equality

p−1∏
i=0

(σi(fi)− σ`(fi)) = 0.

Expanding and multiplying by σ`(f), we obtain that

∑
S⊆{0,1,...,p−1}

(−1)|S|
∏
i/∈S

σi(fi)
(∏
i∈S

σ`(fi)
)
σ`(f) = 0.
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Summation over ` ∈ {0, 1, . . . , p− 1} gives

p−1∑
i=0

σ`(ff0f1 · · · fp−1) +
∑

S({0,1,...,p−1}

(−1)|S|
∏
i/∈S

σi(fi)
( p−1∑
`=0

σ`(f)
∏
i∈S

σ`(fi)
)

= 0.

It means that

TrGH(ff0f1 · · · fp−1) =
∑

S({0,1,...,p−1}

(−1)|S|+1
∏
i/∈S

σi(fi)TrGH(f
∏
i∈S

fi).

Remark. The previous lemma says that the image of the product of at least

p-many H-invariant polynomials under the relative transfer can be written as a

combination of some polynomials in h of degree less than the first polynomial.

Indeed, the lemmas provide a reduction in the degree of the given transfer image

of polynomials.

Proposition 3.17 For any polynomial f ∈ F[V ],

TrG(f) ∈ h≤p2 ,

i.e., the image of the full transfer TrG is in the ideal h≤p2.

Proof. Suppose that deg(f) > p2 because otherwise the result is trivial. Without

loss of generality, we can assume that f is a monomial in F[V ] by the linearity

of the transfer map. Then, we can write f = ww0w1 · · ·wp2−1 for some variables

w0, . . . , wp2−1 and some monomial w. By using Lemma 3.15, we obtain that

TrG(f) =
∑

S({0,1,...,p2−1}

(−1)|S|+1
∏
i/∈S

σi(wi)TrG(w
∏
i∈S

wi).

Note that deg(TrG(w
∏

i∈S wi)) is strictly less than deg(TrG(f)). Hence TrG(f) is

either in h≤p2 or in the ideal 〈TrG(f ′) | deg(f ′) < deg(f)〉 for some monomial f ′ in

F[V ]. Therefore, by using induction on deg(f), we obtain the desired result.

Now, we try to deduce the same result for the image of the relative transfer.
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Proposition 3.18 Let g =
∏k

i=0 fi, where each fi is H-invariant of degree at

most p for some k. Then

TrGH(g) ∈ 〈 h≤p2 ,TrGH(g′) | deg(g′) < deg(g) and g′ ∈ F[V ]H 〉.

Proof. If deg(g) ≤ p2, then there is nothing to prove. Otherwise, we obtain that

k is at least p. That is, g is product of at least p+ 1 many H-invariants of degree

at most p. Let f = fpfp+1 · · · fk. Therefore from Lemma 3.16, we obtain that

TrGH(g) =
∑

S({0,1,...,p−1}

(−1)|S|+1
∏
i/∈S

σi(fi)TrGH(f
∏
i∈S

fi).

Note that deg(TrGH(f
∏

i∈S fi)) is strictly less than deg(TrGH(g)) for any proper

subset S. Hence TrGH(g) is either in h≤p2 or in the ideal

〈TrGH(g′) | deg(g′) < deg(g)〉

for H-invariant g′ as a product of some fi’s.

Remark. The result is true for any linear combination of the polynomials satis-

fying the hypothesis of Proposition 3.18 by linearity of the transfer. From now

on, we will use the same approach for the simplicity of the notations.

Corollary 3.19 If g =
∏k

i=0 fi with fi ∈ F[V ]H of degree at most p, then

TrGH(g) ∈ h≤p2 .

Proof. The result directly follows from Proposition 3.18 by induction on deg(g).

The following result is given by Wehlau in [53]. Its difference from the result

of Symonds given in Theorem 3.5 is that it is true for any representation not only

for indecomposable one. Thus, it is suitable for Proposition 3.21 below since F[V ]

has decomposable structure as FH-modules.

Theorem 3.20 [53, Theorem 9.15] The invariant ring F[V ]H is generated by the

H-norms, a finite set of H-transfers and a finite set of integral invariants.
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Proposition 3.21 If the degrees of integral invariants in a generating set of

F[V ]H are at most p, then the image of the relative transfer TrGH is in the ideal

h≤p2.

Proof. Suppose that the degrees of the integral invariants are at most p. Then

by Corollary 3.19, the relative transfers of the integral invariants, the H-norms

and their products are in h≤p2 . Now, let 〈ImTrH〉 be the ideal of F[V ]H generated

by H-transfers. Let f be any element of 〈ImTrH〉. Then f = hTrH(g) for some

h ∈ F[V ]H and g ∈ F[V ]. So we can write f = TrH(hg) since h is H-invariant.

Therefore, TrGH(f) = (TrGH ◦TrH)(hg) = TrG(hg). By Proposition 3.17, the image

of the full transfer TrG is in h≤p2 . Thus, also the relative transfer of the ideal

〈ImTrH〉 is there. Hence the image of the relative transfer TrGH is in the ideal

h≤p2 .

Remark. The result of Proposition 3.21 is satisfied in all known examples even

if the hypothesis does not hold. Actually, there is an integral invariant of degree

6 for the case mV4 in the list of Wehlau [53], but this invariant is not necessary

for p = 5. For this particular representation of degree 4m, p cannot be 2 or 3.

Thus, the results of Proposition 3.21 and Corollary 3.22 are believed to be valid

for more general cases then they appear.

Corollary 3.22 If the degrees of integral invariants are at most p or the ones

with degree greater than p are in the ideal 〈Im TrH〉, then the Hilbert ideal h is

generated by invariants of degree at most p2.

Proof. By Theorem 3.5, F[V ]G is generated by G-norm NG(xn), invariants of

degree less than p2, and the image of the relative transfer TrGH . Thus, Proposition

3.21 gives the desired result.

Let V be an FH-module with the decomposition

V = Vn1 ⊕ Vn2 ⊕ · · ·Vnr

into indecomposable FH-modules by Lemma 2.13. Then F[V ] has an Nr-grading
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given by

F[V ]d1,d2,...,dr = F[Vn1 ]d1 ⊗ F[Vn2 ]d2 ⊗ · · · ⊗ F[Vnr ]dr ,

where F[Vni
]di denotes the subspace of homogeneous polynomials of degree di for

the vector space Vni
of dimension ni. Let zi be an FH-module generator of the

dual space V ∗ni
for i = 1, 2, . . . , r. Define the norm of zi by Ni =

∏p−1
`=0 σ

`p(zi) and

define F[V ]] to be the ideal of F[V ] generated by the norms N1, N2, . . . , Nr. The

following famous result is known as the periodicity theorem (see [20, Lemma 2.9,

2.10]).

Theorem 3.23 (Periodicity Theorem) The ideal F[V ]] is a direct summand of

the FH-module F[V ]:

F[V ] = F[V ]] ⊕ F[V ][,

where F[V ][ is defined as the complement of F[V ]] as FH-modules. In particular,

we obtain

F[V ]d1,d2,...,dr = F[V ]]d1,d2,...,dr ⊕ F[V ][d1,d2,...,dr .

Also, if there is an index i such that di > p − ni, then F[V ][d1,d2,...,dr is a free

FH-module.

Lemma 3.24 For p < n ≤ p2, V decomposes as an FH-module

rVk+1 ⊕ (p− r)Vk,

where n = kp+ r.

Proof. By the representation of σp:

σp =



1 0 . . . 0 0 0 0

0 1 . . . 0 0 0 0
...

...
. . .

...
...

...
...

1 0 . . . 1 0 0 0

0 1 . . . 0 1 0 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 1


,
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the corresponding Jordan canonical form consists of r-many Vk+1 with basis el-

ements xi, xp+i, . . . , xkp+i for each i = 1, . . . , r and (p − r)-many Vk with basis

elements xr+i, xp+r+i, . . . , x(k−1)p+r+i for each i = 1, . . . , p−r. This completes the

proof.

Lemma 3.25 If f is an H-invariant in F[V ][ with degree greater than p2 − n,

then it is in the image of the H-transfer TrH .

Proof. By Lemma 3.24, as an FH-module, the decomposition of V is

V = rVk+1 ⊕ (p− r)Vk

for n = kp+ r. Since r(p− (k+ 1)) + (p− r)(p− k) = p2− n, it follows that f is

an invariant in the free module which is a complement to the ideal generated by

norms by the periodicity theorem. Then, the result follows from Lemma 2.15.

Theorem 3.26 For an indecomposable FG-module V with n ≥ p2 − 2p, the

corresponding Hilbert ideal h is generated by invariants of degree at most p2.

Proof. It is enough to consider the image of the relative transfer TrGH by Theorem

3.5. Moreover, by Theorem 3.20, we know that an H-invariant f is either a

transfer, a norm or an integral invariant. The result is clear for the following

cases: if f is in the ideal 〈ImTrH〉, by Corollary 3.22; if f is a product of some

norms and integral invariants of degree ≤ p, by Corollary 3.19; and if f is a

product of some integral invariants which is not divided by any norm Ni and

deg(f) > p2 − n, by Lemma 3.25. The only remaining case is to consider an

invariant of degree greater than p2 which is a product of some Ni’s and some

integral invariants of total degree at most p2 − n. Without loss of generality, we

can take f = g · h, where h is the product of all H-norms dividing f and g is the

product of integral invariants such that deg(g) ≤ p2 − n. Since deg(f) > p2, we

should have deg(h) > n ≥ p2 − 2p. Thus, h is the product of at least p− 1 many

norms. Hence, we obtain that f is a product of at least p many H-invariants.

This completes the proof by Lemma 3.16.

Remark. Since n ≥ p + 1, for an indecomposable representation of G, we have

p+1 ≥ p2−2p for p = 3. Therefore, the corresponding Hilbert ideal h is generated
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by invariants of degree at most p2 = 9. So, for the rest of the section, we can

take p ≥ 5.

We can extend our result to representations of degree at most 4p by using the

list of generators in [53].

Theorem 3.27 For an indecomposable FG-module V with p + 1 ≤ n ≤ 4p, the

corresponding Hilbert ideal h is generated by invariants of degree at most p2.

Proof. By Lemma 3.24, we have

F[V ] ∼= F[rVk+1 ⊕ (p− r)Vk].

When p + 1 ≤ n ≤ 2p, the result follows from the conjecture of Richman [35]

which is proved by Campbell and Hughes in [3].

The integral invariants of F[rVk+1⊕(p−r)Vk] can be obtained from invariants

of C[R1⊕ rRk ⊕ (p− r)Rk−1]SL2 by [53, Section 5]. Since R1⊕ rRk ⊕ (p− r)Rk−1

is a subrepresentation of R1 ⊕ pRk, the invariants can be obtained by projection

of invariants of R1 ⊕ pRk. Complete set of generators for k ≤ 3 are given in [53,

Section 10].

If 2p < n ≤ 3p, it is sufficient to consider the invariants of C[R1 ⊕ pR2]SL2 .

However, the integral invariants listed in [53, Theorem 10.5] have degrees at most

3, as required.

If 3p < n ≤ 4p, the set of covariants listed in [53, Table 10.3] have degrees at

most 6. Since the polarization does not change the total degree of covariants, it

follows that the degrees of generating covariants of pR3 are at most 6. Therefore,

by Corollary 3.22 if p > 5, we obtain the result.

The only case left is the integral invariants of F[V ]H when p = 5. If p > 5,

n > 3p so that n ≥ p2 − 2p. Hence, by Theorem 3.26, the corresponding Hilbert

ideal is generated by invariants of degree at most p2. This completes the proof.

Remark. In this approach, we have used the idea of vector invariants. So,

studying vector invariants for Cp, the cyclic group of order p, is still important in
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modular invariant theory. We expect that, the only disadvantage of this approach,

“finding generators for each dimension explicitly”, can be avoided with a better

understanding of vector invariants.



Chapter 4

Generalized Invariants

In this chapter, we define generalized invariants of any finite group as a new

concept in the literature. They are appeared as an extension of the notion of

invariants. They give a new point of view to modular invariant theory. We

consider general and structural properties of generalized invariants. Then, we

examine them in non-modular case.

4.1 History of Generalized Invariants

The concept of generalized invariants is firstly introduced by Kac-Peterson in [21]

as ideal of generalized invariants. However, the ideal of generalized invariants was

defined only for pseudo-reflection groups in [21] and used the same definition in

an other study [28]. In this section, we give Kac-Peterson’s definition in order to

show that our definition is distinct from it.

Definition. A linear automorphism s : V → V is said to be a pseudoreflection if

(i) s 6= 1,

(ii) the order of s is finite,

(iii) s fixes a hyperplane of s.

49
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Definition. Let ρ : G ↪→ GL(V ) be a faithful representation. The group G is

called a pseudoreflection group if G is generated by its pseudoreflections. Pseu-

doreflection groups are a generalization of reflection groups. Sometimes, the term

reflection is used for a pseudoreflection.

Let s : V → V be a pseudoreflection with hyperplane Hs = Ker(1− s). Then

Im(1 − s) is a 1-dimensional subspace of V . Thus, if xs is a nonzero vector in

Im(1− s), then Im(1− s) = Fxs. Since sv − v ∈ Im(1− s) for v ∈ V , it follows

that

sv = v + `s(v)xs,

where `s : V → F is a linear functional with Ker(`s) = Hs. Here, `s depends only

on the choice of xs. For f ∈ F[V ], consider the polynomial sf − f . Its division

with `s gives

sf − f = q`s + r,

where r is a constant. Let u ∈ Hs. Then,

(sf − f)(u) = sf(u)− f(u)

= f(s−1(u))− f(u)

= f(u)− f(u)

= 0.

Thus, r(u) = 0 since u ∈ Ker(`s). It implies that r = 0. So, `s | (sf − f). We

define ∆s(f) to be the quotient:

sf − f = ∆s(f)`s.

Thus, ∆s(f) ∈ F[V ] has degree deg(f)− 1 and ∆s depends only on the choice of

xs.

Definition. The ideal of generalized invariants J of F[V ] is defined by [21]

J := { f ∈ F[V ]+ | ∆s1 · · ·∆sk(f) ∈ F[V ]+ ∀ s1, . . . , sk ∈ G },

where F[V ]+ is the ideal of F[V ] generated by positive degree polynomials.



CHAPTER 4. GENERALIZED INVARIANTS 51

The following theorem is one of the main results in [21]. An analog of the

theorem is mentioned in Section 5.3 in terms of our definition. Thus, the theorem

is given for the completeness of the context.

Theorem 4.1 [21, Theorem A] Let J be the ideal of generalized invariants as

defined above. Then

(i) J is generated by a regular sequence, say of degrees d1, d2, . . . ,

(ii) If G is finite, then |G| =
∏

i di if and only if J = h.

4.2 Properties of Generalized Invariants

We redefine the concept of generalized invariant not only for pseudo-reflection

groups but also for any group. Although the notations in this section are similar

to ones used in Kac-Peterson’s definition, their meaning is completely different.

In order to give the definition of generalized invariants, firstly we need to consider

a twisted derivation on the polynomial ring.

4.2.1 Twisted Derivation

Let V be an n-dimensional representation of a finite group G over a field F of

characteristic p, and let σ ∈ G. We define ∆σ (or simply, ∆ if σ is clear from the

context) as the element σ− 1 of the group algebra FG, and we extend the action

of G to FG on F[V ]. Actually, ∆σ is an F-linear map on F[V ] such that for any

f ∈ F[V ],

∆σ(f) = (σ − 1)(f)

= σ(f)− f,

and satisfying a twisted product rule (Leibniz rule):

∆σ(fh) = ∆σ(f)h+ σ(f)∆σ(h),
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where f, h ∈ F[V ]. For this reason, ∆σ is known as the twisted derivation on F[V ]

in the literature.

For any ` ∈ N0, we write ∆`
σ for (σ − 1)` in FG, and ∆0

σ = 1. The general

twisted product rule of ∆σ has the following form:

∆`
σ(fh) =

∑̀
i=0

(
`

i

)
σi
(
∆`−i
σ (f)

)
∆i
σ(h) (4.1)

for any f, h ∈ F[V ].

Remark. The following lemma demonstrates in particular that ∆` is a non-

zero map for non-modular representations. However, in the modular case, this

situation does not continue to hold. For example, if σ ∈ G is of order pk, then

∆pk

σ = σp
k − 1 = 0

since the characteristic of the ground field F is p.

Lemma 4.2 For any group G, let σ ∈ G of order pkm with gcd(p,m) = 1, m 6= 1

and k ∈ N0. Then ∆`
σ 6= 0 for all ` ∈ N0.

Proof. Suppose that ` is the minimum number satisfying ∆`
σ = (σ − 1)` = 0.

Then τ = (σ− 1)`−1 6= 0 and (σ− 1)τ = 0 implies that στ = τ . In this case, note

that ` ≥ 2 since σ 6= 1, and

τ = σp
k

τ = · · · = σp
k(m−1)τ.
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If ` > pk,

mτ = τ + σp
k

τ + · · ·+ σp
k(m−1)τ

= (1 + σp
k

+ · · ·+ σp
k(m−1))τ

= (1 + σp
k

+ · · ·+ σp
k(m−1))(σ − 1)p

k

(σ − 1)`−1−pk

= (1 + σp
k

+ · · ·+ σp
k(m−1))(σp

k − 1)(σ − 1)`−1−pk

= (σp
km − 1)(σ − 1)`−1−pk

= 0.

It implies that p |m, which is a contradiction. If ` ≤ pk, then (σ − 1)p
k

= 0.

Thus, σp
k

= 1 since char(F) = p. But it is again contradiction because the order

of σ is pkm. Hence, (σ − 1)` 6= 0 for all `.

4.2.2 Definition of Generalized Invariants

Definition. An element f ∈ F[V ] is called a generalized invariant if for every

1 6= σ1, . . . , σk ∈ G, there exist `1, . . . , `k ∈ N0 such that

∆`1
σ1
· · ·∆`k

σk
(f) = 0

provided that ∆`1
σ1
· · ·∆`k

σk
6= 0. We denote the set of all generalized invariants

analogously by F[V ]G∆.

The condition ∆`1
σ1
· · ·∆`k

σk
6= 0 cannot be removed from the definition, because

otherwise, any element of F[V ] for p-groups becomes a generalized invariant.

Also, generalized invariants can equivalently be defined as follows. We use

this simplified definition for our purposes.

Lemma 4.3 (Simplified Definition)

F[V ]G∆ = { f ∈ F[V ] | ∀ 1 6= σ ∈ G, ∃ ` ∈ N0 : ∆`
σ(f) = 0 provided that ∆`

σ 6= 0 }.
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Proof. We label the first definition with 1 and the second definition with 2.

(1⇒ 2) Take k = 1.

(2 ⇒ 1) Let f be a generalized invariant with respect to the definition 2. Then

for all 1 6= σk ∈ G, there exists `k ∈ N0 such that ∆`k
σk

(f) = 0 and ∆`k
σk
6= 0. Thus,

for given σ1, . . . , σk ∈ G,

∆0
σ1
· · ·∆0

σk−1
∆`k
σk

(f) = 0.

Hence, f is a generalized invariant with respect to the first definition.

Remark. Note that the ring of invariants can be written in terms of ∆ notation

as follows:

F[V ]G = {f ∈ F[V ] |∆σ(f) = 0 for all σ ∈ G}.

Therefore, F[V ]G is always contained in F[V ]G∆. Also it means that generalized

invariants are a natural extension of the usual invariants.

The following is an example which will often be mentioned in the next sections

and given in this part as a sample for the generalized invariants.

Example 4.1. Let F3[V ] = F3[x, y, z], and G = C3 × C3 be a group generated

by σ and τ . Consider the action of G on F3[V ] defined as

σ =


1 1 0

0 1 0

0 0 1

 and τ =


1 0 1

0 1 0

0 0 1

 .
Then the polynomial yz is in F[V ]

〈σ〉
∆ ; indeed,

∆2
σ(yz) = (σ − 1)2(yz) = (σ2 + σ + 1)(yz) = 0.

Similarly, yz ∈ F[V ]
〈τ〉
∆ .
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4.3 Module Structure of Generalized Invariants

We determine an introduce the structure of the set F[V ]G∆ in this section. Firstly,

we investigate whether it satisfies the ring axioms since the set of invariants has a

ring structure. We consider Example 4.1. In this example, while the polynomial

y ∈ F[V ]
〈σ〉
∆ , the polynomial y2 is not in F[V ]

〈σ〉
∆ since ∆2

σ(y2) = 2x2 and ∆3
σ = 0.

Because ∆2
σ(y2) can not be written as ∆2

σ(y)∆2
σ(y) as usual product rule. If we

use the general form of twisted derivations (4.1) in Section 4.2.1, we can see

that ∆`
σ(fh) may not be nonzero for any ` satisfying ∆`

σ 6= 0 while f and h

are generalized invariants. This demonstrates that for any group G, F[V ]G∆ has

no ring structure in contrast to the invariant ring F[V ]G. Indeed, it is due to

the twisted product property of the operator ∆. However, the set of generalized

invariants F[V ]G∆ has an F[V ]G-module structure as shown below.

Proposition 4.4 F[V ]G∆ is an F[V ]G-submodule of F[V ]. In particular, it is a

finitely generated F[V ]G-module.

Proof. By Corollary 2.8, F[V ]G is a Noetherian ring and F[V ] is a Noetherian

F[V ]G-module for a finite group G. Since for each f ∈ F[V ]G∆ and g ∈ F[V ]G,

∆`(gf) = g∆`(f), we can obtain that F[V ]G∆ has an F[V ]G-module structure.

Thus, F[V ]G∆ becomes an F[V ]G-submodule of the Noetherian module F[V ]. This

gives the result.

Remark. We consider the algebra F[f1, . . . , fk] generated by a homogeneous

system of parameters (h.s.o.p.) {f1, . . . , fk} of F[V ]G. Since fi’s are invariant

polynomials, we can say that F[V ]G∆ has also an F[f1, . . . , fk]-module structure.

4.4 Generalized Invariants for non-Modular

Representations

The concept of generalized invariant modules is created as an alternative structure

to the invariant ring. But these two structures are the same for non-modular
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representations as shown below. From this viewpoint, generalized invariants are

a generalization of the usual invariants from the non-modular case to the modular

one. Therefore, they are worth studying only in modular case.

Proposition 4.5 Let G be a finite group with non-modular representation V.

Then ∆`
σ(f) = 0 for some ` satisfying ∆`

σ 6= 0 if and only if ∆σ(f) = 0 for any

σ ∈ G.

Proof. It is clear that every σ-invariant is a generalized σ-invariant. For the con-

verse statement, suppose that ∆`
σ(f) = 0 for σ ∈ G. Then ∆`−1

σ (f) ∈ F[V ]G.

Since TrG ◦ ∆σ = ∆σ ◦ TrG and the image of TrG is invariant, we have

TrG(∆`−1
σ (f)) = ∆σ(TrG(∆`−2

σ (f))) = 0. Thus, ∆`−1
σ (f) ∈ Ker(RG), where RG is

the Reynolds operator 1
|G|TrG : F[V ] → F[V ]G. In Section 2.4.3, we showed that

RG is surjective and F[V ] = F[V ]G ⊕ Ker(RG). Therefore, we get ∆`−1
σ (f) = 0.

Proceeding the induction on `, we conclude that ∆σ(f) = 0.

This result can be extended to any non-modular subrepresentation of a group

using same method above.

Corollary 4.6 Let H be a subgroup of G such that its order is coprime with p.

Then F[V ]H∆ = F[V ]H .



Chapter 5

Generalized Invariants of Cyclic

Groups

In many aspects, the cyclic group Cp of order p plays a central role in modu-

lar invariant theory. As mentioned in previous sections, there are many studies

investigating Cp-invariants in characteristic p. In this chapter, in order to under-

stand the structure of generalized invariants, we start to analyze the generalized

invariant module of the basic group Cp. In the first section, the general structure

and some properties of F[V ]
Cp

∆ is given. Then for the lower dimensional inde-

composable representations, the structure of F[V ]
Cp

∆ is considered explicitly. In

the last section, the generalized Hilbert ideal of F[V ]
Cp

∆ in F[V ] is defined and an

analog of the Hilbert ideal conjecture is proved for this ideal.

Unless otherwise stated, for the rest of this chapter, we take G as a cyclic

group of order p and σ as a generator of G. We identify G = {1, σ, . . . , σp−1}
whenever elements are explicitly required. Note that generalized invariants of Cp

corresponds to usual invariants when p = 2. Thus, it is meaningful to take p > 2

in this chapter.

57
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5.1 Structural Properties

In this section, we consider some properties of generalized invariant module

F[V ]G∆. The following result can be used as a definition of generalized invari-

ant module of a cyclic group of order p.

Proposition 5.1 An element f ∈ F[V ] is a generalized invariant if and only if

TrG(f) = 0. In particular, F[V ]G∆ = Ker TrG.

Proof. By the identity, (t − 1)p−1 = (t−1)p

t−1
= 1−tp

1−t = 1 + t + t2 + · · · + tp−1 over

F for t 6= 1, we can write ∆p−1 = 1 + σ + σ2 + · · · + σp−1 = TrG. Moreover,

∆p = σp− 1 = 0. Therefore, a polynomial f is a generalized invariant if and only

if ∆`(f) = 0 for some ` ≤ p− 1. Hence, the result follows.

Remark. The proof of Proposition 5.1 demonstrates that a polynomial is Cp-

generalized invariant if and only if it is generalized invariant with respect to the

generator σ.

Proposition 5.2 For any finite group G and for all σ ∈ G,

Im ∆σ ⊆ Ker TrG.

Proof. Let f be a polynomial in F[V ]. Then the result follows

TrG
(
∆σ(f)

)
= ∆σ

(
TrG(f)

)
= 0.

Corollary 5.3 If G is the cyclic group Cp, for all σ ∈ G,

Im ∆σ ⊆ F[V ]G∆.

Proof. As well as this is a corollary of Proposition 5.1 and Proposition 5.2, the

result is obvious since ∆ is nilpotent operator for Cp in characteristic p.
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The relation between F[V ]G∆ and Ker TrG for any finite group G is given in

Section 6.1. Now, it is worth noting that the above inclusion is strict as showed

in the following example.

Example 5.1. Let V = V2 be a 2-dimensional representation of Cp for an odd

prime p. By choosing an appropriate basis, we can write F[V ] = F[x, y] where

∆(y) = x and ∆(x) = 0. Note that ∆2(y) = 0 and therefore ∆p−1(y) = TrCp(y) =

0, hence y ∈ Ker TrCp \ Im(∆) = F[V ]
Cp

∆ \ Im(∆).

Remark (Group Cohomology). Generalized invariant module of G corresponds

to an important structure in modular invariant theory. Indeed, by the projective

resolution of FG, we have the following complex

· · · ∆→ FG Tr→ FG ∆→ FG Tr→ FG ∆→ FG Tr→ FG ∆→ FG.

When the functor HomFG(.,F[V ]) is applied and the cohomology of the complex

is taken, we obtain

H0(G,F[V ]) = F[V ]G

H2k+1(G,F[V ]) =
KerTrG

Im∆
=

F[V ]G∆
Im∆

H2k(G,F[V ]) =
Ker∆

ImTrG
=

F[V ]G

ImTrG

for k > 0.

Let V be an indecomposable representation of G. Recall that by the Jordan

canonical form of σ given in Section 2.4.4, σ(xi) = xi + xi−1 for n ≥ i > 1 and

σ(x1) = x1. Denote the norm of xi by N(xi) so that N(xi) =
∏p−1

k=0 σ
k(xi). The

following weight condition characterizes the monomials in F[V ]G∆.

Lemma 5.4 (Weight condition) For a monomial m = xa11 x
a2
2 · · ·xann , if wt(m) :=

n∑
i=1

(i− 1)ai < p− 1, then TrG(m) = 0.
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Proof. Note that

TrG(m) =

p−1∑
i=0

σi(x1)a1σi(x2)a2 · · · σi(xn)an

=

p−1∑
i=0

xa11 (x2 + ix1)a2 · · ·
(
xn + ixn−1 + · · ·+

(
i

n− 1

)
x1

)an
.

with the convention that
(
i
j

)
= 0 whenever i < j. By expanding the binomial

coefficients as a polynomial in i, we conclude that the maximum degree of i in

the last sum is equal to wt(m) and wt(m) < p− 1. By Lemma 2.3,

p−1∑
i=0

iα =

{
−1, p− 1 |α,
0, p− 1 - α.

Then we deduce that all coefficients in the expansion of the transfer map vanish,

hence TrG(m) = 0.

Lemma 5.5 If f ∈ F[V ]G∆ and f = qN(xn) + r where the degree degxn(r) of r in

xn is less than p, then q, r ∈ F[V ]G∆.

Proof. Since N(xn)∈F[V ]G, for any integer `>0, we have

∆`(f)=∆`(q)N(xn)+∆`(r).

Moreover, degxn ∆`(r) ≤ degxn r < p while degxn N(xn) = p. Therefore,

∆p−1(f) = 0 implies that ∆p−1(q) = 0 and ∆p−1(r) = 0. Hence, q, r ∈ F[V ]G∆.

The result in Lemma 5.5 does not hold when f is divided by the norm of the

other variables x1, . . . , xn−1 as showed in the next example.

Example 5.2. Suppose that F[V ] = F[x, y, z]. For any f ∈ F[V ]G∆, if

f = qN(y) + r

with degy r < p, we would not say that q and r are in F[V ]G∆. Indeed, degy ∆(r)

may be greater than degy(r) depending on degz(r) and the division algorithm does
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not work. For p = 5, f = y5z3 +xy3z4 +x2y2z4 +2x3yz4 +3x4z4 +2x5z3 ∈ F[V ]G∆.

If it is divided by N(y) = y5+4x4y, we obtain that f = z3N(y)+r with degy r < 5.

But z3 is not in F[V ]G∆. Notice that degy ∆(r) = 4 while degy r = 3.

Recall that a generating set of a module is called minimal if it satisfies that

the leading monomials of the polynomials in it are minimal and its each proper

subset cannot generate the whole module. Note that the action of G (and ∆)

is represented by a triangular matrix, therefore if necessary, we can refine any

generating set to a minimal generating set with minimal leading monomials by

the usual Gaussian elimination. The monomial order is the graded reverse lex-

order given by x1 ≺ · · · ≺ xn.

Proposition 5.6 If f ∈ F[V ]G∆ is in a minimal generating set of F[V ]G∆, then

degx1 LM(f) = 0 and degxn LM(f) ≤ p− 2.

Proof. Let m = LM(f) and suppose that m = xann · · ·x
a1
1 with a1 > 0. Then all

the other terms of f are also divisible by xa11 . Thus, f = xa11 g for some g ∈ F[V ].

Since f ∈ F[V ]G∆ and TrG(f) = xa11 TrG(g) = 0, we get TrG(g) = 0 and therefore

g ∈ F[V ]G∆. This contradicts with the minimality of f . Hence degx1 m = 0.

By Lemma 5.5, we have degxn m < p. Suppose for contradiction that

degxn m = p− 1. By the first part, we have m = xn
p−1x

an−1

n−1 · · ·xa22 . So,

TrG(m) =

p−1∑
α=0

(xn + αxn−1 + · · · )p−1(xn−1 + · · · )an−1 · · · (x2 + αx1)a2

= x
an−1+p−1
n−1 x

an−2

n−2 · · ·xa22

p−1∑
α=0

αp−1 + lower terms

= −xan−1+p−1
n−1 x

an−2

n−2 · · ·xa22 + lower terms,

hence LM(TrG(m)) = x
an−1+p−1
n−1 x

an−2

n−2 · · ·xa22 . Since TrG(f) = 0, the leading mono-

mial of TrG(m) should be annihilated by the transfer of another term in f, say

u = xbnn · · ·x
b1
1 such that LM(TrG(u)) = x

an−1+p−1
n−1 x

an−2

n−2 · · ·xa22 .

Since m � u, we have b1 = a1, . . . , bi−1 = ai−1 and bi > ai for some 1 ≤ i ≤ n,

where we take a1 = 0 and an = p − 1. Moreover, f is homogeneous, therefore
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∑n
i=1 bi =

∑n
i=1 ai. Finally, since the action is triangular,

∑n
i=k bi ≥

∑n
i=k ai for

all 1 ≤ k ≤ n−1. This system of inequalities implies that b1 = a1, . . . , bn−2 = an−2

and bn + bn−1 = an + an−1.

Therefore, bn−1 > an−1 and bn < an = p − 1. Let bn = p − k and bn−1 =

an−1 + k − 1 for some k > 1. But then the coefficient of x
an−1+p−1
n−1 x

an−2

n−2 · · ·xa22 in

TrG(u) is evaluated to
∑p−1

α=0 α
p−k = 0 since k 6= 1. Thus, LM(TrG(m)) cannot

be annihilated, contradicting to the fact that TrG(f) = 0. Hence, degxn m ≤
p− 2.

5.2 Lower Dimensional Representations and

Free Modules

When it is desired to give completely the structure of generalized invariants, it

becomes more complicated for higher dimensional representations, even for inde-

composable representations. In this section, we give the structure of generalized

invariant modules for 2 and 3 dimensional indecomposable representations of

G = Cp with some counterexamples. Recall that by remark in Section 4.3, these

F[V ]G-modules are also F[f1, . . . , fk]-modules for an h.s.o.p. {f1 . . . , fk} of F[V ]G.

We investigate whether they are free modules over F[V ]G or F[f1, . . . , fk]. For the

rest of this section, we consider the h.s.o.p. {x1,N(x2), . . . ,N(xn)} consisting

of the norms of xi. For simplicity of notations, we denote the polynomial ring

F[x1,N(x2), . . . ,N(xn)] by A.

5.2.1 Structure of 2-Dimensional Representations

Proposition 5.7 Let V be a 2-dimensional indecomposable representation of G

with dual basis x, y. Then

F[V ]G∆ =

p−2⊕
i=0

yiA
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where A is the polynomial ring F[x,N(y)] = F[V ]G. In particular, F[V ]G∆ is a free

A-module.

Proof. By Lemma 5.4 and Proposition 5.6, we have F[V ]G∆ =
p−2∑
i=0

yiA. Note that

leading monomials of any f · g are different for f ∈ A and g ∈ {1, y, . . . , yp−2}.
Indeed,

LM
(
xaN(y)byi

)
= xaybp+i.

Hence, the above sum is direct and F[V ]G∆ is a free module over A = F[V ]G.

In general, F[V ]G∆ is not a free F[V ]G-module as shown in the next example.

Example 5.3. Let V = V2 ⊕ V2 be a representation of G where V2 de-

notes the 2-dimensional indecomposable representation and the action is diag-

onally extended to the direct sum. By Corollary 2.19, we know that F[V ]G =

F[x1, x2,N(y1),N(y2), u12] where u12 = y1x2 − x1y2. Moreover, by direct calcu-

lation, it can be shown that F[V ]G∆ =
∑

0≤i+j≤p−2 y
i
1y
j
2F[V ]G. Notice that since

y1, y2 ∈ F[V ]G∆ and x1, x2 ∈ F[V ]G, the invariant u12 can be decomposed as a lin-

ear combination of y1x2 and y2x1. It can also be written as 1 · u12, for 1 ∈ F[V ]G∆

and u12 ∈ F[V ]G. Therefore, F[V ]G∆ cannot be free as an F[V ]G-module. However,

F[V ]G∆ is a free A-module, where A = F[x1, x2,N(y1),N(y2)].

Remark. If we consider all vector spaces mV2 = ⊕mi=1V2 instead of 2V2, it can

be seen that

F[mV2]G∆ =
∑

0≤i1+···+im≤p−2

yi11 · · · yimm · A.

However, although F[2V2]G∆ has a free module structure over the polynomial ring

A, this situation does not proceed along all representations mV2. By calculations

in Magma, we have constructed a counterexample for the representation 3V2 in

characteristic p = 3. In this case, F[3V2]G∆ has the following 8 generators in degree
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3:

f1 = 2x2y
2
3 + y2x3y3,

f2 = 2x1y
2
3 + y1x3y3,

f3 = 2x1y2y3 + y1x2y3,

f4 = 2x1y2y3 + y1y2x3,

f5 = 2x2y2y3 + y2
2x3,

f6 = 2x1y1y3 + y2
1x3,

f7 = 2x1y
2
2 + y1x2y2,

f8 = 2x1y1y2 + y2
1x2.

The generators f1, f2, f3 gives the following relation between generators:

x1f1 − x2f2 + x3f3 = 0.

Hence, F[3V2]G∆ can not be a free module over the polynomial ring A.

5.2.2 Structure of 3-Dimensional Representations

In this part, we construct a minimal generating set of the generalized invariant

module for 3-dimensional representations and investigate freeness of the general-

ized invariant module. For the rest of this section, V denotes the 3-dimensional

representation V3. In this case, we use x, y, z for the dual basis elements x1, x2, x3.

Lemma 5.8 Let f be in a minimal generating set of F[V ]G∆. If f ∈ Im(∆), then

degy LM(f) ≤ p.

Proof. Suppose that LM(f) = xaybzc and b > p. By Proposition 5.6, a = 0

and c ≤ p − 2. Since f ∈ Im(∆), f = ∆(g) for some g ∈ F[V ]. Thus, LM(g) =

yb−1zc+1, where b−1 ≥ p. So, we have g = qN(y)+r for some q, r ∈ F[V ] such that

degy r < p. Hence, we get f = ∆(q)N(y) + ∆(r). Note that ∆(q),∆(r) ∈ F[V ]G∆.

Therefore, it is sufficient for contradiction to show that LM(∆(r))≺LM(f).
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Notice that LM(r)≺LM(g). Furthermore, degy r < p implies that LM(r) is

divisible by x, and so is LM(∆(r)). Hence, LM(∆(r))≺LM(f). Therefore, f is

not in a minimal generating set, a contradiction. Thus, b ≤ p as required.

In Lemma 5.8, we can refine the condition f ∈ Im(∆) as follows.

Lemma 5.9 If f ∈ F[V ]G∆ and LM(f) = ybzc with b > p, then f is not in a

minimal generating set of F[V ]G∆.

Proof. Suppose that f is in a minimal generating set of F[V ]G∆. Then c ≤ p−2 by

Proposition 5.6, and f /∈ Im(∆) by Lemma 5.8. Let m = yb−1zc+1 and note that

LM(∆(m)) = ybzc, as b > 0 and c ≤ p− 2. Then, g := f −∆(m) 6= 0 because f

is not in Im(∆). Moreover, g ∈ F[V ]G∆ and LM(g)≺LM(f). The condition b > p

implies that ∆(m) can be written as an A-module combination of generalized

invariants with smaller leading monomials by the proof of Lemma 5.8. Hence, f

cannot be in a minimal generating set.

The following lemma gives a bound on the exponent of the variable z for a

polynomial in a minimal generating set when the exponent of y is p.

Lemma 5.10 If f is in a minimal generating set of F[V ]G∆ and LM(f) = ypzc,

then c ≥ p−1
2

.

Proof. By the hypothesis, f can be written as f = N(y)q + r, where degy r < p

and LM(q) = zc. If c < p−1
2

, then TrG(zc) = 0 by Lemma 5.4. Moreover, for

any monomial u := xaybzd appearing in q, we have a + b + d < p−1
2

and thus

wt(u) < p− 1. Therefore, TrG(q) = 0 and q ∈ F[V ]G∆. By the same arguments of

the previous proof, we have r ∈ F[V ]G∆ with LM(r) ≺ LM(f). Hence, f is not in

a minimal generating set.

Corollary 5.11 There is a minimal generating set F[V ]G∆ consisting of polyno-

mials with the leading monomials

(i) zj, 1 ≤ j < (p− 1)/2,
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(ii) yizj, 1 ≤ i < p, 0 ≤ j ≤ p− 2,

(iii) ypzj, (p− 1)/2 ≤ j ≤ p− 2.

Proof. Note that the monomials zj of the first item satisfy the hypothesis of

Lemma 5.4; hence, they are generalized invariants. Moreover, by Proposition 5.6,

Proposition 5.9, and Lemma 5.10, the monomials in the second and the third

items list all other possible monomials. Finally, f = ∆(yi−1zj+1) ∈ F[V ]G∆ and

LM(f) = yizj for any 1 ≤ i ≤ p, 0 ≤ j ≤ p − 2, hence we obtain a generating

set, with required leading monomials listed in the second and the third items.

For the minimality condition, observe that the leading monomials given in

the first and the second items cannot be obtained from the other generators as

an element of F[V ]G∆. Note that only ypzj can also be obtained as LM(N(y)zj),

provided that zj ∈ F[V ]G∆. By Lemma 5.10, the case ypzj for j < p−1
2

is excluded.

Hence, the result follows.

Theorem 5.12 F[V ]G∆ is a free A-module.

Proof. For a generator g from a minimal generating set satisfying the Corollary

5.11, we have either

• LM(fg) = xaypbzpc+j, 1 ≤ j < (p− 1)/2, or

• LM(fg) = xayp(b+1)zpc+j, (p− 1)/2 ≤ j ≤ p− 2, or

• LM(fg) = xaypb+izpc+j, 1 ≤ i < p, 0 ≤ j ≤ p− 2

for some nonnegative integers a, b, c and any f ∈ A. Suppose that
∑

i figi = 0,

where fi ∈ A and gi’s are in the minimal generating set of F[V ]G∆. Then for each

i, LM(gi) has the form ybizci such that bi ≤ p and ci ≤ p − 2. If a term of fi is

divided by a power of x or zp, so is a term of fj for each j 6= i. Therefore, the

only remaining case which can satisfy the equation
∑

i figi = 0 is that yp divides

a term of fi for some i and that bj = p for a generator gj 6= gi. In this case,

for the generator gi corresponding to fi, LM(gi) = zci ,where ci ≥ p−1
2

. But while
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LM(gi) = zci with ci ≥ p−1
2

, gi is not a generalized invariant by Lemma 5.10.

Hence, we can not obtain such a relation
∑

i figi = 0. It means that F[V ]G∆ is a

free A-module.

Remark. Since F[V2]G∆ and F[V3]G∆ are free modules over the corresponding poly-

nomial ring A, it can be asked whether it holds for all indecomposable represen-

tations of G. But, based on calculations in Magma [2], we have shown that F[V ]G∆

is not a free A-module for V = V4 over characteristic p = 5. Indeed, there is a

unique relation of degree 12 among 100 generators. For the details in calculations,

see [26].

5.3 Ideal of Generalized Invariants

If we return to Chapter 3.3, the Hilbert ideal h is the ideal in F[V ] generated by

invariants of positive degree, i.e.,

h = 〈f ∈ F[V ]G | deg f > 0 〉.

As an analogy of the Hilbert ideal, we define h∆ as the ideal in F[V ] generated

by positive degree elements of F[V ]G∆.

Now, we give an analogue of Theorem 4.1 proved by Kac-Peterson in [21].

Theorem 5.13 For an indecomposable representation V = Vn of a cyclic group

G of order p,

(i) h∆ is generated by a regular sequence, say of degrees d1, . . . , dn,

(ii) d1 · · · dn = |G| if and only if β(h∆) = β(h).

Proof. Since Im(∆) ⊂ F[V ]G∆, we have {x1, . . . , xn−1} ⊂ F[V ]G∆ as ∆(xi) = xi−1

for 1 < i ≤ n. Hence 〈x1, . . . , xn−1〉 ⊂ h∆.

If n < p, then wt(xn) = n− 1 < p− 1 and hence xn ∈ F[V ]G∆. Therefore, h∆

is the unique maximal ideal in F[V ], with generators {x1, . . . , xn}.
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Otherwise, we have n = p. Note that, LM(N(xn)) = xpn, hence xpn ∈ h∆.

Moreover, any polynomial f ∈ F[V ] with LT(f) = αxan cannot be a generalized

invariant for a < p by the fact that LT(TrG(f)) = −α
(
a
b

)
xa−bn−kx

b
n−k−1 where

k = bp−1
a
c and b = p− 1− ak. Therefore,

h∆ =

{
〈x1, . . . , xn〉 n < p,

〈x1, . . . , xn−1, x
p
n〉 n = p.

It is clear that these generating sets are regular. Finally, it is known by [38] that

β(h) = p. Therefore, β(h∆) = β(h) if and only if n = p which is only possible

when d1 · · · dn = p = |G|.

As a result of this proof, the ideal h∆ of generalized invariants for Cp has the

following generators:

h∆ =

{
〈x1, . . . , xn〉 n < p,

〈x1, . . . , xn−1, x
p
n〉 n = p.

This shows that the Hilbert ideal conjecture is satisfied for generalized invariants

of Cp.

Corollary 5.14 The ideal h∆ is generated by polynomials of degree at most the

group order p.



Chapter 6

Structure of Generalized

Invariants

In Chapter 5, we determined explicitly the structure of generalized invariant

modules for 2 and 3 dimensional indecomposable representations of the cyclic

group Cp. However, it is hard to obtain the same result for any representation.

Instead of this, we give a general structure of generalized invariant module of any

group G and bring out the core modules of the structure. Especially, generalized

invariant module of its subgroups of order p plays a key role. Therefore, as in

Chapter 5, we take p > 2 for the rest of the thesis.

6.1 Relation with Subgroups

Along this section, we consider some subgroup properties of generalized invari-

ants. We compare these structures with generalized invariant module of any

group. Moreover, we check that generalized invariant module has some properties

of invariant rings. For the rest of the section, let V be a modular representation

of a finite group G.

Lemma 6.1 If H is a subgroup of G, then F[V ]G∆ ⊆ F[V ]H∆. In particular,

F[V ]G∆ =
⋂
H≤G F[V ]H∆.

69
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Proof. It is immediate consequence of the definition of generalized invariants.

For the cyclic group Cp of order p, we proved that F[V ]
Cp

∆ = Ker TrCp in

Proposition 5.1. The following result investigates the relation between F[V ]G∆

and Ker TrG for any finite group G using the subgroup property.

Proposition 6.2 For a modular representation V of the finite group G,

F[V ]G∆ ⊆ Ker TrG.

Proof. It is known that G has a cyclic subgroup H of order p by Sylow Theorem.

Then by Proposition 5.1,

F[V ]H∆ = Ker TrH .

Since TrG = TrGH ◦ TrH , we always have

Ker TrH ⊆ Ker TrG.

On the other hand, F[V ]G∆ ⊆ F[V ]H∆ by Lemma 6.1. Hence,

F[V ]G∆ ⊆ F[V ]H∆ = Ker TrH ⊆ Ker TrG.

Note that for all g, h ∈ G and f ∈ F[V ], we have the following relation

∆gh(f) = g∆h(f) + ∆g(f). (6.1)

Thus, if f ∈ F[V ] is invariant with respect to the generators {g1, . . . , gk} for G,

then f ∈ F[V ]G, i.e.,

F[V ]G =
k⋂
i=1

F[V ]〈gi〉.

In Section 5.1, as a similar property, we proved that f ∈ F[V ]
Cp

∆ if it is a

generalized invariant with respect to a generator of Cp. We can extend this result

as follows.
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Lemma 6.3 Let G be a cyclic group with a generator σ and f ∈ F[V ]. If f is a

σ-generalized invariant, then f ∈ F[V ]G∆.

Proof. Using the above relation (6.1), for any σk ∈ G,

∆σk(f) = (σk + σk−1 + · · ·+ 1)∆σ(f).

This proves the result.

However, this property does not hold for generalized invariants of all groups

as shown in the next example.

Example 6.1. We consider the polynomial ring F3[x, y, z] and the group action

in Example 4.1. We showed that yz ∈ F[V ]
〈σ〉
∆ ∩ F[V ]

〈τ〉
∆ . But,

∆2
στ (yz) = 2x2 6= 0

while ∆3
στ = 0. Thus, yz /∈ F[V ]G∆. Hence, F[V ]G∆ 6= F[V ]

〈σ〉
∆

⋂
F[V ]

〈τ〉
∆ .

Despite the previous counterexample, generating set of a group is still impor-

tant for generalized invariants. Having a non-modular generating set, in the sense

that the orders of its elements are co-prime with p provides that the generalized

invariant module acts as in the non-modular case as follows.

Proposition 6.4 If G has a non-modular generating set, then F[V ]G∆ = F[V ]G.

Proof. Let A = {g1, . . . , gk} be a generating set of G such that p - |〈gi〉| for each

i = 1, . . . , k. Then by Corollary 4.6, F[V ]
〈gi〉
∆ = F[V ]〈gi〉. Thus, by Lemma 6.1,

k⋂
i=1

F[V ]〈gi〉 = F[V ]G ⊆ F[V ]G∆ ⊆
k⋂
i=1

F[V ]
〈gi〉
∆ =

k⋂
i=1

F[V ]〈gi〉.

Hence, F[V ]G∆ = F[V ]G.

Remark. By Proposition 6.4, the invariant rings of some important groups as

dihedral groups, symmetric groups, reflection groups, more generally Coxeter
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groups are equal to their generalized invariant module. This demonstrates that

if the generalized invariant module can be calculated more efficiently, then the

invariant rings of these groups will be calculated more effectively.

6.2 Generalized Invariant Module of Some Spe-

cial Groups

Some groups have a fundamental importance to understand the structure of

groups, such as cyclic groups, p-groups, quotient groups, p-residual subgroups.

As we explain below, they will also help to comprehend the structure of the

generalized invariants.

6.2.1 Cyclic p-Groups

In Chapter 5, we have analyzed the generalized invariant module of a cyclic group

of order p. Now, we consider cyclic p-groups.

Proposition 6.5 (Generalized Invariants of Cyclic p-Groups) If G = 〈σ〉 is a

cyclic group of order pk and Hi = 〈σpk−i〉 is the subgroup of G of order pi for each

i = 1, . . . , k − 1, then

F[V ]G∆ = F[V ]
Hk−1

∆ = · · · = F[V ]H1
∆ .

Proof. By Lemma 6.1, we have

F[V ]G∆ ⊆ F[V ]
Hk−1

∆ ⊆ · · · ⊆ F[V ]H1
∆ .

Let f ∈ F[V ]H1
∆ . Then there exists ` such that ∆`

σpk−1 (f) = 0 and ∆`

σpk−1 6= 0.

Since char(F) = p, it follows that ∆`pk−1

σ (f) = 0 and ∆`pk−1

σ 6= 0. Thus, f is a

generalized invariant with respect to σ. Hence, f ∈ F[V ]G∆ by Lemma 6.3. It

completes the proof.
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Lemma 6.5 shows that the generalized invariant module of cyclic p-groups has

the same structure with the module of Cp. Thus, we can extend the structural

properties of F[V ]
Cp

∆ to the module of cyclic p-groups.

Corollary 6.6 With notations in Proposition 6.5,

(i) F[V ]G∆ = Ker TrH1,

(ii) Im ∆H1 ⊆ F[V ]G∆,

(iii) hG∆ = hH1
∆ .

Proof. They are the consequences of Proposition 5.1, Proposition 5.2, Corollary

5.14 respectively with Proposition 6.5.

6.2.2 p-Groups

Proposition 6.7 (Generalized Invariants of p-Groups) If G is a p-group, then

F[V ]G∆ is the intersection of the generalized invariant modules of its subgroups of

order p, i.e.,

F[V ]G∆ =
⋂
σ∈G
|σ|=p

F[V ]
〈σ〉
∆ .

Proof. Note that F[V ]G∆ =
⋂
g∈G F[V ]

〈g〉
∆ by definition. Since any element of G

has p-power order, it is enough to take generalized invariants with respect to all

elements of order p by Proposition 6.5.

The following is an immediate result of Proposition 5.1.

Corollary 6.8 If G is a p-group, then

F[V ]G∆ =
⋂
σ∈G
|σ|=p

Ker Tr〈σ〉.
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The elements of order p in a p-group has an important structure in the group

theory as considered below.

Definition. Let G be a group. The subgroup generated by the minimal normal

subgroups of G is called the socle of the group G and denoted by Soc(G).

Remark. By the definition, the socle of a finite p-groupG consists of the elements

of order p in the center of G. Therefore, if G is also abelian,

Soc(G) = 〈σ ∈ G : |σ| = p 〉.

Proposition 6.9 If G is abelian p-group, F[V ]G∆ = F[V ]
Soc(G)
∆ .

Proof. Since Soc(G) = 〈σ ∈ G : |σ| = p 〉,

⋂
σ∈G
|σ|=p

F[V ]
〈σ〉
∆ ⊆ F[V ]

Soc(G)
∆ .

Moreover, 〈σ〉 ≤ Soc(G) for each σ ∈ G with |σ| = p. Thus, F[V ]
Soc(G)
∆ ⊆ F[V ]

〈σ〉
∆ .

It completes the proof.

6.2.3 Quotient Groups

The following result is well-known and enables us to describe the invariant ring

with smaller groups.

Lemma 6.10 Let V be a representation of G and H be a normal subgroup of G.

Then G acts on the invariant ring F[V ]H . In particular, F[V ]G = (F[V ]H)G/H .

Proof. Let σ ∈ G, τ ∈ H. By the normality of H in G, we have τσ = στ ′ for

some τ ′ ∈ H. If f ∈ F[V ]H , then

τ(σf) = (τσ)f = (στ ′)f = σf.
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Therefore, σf ∈ F[V ]H and G acts on F[V ]H . Since the action is defined, it

follows that F[V ]G = (F[V ]H)G. Note that H trivially acts on F[V ]H . Hence,

F[V ]G = (F[V ]H)G/H .

Also, we can say that G acts on the generalized invariant module F[V ]H∆ , which

is proved in the next section after the required structure theorem. However, in

order to describe generalized invariant module of G using smaller groups H and

G/H, we need an additional condition.

Proposition 6.11 If H EG and F[V ]H∆ = F[V ]H , then F[V ]G∆ = (F[V ]H∆)
G/H
∆ .

Proof. Since G acts on F[V ]H , clearly we have (F[V ]H)G∆ = F[V ]G∆ and also, G/H

acts on F[V ]H . Moreover, the normal subgroup H satisfies

(σH −H)` = (σ − 1)`H`

for any ` ∈ N. Thus, we obtain that (F[V ]H)
G/H
∆ = F[V ]G∆.

Remark. The previous proposition does not hold without the additional condi-

tion F[V ]H∆ = F[V ]H . Example 6.1 shows that F[V ]G∆ 6= F[V ]
〈σ〉
∆ ∩ F[V ]

〈τ〉
∆ by the

given representation G, in other words,

F[V ]G∆ 6= (F[V ]
〈σ〉
∆ )
〈τ〉
∆

since G/〈σ〉 ∼= 〈τ〉.

6.2.4 p-Residual Subgroups

Definition. The subgroup generated by all elements of G whose order is coprime

with p is called the p-residual subgroup of G, and it is denoted commonly by

Op(G). However, we simply denote it with N in the rest of the text:

N = 〈 g ∈ G | gcd( |g|, p ) = 1 〉.
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The following is the known results about p-residual subgroups.

Lemma 6.12 The p-residual subgroup N of a group G is characteristic in G. In

particular, N is normal in G.

Proof. Let ϕ be an automorphism of G. If the order of ϕ(g) for g ∈ N were

divided by p, p | |g| because ϕ ∈ Aut(G). Thus, N is characteristic in G. The

last result follows by Lemma 2.1.

Note that for the p-residual subgroup N of G, the quotient group G/N is a

p-group by the definition.

Corollary 6.13 We have the following results about p-residual subgroups:

(i) F[V ]N∆ = F[V ]N .

(ii) F[V ]G∆ = (F[V ]N∆)
G/N
∆ .

Proof. By the definition of a p-residual group, N has a non-modular generat-

ing set. Thus, the results are immediate consequences of Proposition 6.4 and

Proposition 6.11.

6.3 Structure Theorem of Generalized Invari-

ants

In this section, we consider a general structure of generalized invariants module

of any finite group G. Actually, this structure gives the core modules of the

generalized invariant module with their intersection. Even though it can not

determine all structural properties, we get some important consequences using

the following structure theorem.
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Theorem 6.14 (Structure of the Generalized Invariant Module) For any finite

group G, F[V ]G∆ is the intersection of the generalized invariant modules of sub-

groups of order p with the invariant ring of p-residual subgroup N , i.e.,

F[V ]G∆ = (
⋂
σ∈G
|σ|=p

F[V ]
〈σ〉
∆ )
⋂

F[V ]N .

Proof. Generalized invariant module F[V ]G∆ clearly lies in the righthand-side of

the equation by Lemma 6.1 and Corollary 6.13. For the converse, suppose that

f is in the above intersection. Let g be a nonidentity element of G of order pkm.

When m = 1, |g| = pk. By Proposition 6.5, there exists ` such that ∆`
g(f) = 0

and ∆`
g 6= 0. If m 6= 1, gp

k ∈ N so that (gp
k − 1)(f) = 0 and gp

k − 1 6= 0.

Therefore, ∆pk

g (f) = 0 and ∆pk

g 6= 0. Since g is arbitrary, f ∈ F[V ]G∆.

Remark. This structure theorem provides a useful method to compute F[V ]G∆

by first calculating all generalized invariants of elements just of order p in G\N
and then intersecting them with the invariant ring F[V ]N .

We have the following result by Proposition 6.9

Corollary 6.15 For a finite abelian group G,

F[V ]G∆ = F[V ]
Soc(G)
∆

⋂
F[V ]N .

Using the following lemma, it is enough to take the quotient group PN/N of

order pa−b for a Sylow subgroup P of G instead of all elements of order p in the

Structure Theorem for the Generalized Invariant Module. Although the proof of

the Lemma is elementary, it is given for the completeness of the section.

Lemma 6.16 If G is a group of order pam with (p,m) = 1, P is a Sylow p-

subgroup of G, and H is a normal subgroup of G of order pbn with (p, n) = 1,

then |P ∩H| = pb and |PH/H| = pa−b.

Proof. By the diamond isomorphism theorem, PH ≤ G, HEPH, P ∩HEP and

PH/H ∼= P/P ∩H. Since P ≤ PH and PH ≤ G, Lagrange Theorem implies
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that |PH| = pak. Then |H| | |PH|; so, we have |PH/H| = pa−bu for some integer

u with (p, u) = 1. Because |P/P ∩H| is a p-power and PH/H ∼= P/P ∩H, we

obtain that u = 1. Therefore, |P/P ∩H| = |PH/H| = pa−b. Hence, |P ∩H| =

pb.

Corollary 6.17 If N is proper in G and P is a Sylow p-subgroup of G, then

F[V ]G∆ = F[V ]P∆
⋂

F[V ]N .

Proof. Let |G| = pam such that (p,m) = 1 and |N | = pbm for some non-negative

integer b < a. By Lemma 6.16, we obtain |PN/N | = pa−b. Since G/N is the

largest p-group onto which G surjects and PN/N ≤ G/N , |G/N | = pa−b and

G/N = PN/N . Furthermore, G = PN since |PN | = |P ||N |
|P | = pam. Then by

Proposition 6.11, we have

F[V ]G∆ = (F[V ]N∆)
G/N
∆

= (F[V ]N)
G/N
∆

= (F[V ]N)
PN/N
∆

= F[V ]N
⋂

F[V ]P∆.

Remark. Previous corollary emphasizes that the generalized invariant module

of Sylow p-subgroups plays a fundamental role to understand the difference of

the generalized invariant module of a group from its invariant ring.

Example 6.2. Consider a representation of the cyclic group G = C2 × Cp in

2-dimension represented by[
−1 0

0 −1

]
and

[
1 1

0 1

]
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By Theorem 6.14 and Proposition 5.7,

F[V ]G∆ = F[V ]
Cp

∆

⋂
F[V ]C2

=
( p−2⊕
i=0

yiF[x,NCp(y)]
)⋂(

F[x2, y2]⊕ xyF[x2, y2]
)
.

Hence, F[V ]G∆ =

(⊕p−1
i=0 y

2iF[x2, N2(y)]

)⊕(⊕p−1
i=0 xy

2i+1F[x2, N2(y)]

)
for the

h.s.o.p. {x2, N2(y)} of F[V ]G.

In general, for G = Cp × Cq with q | (p− 1),

F[V ]G∆ = F[V ]
Cp

∆

⋂
F[V ]Cq

=
( p−2⊕
i=0

yiF[x,NCp(y)]
)⋂( ⊕

i+j=q
i,j<q

xiyjF[xq, yq]
)
.

F[V ]G∆ =

(⊕p−1
i=0 y

2iF[x2, N2(y)]

)⊕(⊕p−1
i=0 xy

2i+1F[x2, N2(y)]

)
for the h.s.o.p.

{x2, N2(y)} of F[V ]G.

Example 6.3. Let G be the group SL2(F3) of order 24 for the vector space V

over the field F3 of characteristic 3. It is generated by

{[
0 2

1 0

]
,

[
1 2

2 2

]
,

[
1 0

1 1

]}

Then its p-residual subgroup N is generated by the first two elements in the above

set and has order 8; also clearly, the other element generates the cyclic group C3.

By Proposition 5.7 and using calculations in Magma, we obtain that

F[V ]C3
∆ = F[f1, f2]

⊕
hF[f1, f2]

F[V ]N = F[hf2 + f 4
1 , f1f2]

⊕
(f 2

2 + f 6
1 )F[hf2 + f 4

1 , f1f2],

where {f1, f2} and {hf2 +f 4
1 , f1f2} are h.s.o.p. of F[V ]C3 and F[V ]N , respectively,
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and

f1 = x,

f2 = y3 + 2x2y,

h = y.

We know that F[V ]G∆ = F[V ]C3
∆

⋂
F[V ]N by Theorem 6.14. If we rewrite this

intersection using the h.s.o.p. {f1f2, f
2
2 + f 6

1} of F[V ]G, then

F[V ]G∆ = F[f1f2, f
2
2 + f 6

1 ]
⊕

(hf2 + f 4
1 )F[f1f2, f

2
2 + f 6

1 ].

6.3.1 Results of the Structure Theorem

The following lemma is promised in Section 6.2.3. Therefore, it is given as a

consequence of Theorem 6.14 in this section.

Lemma 6.18 Let V be a representation of G and H be a normal subgroup of G.

Then G acts on the generalized invariant module F[V ]H∆.

Proof. If f ∈ F[V ]H∆ and τ ∈ G \H, then for each element σ ∈ H of order p,

F[V ]H∆ ⊆ F[V ]
〈σ〉
∆ and Tr〈σ〉(f) = 0 by Lemma 6.1 and Proposition 5.1. Because

of the normality of H, we have

Tr〈σ〉(τf) = τTr〈σ〉(f) = 0.

Thus,

τf ∈
⋂
σ∈H
|σ|=p

Ker Tr〈σ〉 =
⋂
σ∈H
|σ|=p

F[V ]
〈σ〉
∆ .

Moreover, if f is invariant, so is τf by Lemma 6.10. Hence, Theorem 6.14 shows

that τf ∈ F[V ]H∆ .

In Section 6.2.1, we obtained the structure of the generalized invariant module

of cyclic p-groups as the kernel of the transfer map. Now, we extend this result
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to the groups in which the index of their p-residual subgroups is p.

Proposition 6.19 Let G be a finite group and N be its p-residual subgroup. If

[G : N ] = p, then

F[V ]G∆ = Ker TrGN .

Proof. Since |G/N | is a cyclic group of order p, F[V ]
G/N
∆ = Ker TrG/N . Thus the

structure theorem gives

F[V ]G∆ = Ker TrG/N
⋂

F[V ]N .

Hence, F[V ]G∆ = Ker TrGN .



Chapter 7

Generalized Invariants and

Ladder Method

In Section 4.4, it is proved that the usual invariants and the generalized invariants

are the same for non-modular representations. Also, in this chapter, we answer

the question when they are equal in the modular case. Our tool is the ladders

which are used efficiently in characteristic zero (see [25], [34], [53]). The ladder

method is also studied in the modular case ( see [42], [4]). In the first section,

we review these studies. Then, we give the results obtained from the ladder

technique.

7.1 Ladder Method

It is known that F[V ]G = (F[V ]H)G/H for a normal subgroup H of G (Lemma

6.10). Thus, computing F[V ]G can be reduced to the problem of computing F[V ]H

and then G/H-invariants of F[V ]H . However, F[V ]H is generally not a polynomial

ring. It causes a difficulty on computing G/H-invariants of F[V ]H . When G/H

is a reductive group, this problem can be solved by replacing successfully F[V ]H

by a polynomial ring as follows:

82
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Let D = (F[V ]H,+)2 be the ideal of the decomposable invariants in F[V ]H .

Then D is G/H-stable. Since G/H is a reductive group, it follows that

F[V ]H = D ⊕Q,

for some G/H-stable complement of D in F[V ]H . Thus, a basis {f1, . . . , fm} of

Q can be extended to a generating set of F[V ]H . We consider a G/H-action

on the algebra F[y1, . . . , ym] with indeterminates y1, . . . , ym of degree 1 using the

G/H-action on Q:

σ · yi :=
r∑
j=1

ασi,jyj,

where ασi,j is given by

σ · fi =
r∑
j=1

ασi,jfj.

Let W denote the representation dual to the space generated by y1, . . . , ym. Then

we have the following G/H-equivariant epimorphism

ρ : F[W ] ∼= F[y1, y2, . . . , ym]→ F[f1, f2 . . . , fm] = F[V ]H ,

defined as ρ(yi) = fi for each i = 1, . . . ,m. Since G/H is a reductive group, the

restriction of ρ to F[W ]G/H

F[W ]G/H ∼= F[y1, y2, . . . , ym]G/H → F[f1, f2 . . . , fm]G/H = F[V ]G

is an epimorphism.

If G/H is not reductive, there are some modifications as follows. In this case,

we need a G/H-stable vector space Q as in the previous case. But here we only

give the desired construction since our aim is not the computation of F[V ]G.

Let H be a normal subgroup of G. Suppose that {f1, f2, . . . fm} is a set of

generators for the invariant ring F[V ]H . Define

Q := spanF{σ · fi |σ ∈ G and i = 1, . . . ,m}.
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Then Q is a G/H-stable vector space over F. Take {h1, h2 . . . , hr} as a basis for

Q. We consider the polynomial ring F[y1, y2, . . . , yr] of Krull dimension r and

define an action of σ ∈ G/H on F[y1, y2, . . . , yr] as follows:

σ · yi :=
r∑
j=1

ασi,jyj

where ασi,j is defined by

σ · hi =
r∑
j=1

ασi,jhj.

Let F[W ] = F[y1, y2, . . . , yr] such that W ∼= Q is the r-dimensional G/H-

representation dual to spanF{y1, y2, . . . , yr}. Define

ρ : F[W ] ∼= F[y1, y2, . . . , yr]→ F[h1, h2 . . . , hr] = F[V ]H

as ρ(yi) = hi for all i = 1, . . . , r. By the above construction, ρ is G/H-equivariant

algebra surjection. The restriction of ρ into F[y1, y2, . . . , yr]
G/H is defined onto

(F[V ]H)G/H = F[V ]G, but not surjective as shown in the following example.

Example 7.1. [4, Example 14.2.3] Consider the field F4 = {0, 1, w, w2} of order

4 with w2 + w + 1 = 0. Consider the following 3-dimensional representation G

generated by

σ−1 =


1 0 0

1 1 0

0 1 1

 and τ−1 =


1 0 0

0 1 0

w 0 1

 .
Let G act on the polynomial ring F4[V ] = F4[x, y, z] and H be the subgroup of

G generated by σ. Then H has the order 4 and it is a normal subgroup of G

since the order of G is 8. By calculations in Magma, we can easily obtain that
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F[V ]H = F4[f1, f2, f3, f4], where

f1 = x,

f2 = y2 + xy,

f3 = y3 + xy2 + xz2 + x2z,

f4 = z4 + x2z2 + y2z2 + xyz2 + xy2z + x2yz.

Let ∆ denote τ − 1. Then G/H-action on F[V ]H is given by

∆(f1) = 0,

∆(f2) = 0,

∆(f3) = f 3
1 ,

∆(f4) = f 2
1 (f2 + f 2

1 ).

Let W = 2V1⊕2V2 such that the dual space W ∗ has the basis {u1, u2, u3, v3, u4, v4}
with

ρ(ui) = ui for i = 1, 2, 3, 4,

ρ(vi) = ui + vi for i = 3, 4.

Now, define ρ : F4[W ]→ F4[V ]H as

ρ(u1) = f1,

ρ(u2) = f2,

ρ(v3) = f3,

ρ(u3) = ∆(f3) = f 3
1 ,

ρ(v4) = f4

ρ(u4) = ∆(f4) = f 4
1 + f 2

1 f2.
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Then ρ is G/H-equivariant surjective map. Consider the image

ρ(F4[W ]G/H) = ρ(F4[u1, u2, v
2
3 + u3v3, v

2
4 + u4v4, u3v4 + u4v3])

= F4[f1, f2, f
2
3 + f 3

1 f3, f
2
4 + f 4

1 f4 + f 2
1 f

2f4, f
3
1 f4 + f 4

1 f3 + f 2
1 f2f3].

Let f5 := y5 +xz4 +x3y2 +x4z. Since ∆(f5) = x(wx)4 +x4(wx) = 0, f5 ∈ F[V ]G.

If f5 ∈ ρ(F4[W ]G/H), then f5 ∈ F4[f1, f2]5 because deg(fi) = i. However, each

element of F4[f1, f2]5 is divisible by f1 = x and the leading monomial of f5 is y5.

Thus, we obtain f5 /∈ F4[f1, f2]5. So, f5 /∈ ρ(F4[W ]G/H). Hence, the restriction of

the epimorphism ρ into F4[W ]G/H is not surjective.

7.2 The Results

Now, we consider the relation of the ladder method with generalized invariants.

Actually, we don’t give this method as a convenience for the calculation of gener-

alized invariants. Only we use it as a tool to answer the question when generalized

invariants are the usual invariants in modular case.

We saw in the Example 7.1 that the ladder method is not efficient as in the

reductive groups since the restriction of the map ρ into the invariant ring F[W ]G/H

is not generally surjective. On the contrary to this situation, we can obtain the

following result.

Lemma 7.1 Suppose that H is a normal subgroup of G such that the quotient

G/H is a p-group. By the notations introduced in Section 7.1, if yi /∈ F[W ]G/H ,

then

hi = ρ(yi) /∈ F[V ]G.

Proof. If yi is not in F[W ]G/H , we can consider non-zero ∆σ(yi) for σ ∈ G/H.

Because of the p-group structure of G/H, ∆σ(yi) = yi−1 after a reordering of the

indeterminates. Suppose that hi ∈ F[V ]G. Then for G/H-equivariant map ρ, we

have

hi−1 = ρ(yi−1) = ρ∆(yi) = ∆(ρ(yi)) = ∆(hi) = 0.
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Since hi−1 is a basis element, it is a contradiction. So, hi /∈ F[V ]G.

The following gives the main result of this chapter.

Theorem 7.2 The group G has a non-modular generating set if and only if

F[V ]G∆ = F[V ]G. In particular, G = N if and only if F[V ]G∆ = F[V ]G.

Proof. If G has generators whose order is coprime with p, then the equality

F[V ]G∆ = F[V ]G is satisfied by Proposition 6.4. For the converse statement, let N

be the p-residual subgroup of G and suppose that N is proper in G. Since N is

a normal subgroup, we can use the construction given Section 7.1 and the same

notations only changing H with N . Then there exists yi ∈ F[W ]
G/N
∆ \F[W ]G/N .

Since ρ is G/N -equivariant, ρ(yi) is also in F[V ]G∆, and not in F[V ]G by Lemma

7.1. Hence, F[V ]G∆ 6= F[V ]G.

Remark. The necessary and sufficient condition of the previous theorem shows

not only that usual and generalized invariants are same for a representation with

non-modular generating set, but also it gives information about the group struc-

ture when these two structures are same.
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[9] D. Erdemirci Erkuş, U. Madran, On Generators of the Hilbert Ideal for Cyclic

Groups in Modular Invariant Theory, J. Algebra 422 (2015), 306–317.

88



BIBLIOGRAPHY 89
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[11] D. Erdemirci Erkuş, U. Madran, The Structure of Modular Generalized In-

variants, submitted.

[12] P. Fleischmann, The Noether Bound in Invariant Theory of Finite Groups,

Adv. Math. 156 (2000), no. 1, 23–32.

[13] P. Fleischmann, On invariant theory of finite groups, Invariant theory in

all characteristics, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Provi-

dence, RI, 35 (2004) 43–69.

[14] J. Fogarty, On Noether’s Bound for Polynomial Invariants of Finite Groups,

Electronic Research Announcements of the AMS 7 (2001), 5–7.

[15] G. Gaeta, F. D. Grosshans, J. Scheurle, S. Walcher, Reduction and Re-

construction for Symmetric Ordinary Differential Equations, J. Differential

Equations 244 (2008), no. 7, 1810–1839.

[16] P. Gordan, Beweis, dass jede Covariante und Invariante einer binären Form
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