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Recent developments show that naive Bayesian classifier (NBC) performs significantly better in
applications, although it is based on the assumption that all attributes are independent of each other.
However, in the NBC each variable has a finite number of values, which means that in large data
sets NBC may not be so effective in classifications. For example, variables may take continuous
values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for
partitioning the continuous values. On the other hand, the choice of the distance function is an
important subject that should be taken into consideration in fuzzy partitioning or clustering. In this
study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency
assumption. To get high accuracy in classification, membership functions are constructed by using
the fuzzy C-means clustering (FCM). The main objective of using FCM is to obtain membership
functions directly from the data set instead of consulting to an expert. The proposed method
is demonstrated on the basis of two well-known data sets from the literature, which consist of
numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at
least comparable to other methods. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Recent developments and research show that a more general concept of a
distance function in learning algorithms provides improved performance over clas-
sically used distance functions such as the Euclidean distance (see, e.g., Pekelska
et al.,1 and Khemchandani et al.2). For example, the choice of an appropriate dis-
similarity measure is an important and crucial step in clustering algorithms. On
the other hand, since cluster analysis is typically used in an exploratory context,
it is usually not known in advance which dissimilarity measure is best suited for
the data at hand. Hence, the choice is generally made by an expert, based on some
prior information or experience, if available. Another reason why a more general
concept of a distance function should be considered is that the appropriate dissim-
ilarity measure to be used may not actually be a metric function as is usually the
the case in classical approaches. Li and Lu,3 for example, note that in computer
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vision the traditional Euclidean distance cannot reflect the real distance between
images.

In the literature, one can find recent studies on distance metric learning. One
particular view is that one should consider side information such as specifying which
pairs are similar and which are dissimilar. Xiang et al.,4 for example, developed an
algorithm to learn a Mahalanobis distance metric by supplying prior knowledge in
terms of similar and dissimilar data pairs, which are called must-links and cannot
links, respectively. The learned Mahalanobis distance then can be used in a clustering
or classification algorithm. It is expected that the learned distance function will
improve the performance of the algorithm.

The naive Bayesian classifier (NBC) is a popular and well-known classifier
used by many researchers. It is based on the conditional independence assumption
of the features.6 This assumption simplifies the calculations in the method. Despite
this strong assumption, it gives surprisingly good results. One can find many studies
and extensions related to NBC. For example, Harry and Sheng,7 used weights as
powers of the conditional probabilities. Yager8 extended the NBC by using ordered
weighted averaging. In addition, one may also find some studies that combine fuzzy
set theory with NBC. Störr,9 for example, used fuzzy membership functions instead
of prior probabilities. Tang et al.,10 on the other hand, approached the classification
problem by using fuzzy clustering as an intermediate step.

In this paper, we consider a new classifier by applying the fuzzy c-means
(FCM) clustering algorithm with a learned Mahalanobis distance. The proposed
classifier may be considered as another interpretation of Bayes’ theorem using
fuzzy numbers. The algorithm for learning the Mahalanobis distance is almost the
same as described by Xiang et al.4 One of the basic differences in our method is that
the must-links and cannot-links are obtained directly from the data set as opposed
to the approach of Xiang et al.4 This is achieved by using similarities between the
data points. The classification is achieved by using fuzzy membership functions,
which are constructed from the obtained clusters by using the learned Mahalanobis
distance.

2. PRELIMINARIES AND BASIC NOTATION

Since in clustering and classification problems, objects/examples are described
by attributes we will use the notion of a data table to describe a general data set.
A data table is also referred to as an information system and consists of a 4-tuple
〈U, A, V, f 〉, where U is a finite set of objects and A = {a1, a2, . . . , am} is a
finite set of attributes. The domain of an attribute a ∈ A is denoted by Va and
V = ⋃

a∈A Va . The function f is a total function such that f (x, a) ∈ Va for each
a ∈ A, x ∈ U , and it is called an information function. If the set of attributes A is
divided into condition attributes (C �= φ) and decision attributes (D �= φ), then the
data table is called a decision table (see Greco et al.5).

An important step in the proposed method is the construction of the must-link
and cannot-link sets. This will be achieved by using similarities between examples
of the data set. The following definitions, which are given in Chen and Wang11 and
Greco et al.,5 will be used to obtain the sets of must-links and cannot-links.
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A FUZZY BAYESIAN CLASSIFIER WITH LEARNED MAHALANOBIS DISTANCE 715

DEFINITION 2.1. The similarity value between two examples x, y ∈ U with respect
to an attribute a ∈ A is defined as

sima(xi, xj ) = 1 −
∣∣f (xi, a) − f (xj , a)

∣∣
max (a) − min (a)

,

if a is a numerical attribute and as

sima(xi, xj ) =
⎧⎨
⎩

1

card {a} , if f (xi, a) �= f (xj , a),

1, otherwise

if a is a nominal attribute.

DEFINITION 2.2. The similarity value between two examples x, y ∈ U with respect
to an attribute set B ⊆ A is defined as

simB(xi, xj ) =
∑
a∈B

wasima(xi, xj )

where the weight wa corresponds to the attribute a ∈ B.

Xiang et al.4 used entropy to determine the weights in Definition 2 in their
clustering algorithm. In this study, we use class labels to determine the weights wa ,
for a ∈ B. The details will be explained in the next section.

The set of must-links is constructed by determining a threshold value, which
will be used to decide whether two examples are in some sense indistinguishable.
Hence, we also give the following definition of indiscernibility, which is a basic
concept in rough set theory:

DEFINITION 2.3. The indiscernibility relation IRB with confidence level t , with
respect to an attribute set B ⊆ A is defined as

IRB(t) = {(xi, xj ) ∈ U × U : simB(xi, xj ) ≥ t}

where t is the threshold value for the similarity relation (see Chen and Wang11).

Using these definitions, it is possible to construct the must-link and cannot-link
sets by using an appropriate threshold value t .

A must-link set, with respect to an attribute set B ⊆ A, can now be defined by
SB(t) = IRB(t). In a similar way, a cannot-link set, with respect to an attribute set
B ⊆ A, is defined by

DB(ε) = {(xi, xj )|simB(xi, xj ) ≤ ε}

As can be seen from these definitions, SB(t) is a set that contains points that
are considered to be definitely in a same class whereas DB(ε) is a set that contains
points that are considered definitely to be in different classes. For convenience, we
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716 KAYAALP AND ARSLAN

will write S(t) and D(ε) to denote the must-link and cannot-link sets with respect
to all attributes considered.

Remark 2.1. We note that the must-link and cannot-link sets, as defined above, are
binary relations on U , which are reflexive and symmetric but not transitive.

3. THE PROPOSED CLASSIFIER

The NBC is a well-known and widely used classifier. The classifier proposed
in this paper, in some sense, is based on a similar idea as in the NBC. The main idea
is to learn a Mahalanobis distance (via must-links and cannot-links) for clustering
the samples and to use fuzzy numbers to achieve classification. We note that the
assumption of conditional independence of features is no longer necessary. It will
be seen that the formulation of this new classifier may actually be considered as
another interpretation of Bayes’ theorem.

Bayes theory is a kind of probability theory providing a mathematical frame-
work for making inference with probabilities, and Bayes’ theorem is a statement
in conditional probabilities such that prior probabilities are mapped into posterior
probabilities by using class label information or outcome of classification events.
Generally, prior probabilities are obtained by frequencies of attributes or knowledge
of an expert that may not yield high accuracy in classification algorithms. However,
prior probabilities may be generated objectively without consulting an expert. In
this study, it is shown that this prior knowledge can be derived from the data set.
Then, posterior information is obtained based on this prior knowledge. To sum up,
the logic behind Bayes’ theorem is to get posterior knowledge by using prior knowl-
edge. In the proposed method, one can see that Bayesian logic is used implicitly
such that to classify a new example class label information is used. To be more
precise, in the proposed method partition of samples into clusters is achieved as in
the NBC (see Figure 1). Then, the basic principle as in Bayes’ theorem is applied
to find conditional membership functions. More formally, conditional probabilities
and conditional membership functions are defined as

p(Cj |x) = p(x|Cj )p(Cj )∑
i p(x|Ci)p(Ci)

and

μ(Cj |x) = μl(Cj )

maxi μi(x)
, l = argmax1≤i≤k {μi(x)} ,

respectively.
The proposed classifier consists of two main steps. First, fuzzy membership

functions for the clusterings of the data set, obtained by applying fuzzy c-means
with a learned Mahalanobis distance, are constructed. Second, using these mem-
bership functions, the classification is achieved (see Figure 2). The basic steps are
summarized as follows:

International Journal of Intelligent Systems DOI 10.1002/int
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A FUZZY BAYESIAN CLASSIFIER WITH LEARNED MAHALANOBIS DISTANCE 717

Figure 1. The partition of the sample space within probabilities and fuzzy approaches.

Figure 2. The process for classification of a new example.

(1) Construct the fuzzy membership functions.
(a) Construct the sets for must-links and cannot-links.
(b) Learn a Mahalanobis distance to be used in the next step.
(c) Apply fuzzy c-means algorithm and obtain clusters.
(d) Construct fuzzy membership functions for the clusters.

(2) Apply the classification method.
(a) Find cluster with the highest membership for a new example x0.
(b) By evaluating memberships of class centers, determine the class of x0.

In the first step, using the indiscernibility relation given in Definition 3 with
an appropriate threshold value, the sets of pairs of must-links and cannot-links are
determined directly from the data set. To achieve this, the weights wa , a ∈ C, are
determined by using class labels as follows: Suppose that there are t classes in the
data set. For a ∈ C, let

Ai(a) = {x ∈ U |min (Ci(a)) ≤ f (x, a) ≤ max (Ci(a)) } ,

where Ci(a) is the set of values for attribute a belonging to class i, 1 ≤ i ≤ t .
Denoting by

Bj (a) = Aj (a)\
t⋃

i=1(i �=j )

Ai(a),

International Journal of Intelligent Systems DOI 10.1002/int
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718 KAYAALP AND ARSLAN

the weights wa are defined as

wa =

t∑
i=1

s (Bi(a))

s(U )

where S(B) denotes the number of elements in set B.
However, weights are normalized to see the impact of that attribute with respect

to each class. Therefore,

w∗
a = wa∑

a wa

To explain the proposed method for computing weights of each attribute, let us
consider an example. A sample data set consisting 40 examples with two attributes
one of which is the class attribute is chosen from a well-known data set, the Fisher
Iris data set. This sample data set includes the first 20 examples from the class Setosa
and the first 20 examples from the class Virginica. It is seen that the weights of each
attribute are computed as w∗

1 = 23/35 and w∗
2 = 12/35 (see Figure 3)

In the second step, using the sets of must-links and cannot-links as side infor-
mation, a Mahalanobis distance is learned by applying the same steps as described
by Xiang et al.4 In other words, Xiang et al.’s algorithm is used to find the opti-
mum matrix W ∗ for A = W ∗(W ∗)T to be used as a Mahalanobis distance. For this
purpose Xiang et al.4 used a transformation such that y = WT x, where W ∈ R

n×d ,
with d ≤ n. Based on this transformation, the sum of the squared distances of the
point pairs in S(t) is defined as

dw =
∑

(xi ,xj )∈S

(
WT xi − WT xj

)T (
WT xi − WT xj

) = tr
(
WT SwW

)
,

where tr is the trace operator and Sw, the covariance matrix of the point pairs in
S(t), is calculated as

Sw =
∑

(xi ,xj )∈S

(xi − xj )(xi − xj )T

Similarly, for the point pairs in D(ε), we have

db = tr
(
WT SbW

)
,

where Sb is the covariance matrix of the point pairs in D(ε) is calculated as

Sb =
∑

(xi ,xj )∈D

(
xi − xj

) (
xi − xj

)T
.

International Journal of Intelligent Systems DOI 10.1002/int
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A FUZZY BAYESIAN CLASSIFIER WITH LEARNED MAHALANOBIS DISTANCE 719

Figure 3. Weights of two attributes for the chosen data set.

Since dw and db represent the sum of squared distances between point pairs in
must-links and cannot links, respectively, the optimal matrix W ∗ can be calculated
as

W ∗ = argmax{WT W=I}
tr(WT SbW )

tr(WT SwW )
,

where I is an identity matrix and the constraint WT W = I is given in order not to
have degenerate solutions. The important point here is that W cannot be a square
matrix when d < n. In that case, A is defined as follows:

A =
{

(W ∗(W ∗)T , if d < n
I, if d = n

It is crucial to note that for different values of d, the accuracy rate of clustering
and classification may change.

International Journal of Intelligent Systems DOI 10.1002/int
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720 KAYAALP AND ARSLAN

Figure 4. Chosen sample data set.

In the third step, the learned Mahalanobis distance is used to apply the fuzzy
c-means algorithm to obtain clusters, which will be used to construct the fuzzy
membership functions as defined in Tang et al.10 These fuzzy membership functions,
denoted by μ1, μ2, . . . , μk , will then be used in the classification process. We note
that for any x ∈ U , μi(x), 1 ≤ i ≤ k is defined by

μi(x) =
∑
a∈C

waμi,a (f (x, a)) ,

where μi,a denotes the component of the membership function for the ith cluster
corresponding to attribute a ∈ C. The weights wa in the above formula are deter-
mined using weight formula, which is defined in the proposed method again, but
this time with clusters instead of classes.

To illustrate the steps we explained so far, consider the chosen sample data set
used before in computing the weights of each attribute. The resulting clustering for
c = 3 clusters obtained by applying the described steps is shown together with their
centers (v1, v2, v3) in Figure 4.

International Journal of Intelligent Systems DOI 10.1002/int
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A FUZZY BAYESIAN CLASSIFIER WITH LEARNED MAHALANOBIS DISTANCE 721

The fuzzy membership functions for the three clusters are computed as follows:

μ1,a1 (xj ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if xj ≤ 4.956
5.939 − xj

5.939 − 4.956
, if 4.956 ≤ xj ≤ 5.939

0, if xj > 5.939

μ2,a2 (xj ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if xj ≤ 3.06
3.124 − xj

3.124 − 3.06
, if 3.06 ≤ xj ≤ 3.124

0, if xj > 3.124

μ3,a1 (xj ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if xj ≤ 4.956
xj − 4.956

5.939 − 4.956
, if 4.956 ≤ xj ≤ 5.939

6.936 − xj

6.936 − 5.939
, if 5.939 < xj ≤ 6.936

0, if xj > 6.936

μ3,a2 (xj ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if xj ≤ 3.06
xj − 3.06

3.124 − 3.06
, if 3.06 ≤ xj ≤ 3.124

3.27 − xj

3.27 − 3.124
, if 3.124 < xj ≤ 3.27

0, if xj > 3.27

μ2,a1 (xj ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if xj ≤ 5.939
xj − 5.939

6.936 − 5.939
, if 5.939 ≤ xj ≤ 6.936

1, if xj > 6.936

μ1,a2 (xj ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if xj ≤ 3.124
xj − 3.124

3.27 − 3.124
, if 3.124 ≤ xj ≤ 3.27

1, if xj > 3.27

These membership functions are shown in Figure 5.
To classify a new example x0, we first determine to which cluster the new

example belongs by using the obtained fuzzy membership functions. If l denotes
the index of the cluster to which x0 belongs to, we have

l = argmax1≤i≤k {μi(x0)} .

Next, using the fuzzy membership function of the chosen cluster, we evalu-
ate the memberships of the class centers (c1, c2, . . . , ct ) to determine the class.

International Journal of Intelligent Systems DOI 10.1002/int
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722 KAYAALP AND ARSLAN

Figure 5. Membership functions for attributes a1 and a2.

Hence,

c0 = argmax1≤j≤t {μl(cj )}

will be the class assigned to the new example x0.
These steps can be summarized by

FBC(x0) = argmax1≤j≤t {μ(cj |x0)},

where

μ(cj |x0) = μl(cj )

max {μ1(x0), . . . , μl(x0), . . . , μk(x0)} ,

assuming that max {μi(xo)} > 0.
For example, let x0 = (5.5, 3.5) be a new example to be classified. We have al-

ready constructed the membership functions of each clusters in Figure 5. Therefore,
when the membership function of this new example with respect to each cluster is
computed it is seen that it belongs to the third cluster (see Figure 6). After deter-
mining the membership function that will be used for evaluating the membership
degrees of each classes, the new example will be assigned to the class whose center
has the maximum value of belongingness. It is observed that this new example
belongs to the first class, which is Setosa (see Figure 7).

4. APPLICATION

In this section, we have applied Xiang et al.’s algorithm on two different data
sets and compared the results for different cases of d with different must-link and
cannot-link sets. The resulting data clusterings are analyzed. Moreover, the proposed
method is performed on these data sets and the results are given. In Section 4.1, all
examples in the Fisher Iris data set are used for the training set and the testing set.
In Section 4.2, generalization performances in different classification methods are
given.

International Journal of Intelligent Systems DOI 10.1002/int
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A FUZZY BAYESIAN CLASSIFIER WITH LEARNED MAHALANOBIS DISTANCE 723

Figure 6. First step of the classification for a new example.

Figure 7. Second step of the classification for a new example.
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724 KAYAALP AND ARSLAN

Table I. Data description.

Database Number of Data Number of Tr Number of Ts Number of Attributes Number of Classes

Iris 150 120 30 4 3
Seed 210 168 42 7 3

Table II. Training performance of Fisher Iris Data Set.

Method Dimensionality(d) Accuracy in clustering Accuracy in classification

Learned Mahalanobis when
(|S| = |D| = 20) 1 0.960 0.960

2 0.986 0.953
3 0.900 0.953

Learned Mahalanobis when
(|S| = |D| = 121) 1 0.880 0.946

2 0.933 0.953
3 0.,933 0.960

Euclidean distance 0.980 0.960

Bold values show best results.

The first data set is the Fisher Iris data set, which is the best known data set
in the literature. It contains three classes with 150 instances (50 in each one of
three classes). In the training set, 120 instances are included and the remaining 30
examples are used for testing the proposed fuzzy Bayes classification. The second
data set that we have worked with is the Seed data set containing three classes with
210 instances. In this experiment, 168 instances are used for a training set and 42
instances are used for the testing set. These two databases can be obtained from UCI
Machine Learning Repository.

4.1. Training Performance for Fisher Iris Data Set

The proposed classifier is first applied to the Fisher Iris data set with different
values of d used in learning a Mahalanobis distance. In addition, it is also applied
to the same data set with the Euclidean distance for comparison. Fisher’s Iris data
set consists of 150 instances with four attributes and having three classes. As a first
experiment, we have chosen the cluster number as 3. In this experiment, there are
a couple of cases for d. Although we obtain minimum value for objective function
used in FCM when d = 1 we have applied the classification procedure also for
d = 2 and for d = 3 to ensure that classification accuracy is better when d = 1.
It is also important to note that minimization of the objective function is not only
sufficient for the proposed classification. Since the classification is based on cluster
centers, it is very crucial to get a meaningful matrix that shows cluster centers.

Note that the accuracy in clustering of the proposed method is better than for
the Euclidean distance. Besides, the performance of the classification is the same
for both NBC and the proposed method (for d = 1 and d = 3).

An interesting point presented in Table II is that increasing the number of pairs
in the must-link and cannot-link sets does not provide the expected improvement in
the performance of the algorithm.

International Journal of Intelligent Systems DOI 10.1002/int
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Table III. Generalization performances of chosen data sets.

Data set Accuracy rate (%)

d=1 43.33
d=2 100

Iris d=3 93.3
Euclidean 80

NBC 100

d=1 90.48
d=2 92.86
d=3 90.48
d=4 90.48

Seeds d=5 90.48
d=6 92.86

Euclidean 66.66
NBC 90.48

Bold values show best results.

4.2. Generalization Performance

We have applied the proposed approach to two real data sets obtained from
repository of Machine Learning data set, namely, Fisher Iris data set and Seeds
database, which consist of only numerical attributes. A brief description of the data
sets is given in Table I, where the number of data denotes the number of examples
in the data set, the number of Tr denotes the number of training instances, and the
number of Ts denotes the number of testing instances.

The proposed classifier is compared with the NBC classifier. In addition, to see
the effect of distance learning the same method is applied to the Euclidean distance.
The accuracy rate of classification is computed as

Number of correctly classified instances

Number of classified instances
100.

The results presented in Table III show that, for the Iris testing data set, the
proposed method with the learned Mahalanobis distance outperforms the same
method with the Euclidean distance. However, in that case performances of NBC
and our classifier seem to be the same. When we look at the Seeds data set, we see
that generalization performance of the proposed method is better compared to NBC.

5. CONCLUSIONS AND FURTHER STUDIES

In this study, a new classification method, which is called the fuzzy Bayesian
classifier, is proposed. The proposed method is applied to Fisher’s Iris data and Seed
data with the Euclidean and learned Mahalanobis distances. These data sets are
chosen since classes for these data sets are known. The FCM clustering algorithm
is applied to achieve an optimal fuzzy partition. Based on this partition, fuzzy
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726 KAYAALP AND ARSLAN

membership functions for each attribute are constructed, which are then used in the
classification. Since in the proposed Fuzzy Bayes Classifier (FBC), there are several
parameters to be considered, such as the number of clusters and the reduction
parameter d, several cases were examined. The results show that changing the
distance from the Euclidean distance to the Mahalanobis distance increases the
classification success rate. It is also seen that, for generalization, the effect of the
distance becomes more important (see Table III). As a consequence, the results for
the considered data sets show that the new FBC is an effective and efficient method
for the classification. The performance of the proposed FBC needs to be investigated
further with respect to different parameters such as the dimension size and number
of classes. We note here that a well-designed simulation study will be needed to
analyze the performance of the proposed method. A further direction for research is
to extend our implementation for both linguistic and numerical variables.
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