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Abstract: As a generalization of k-out-of-n:F and consecutive k-out-of-n:F systems, the consecutive k-within-m-out-of-n:F sys-
tem consists of n linearly ordered components such that the system fails iff there are m consecutive components which include
among them at least k failed components. In this article, the reliability properties of consecutive k-within-m-out-of-n:F systems
with exchangeable components are studied. The bounds and approximations for the survival function are provided. A Monte Carlo
estimator of system signature is obtained and used to approximate survival function. The results are illustrated and numerics are
provided for an exchangeable multivariate Pareto distribution. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 503–510,

2009
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1. INTRODUCTION

Over the past two decades there has been much significant

progress in reliability studies of consecutive type systems,

which have been used to model telecommunication and oil

pipeline systems, and vacuum systems in accelerators. The

reliability properties and characteristics of such systems have

been widely studied in the literature under various assump-

tions. One of the most widely studied systems is called con-

secutive k-out-of-n:F system, which consists of n linearly

ordered components such that the system fails if and only if

at least k consecutive components fail. Recent discussions on

consecutive k-out-of-n systems appear in the works of Yun

et al. [27], Xiao et al. [26], Navarro and Eryilmaz [16], Eryil-

maz [4–6]. See also Kuo and Zuo [14] for an extensive review

of the topic.

A general consecutive system is known as consecutive k-

within-m-out-of-n:F system, consisting of n linearly ordered

components such that the system fails iff there are m consec-

utive components which include among them at least k failed

components. This system was first introduced by Griffith [8]

and several alternative names, such as k-within-consecutive-

m-out-of-n:F and consecutive k-out-of-m-from-n:F have also

been used for this system in the literature. This model involves

consecutive k-out-of-n:F and k-out-of-n:F systems for m = k

and m = n, respectively, and has applications in quality
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control and radar detection. Bounds and approximations for

the reliability of consecutive k-within-m-out-of-n:F system

consisting of independent components have been proposed

in the literature. For example, Sfakianakis et al. [23] pro-

vided lower and upper bounds for the reliability of such

systems which consist of independent identical components.

Iyer [12] studied the lifetime distribution of this system with

independent exponentially distributed component lifetimes.

Papastavridis and Koutras [21] presented upper and lower

bounds for the reliability of linear and circular systems con-

sisting of independent nonidentical components. Habib and

Szantai [10] improved the bounds obtained by Sfakianakis

et al. [23] by applying higher order Boole-Bonferroni bounds.

Recently, Habib et al. [9] presented an algorithm to com-

pute the reliability of multi-state consecutive k-within-m-

out-of-n:G system, which is the generalization of consecutive

k-within-m-out-of-n:G system to the multi-state case.

Dependence among component lifetimes emerges from

the common random production and operating environments.

Analysis of systems that consist of dependent components

might be difficult, especially whenever the system has a

complex structure. In this article, we study the reliability

properties of a consecutive k-within-m-out-of-n:F system

which consists of exchangeable components. Systems with

exchangeable components have been widely studied in the

literature. See e.g. [1, 15, 17, 18, 20, 24].

In the second section, we provide the definitions and nota-

tions that will be used throughout the article. In Section

© 2009 Wiley Periodicals, Inc.
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3, we provide bounds and approximations for the survival

function of consecutive k-within-m-out-of-n:F system con-

sisting of exchangeable components. In the fourth section,

we develop a method based on Samaniego’s signature for

simulating the reliability characteristics of the correspond-

ing system. In Section 5, we provide numerical illustrations

whenever the lifetimes of components have exchangeable

Pareto distribution.

2. DEFINITIONS AND NOTATIONS

Below we provide the notations and definitions that will

be used throughout the article.

n, the number of components;

Ti , the lifetime of component i;

Xi(t), the state of component i at time t : Xi(t) =

1(0) if Ti ≤ t(Ti > t);

T
(j)

k:m, kth smallest among Tj , Tj+1, . . . , Tj+m−1, k ≤

m, 1 ≤ j ≤ n − m + 1;

Aj , the event of {T
(j)

k:m > t};

Tk,m:n, the lifetime of consecutive k-within-m-out-of-

n:F system, 1 ≤ k ≤ m ≤ n;

Rk,m:n(t) = P {Tk,m:n > t}, the survival function of

consecutive k-within-m-out-of-n:F system;

RX(t) = P {X > t}, the survival function of X;

E(X), the mean time to failure (MTTF) for the

system with lifetime X.

The main goal of this article is to study the reliabil-

ity properties of consecutive k-within-m-out-of-n:F sys-

tem with exchangeable lifetimes. A sequence of lifetimes

T1, T2, . . . , Tn is exchangeable if for each n,

P {T1 ≤ t1, . . . , Tn ≤ tn} = P {Tπ(1) ≤ t1, . . . , Tπ(n) ≤ tn},

for any permutation π = (π(1), . . . , π(n)) of {1, 2, . . . , n},

i.e. the joint distribution (survival function) of T1, T2, . . . , Tn

is symmetric in t1, t2, . . . , tn. The exchangeability means that

the components have identical distributions, but they affect

one another within the system. It is obvious that a sequence

of independent, identically distributed (i.i.d.) lifetimes is

exchangeable. Therefore, the results obtained in this article

readily hold for a system with i.i.d. lifetimes.

Consecutive k-within-m-out-of-n:F system can be repre-

sented as a series system of n−m+1 dependent k-out-of-m:F

systems. That is,

Tk,m:n = min
(

T
(1)
k:m, T

(2)
k:m, . . . , T

(n−m+1)
k:m

)

, (1)

where T
(j)

k:m shows the lifetime of k-out-of-m:F system of

components with the lifetimes Tj , Tj+1, . . . , Tj+m−1, 1 ≤

j ≤ n − m + 1. It is clear that the random variables

(T
(1)
k:m, T

(2)
k:m, . . . , T

(n−m+1)
k:m ) have the common terms and this

makes the problem of finding the exact reliability difficult,

especially whenever T1, T2, . . . , Tn are dependent, which is

the case in this article. The random variables T
(j)

k:m, 1 ≤ j ≤

n−m+1 are known as moving order statistics in the literature.

Although the theory of usual order statistics has been well

developed in the literature, less work has been done for mov-

ing order statistics. We may refer to David and Nagaraja [3, p.

140] for limited results on moving order statistics.

Using (1) we can represent the survival function of

consecutive k-within-m-out-of-n:F system as

Rk,m:n(t) = P {Tk,m:n > t}

= P
{

T
(1)
k:m > t , T

(2)
k:m > t , . . . , T

(n−m+1)
k:m > t

}

.

Consider the random variable S
(j)
m (t) =

∑j+m−1

i=j Xi(t)

which denotes the total number of failed components among

Tj , Tj+1, . . . , Tj+m−1 at time t . By the exchangeability we

have

P
{

S(j)
m (t) = s

}

= P
{

S(1)
m (t) = s

}

=

(

m

s

) m−s
∑

i=0

(−1)i
(

m − s

i

)

P {T1 ≤ t , . . . , Ts+i ≤ t}

=

(

m

s

) s
∑

i=0

(−1)i
(

s

i

)

P {T1 > t , . . . , Tm−s+i > t}. (2)

The latter equations can be obtained using Theorem 2.1 of

George and Bowman [7]. For simplicity hereafter let

f (a, b) =

a
∑

i=0

(−1)i
(

a

i

)

P {T1 ≤ t , . . . , Tb+i ≤ t},

and

g(a, b) =

a
∑

i=0

(−1)i
(

a

i

)

P {T1 > t , . . . , Tb+i > t}.

With the notation given above, Eq. (2) can be rewritten as

P
{

S(j)
m (t) = s

}

=

(

m

s

)

f (m − s, s) =

(

m

s

)

g(s, m − s).

3. BOUNDS AND APPROXIMATIONS FOR THE

SURVIVAL FUNCTION

In this section, we evaluate the probability

Rk,m:n(t) = P

{

n−m+1
⋂

i=1

Ai

}

, (3)

Naval Research Logistics DOI 10.1002/nav



Eryılmaz, Kan, and Akıcı: Consecutive k-Within-m-Out-of-n:F System 505

using various inequalities. We first obtain a lower bound

using the second order Bonferroni inequality, also known as

Hunter-Worsley inequality [11, 25]. This variant of Bonfer-

roni inequality has been found to be very quick and useful for

the reliability evaluation of consecutive k-within-m-out-of-

n:F system consisting of i.i.d. components [10]. The proofs

of the following Theorems are presented in Appendix.

THEOREM 1: Let (T1, T2, . . . , Tn) be an exchangeable

random vector representing the lifetimes. Then for 1 ≤ k ≤

m ≤ n,

Rk,m:n(t) ≥ 1 − (n − m + 1)P
{

T
(1)
k:m ≤ t

}

+ (n − m)P
{

T
(1)
k:m ≤ t , T

(2)
k:m ≤ t

}

,

where

P
{

T
(1)
k:m ≤ t

}

=

m
∑

s=k

(

m

s

)

f (m − s, s)

=

m
∑

s=k

(

m

s

)

g(s, m − s),

and

P
{

T
(1)
k:m ≤ t , T

(2)
k:m ≤ t

}

=

(

m − 1

k − 1

)

f (m − k, k + 1)

+

m−1
∑

l=k

(

m − 1

l

)

f (m − l − 1, l), (4)

or in terms of the joint survival function

P
{

T
(1)
k:m ≤ t , T

(2)
k:m ≤ t

}

=

(

m − 1

m − k

)

[g(k − 1, m − k) − 2g(k − 1, m − k + 1)

+ g(k − 1, m − k + 2)] +

m−1
∑

l=k

(

m − 1

l

)

g(l, m− l− 1).

�

(5)

The probabilities given in (4) and (5) can be easily calcu-

lated if the joint distribution (survival) function of lifetimes

of the components is given.

An approximation formula for the survival function can

also be obtained using the following product-type approxi-

mation formula [see, e.g. [2]].

Rk,m:n(t) = P

{

n−m+1
⋂

i=1

Ai

}

≃

∏n−m+1
i=2 P {Ai−1Ai}
∏n−m

i=2 P {Ai}

=
[P {A1A2}]

n−m

[P {A1}]n−m−1
, (6)

where the last equation follows from exchangeability. The

probabilities in (6) can be easily evaluated using the equations

given in Theorem 1. For example,

P {A1A2} = P
{

T
(1)
k:m > t , T

(2)
k:m > t

}

= 1 − P
{

T
(1)
k:m ≤ t

}

− P
{

T
(2)
k:m ≤ t

}

+ P
{

T
(1)
k:m ≤ t , T

(2)
k:m ≤ t

}

. (7)

It should be noted that the probability given by (7) with

m = n − 1 is actually the exact survival function of

consecutive k-within-(n − 1)-out-of-n:F system.

THEOREM 2: Let (T1, T2, . . . , Tn) be an exchangeable

random vector. Then for 1 ≤ k ≤ m ≤ n,

Rk,m:n(t)

≤

k−1
∑

j1,j2 ,...,jr=0

(

m

j1

)

· · ·

(

m

jr

)

f

(

r · m −

r
∑

i=1

ji ,

r
∑

i=1

ji

)

=

k−1
∑

j1,j2 ,...,jr=0

(

m

j1

)

· · ·

(

m

jr

)

g

(

r
∑

i=1

ji , r · m −

r
∑

i=1

ji

)

,

where r = [ n
m

].

4. SIMULATION BASED ON SAMANIEGO’S

SIGNATURE

Samaniego [22] [see also Kochar et al. [13]] proved that

any coherent system with lifetime T and i.i.d. component

lifetimes T1, T2, . . . , Tn having absolutely continuous c.d.f.s,

satisfies

P {T > t} =

n
∑

i=1

piP {Ti:n > t}, (8)

where pi is the probability that the system fails upon

the occurrence of the ith component failure, i.e. pi =

P {T = Ti:n}. More explicitly,

pi =

number of orderings for which the ith failure

causes system failure

n!
,

i = 1, 2, . . . , n. The vector p = (p1, p2, . . . , pn) is called the

system signature. Navarro and Rychlik [18] proved that the

representation (8) also holds in the case whenever the life-

times T1, T2, . . . , Tn have an absolutely continuous exchange-

able distribution. Signatures of consecutive k-out-of-n sys-

tems with several components are listed in Table 1 of Navarro

and Eryılmaz [16]. The determination of the signature of a

coherent system might be difficult except for some special

Naval Research Logistics DOI 10.1002/nav
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Table 1. Order statistic representation of consecutive 2-within-3-
out-of-4:F system.

Ordering T2,3:4 Ordering T2,3:4

T1 < T2 < T3 < T4 T2:4 T3 < T1 < T4 < T2 T2:4

T1 < T2 < T4 < T3 T2:4 T3 < T1 < T2 < T4 T2:4

T1 < T3 < T4 < T2 T2:4 T3 < T2 < T1 < T4 T2:4

T1 < T3 < T2 < T4 T2:4 T3 < T2 < T4 < T1 T2:4

T1 < T4 < T3 < T2 T3:4 T3 < T4 < T2 < T1 T2:4

T1 < T4 < T2 < T3 T3:4 T3 < T4 < T1 < T2 T2:4

T2 < T1 < T3 < T4 T2:4 T4 < T1 < T3 < T2 T3:4

T2 < T1 < T4 < T3 T2:4 T4 < T1 < T2 < T3 T3:4

T2 < T3 < T4 < T1 T2:4 T4 < T2 < T1 < T3 T2:4

T2 < T3 < T1 < T4 T2:4 T4 < T2 < T3 < T1 T2:4

T2 < T4 < T1 < T3 T2:4 T4 < T3 < T1 < T2 T2:4

T2 < T4 < T3 < T1 T2:4 T4 < T3 < T2 < T1 T2:4

cases. In Table 1, we present the order statistic representation

of the lifetime of consecutive 2-within-3-out-of-4:F system

by writing out all possible permutations of T1, T2, T3, T4.

From Table 1, we compute

p1 = P {T2,3:4 = T1:4} = 0,

p2 = P {T2,3:4 = T2:4} = 20/24,

p3 = P {T2,3:4 = T3:4} = 4/24,

p4 = P {T2,3:4 = T4:4} = 0.

The signature of a system does not depend on the distrib-

ution of T1, T2, . . . , Tn because

P {T1 < T2 < · · · < Tn} = P {Tπ(1) < Tπ(2) < · · · < Tπ(n)}

holds for any permutation π = (π(1), . . . , π(n)) [see also

Theorem 3.2 of Navarro et al. [19]]. Thus the system with

exchangeable components has the same signature vector with

the system with i.i.d. components. This is crucial for the

development of our simulation. The simulation of the lifetime

of consecutive k-within-m-out-of-n:F system without using

this fact needs to generate random vectors from the distribu-

tion F(t1, t2, . . . , tn) = P {T1 ≤ t1, . . . , Tn ≤ tn}. Because of

the difficulty of this task, we first obtain the Monte Carlo esti-

mates of the signature of consecutive k-within-m-out-of-n:F

system consisting of i.i.d. components and then use these

estimates to estimate the survival function of consecutive

k-within-m-out-of-n:F system consisting of exchangeable

components. That is, the estimator of survival function is

given by

R̂k,m:n(t) =

n
∑

i=1

p̂iP {Ti:n > t}, (9)

Table 2. Monte Carlo estimates of system signature.

n m k p̂

4 3 2 (0,0.8320,0.1700,0)
10 3 2 (0, 0.3855, 0.4611, 0.1646, 0.0049, 0, 0, 0, 0, 0)
10 7 2 (0, 0.8683, 0.1323, 0, 0, 0, 0, 0, 0, 0)
10 7 5 (0, 0, 0, 0, 0.2594, 0.4464, 0.2523, 0.0350, 0, 0)
15 7 5 (0, 0, 0, 0, 0.0481, 0.1447, 0.2498, 0.2901, 0.2264,

0.0345, 0, 0, 0, 0, 0)
15 10 4 (0, 0, 0, 0.4610, 0.4055, 0.1206, 0.0102, 0, 0, 0, 0,

0, 0, 0, 0)
20 10 7 (0, 0, 0, 0, 0, 0, 0.0133, 0.0547, 0.1336, 0.2139,

0.2612, 0.2189, 0.1068, 0, 0, 0, 0, 0, 0, 0)
20 10 9 (0, 0, 0, 0, 0, 0, 0, 0, 0.0011, 0.0043, 0.0150, 0.0456,

0.0965, 0.1670, 0.2359, 0.2488, 0.1720, 0, 0, 0)

where p̂i is the Monte Carlo estimate of the ith element of

the signature vector and

P {Ti:n > t}

= 1 −

n
∑

j=i

(−1)j−i

(

j − 1

i − 1

) (

n

j

)

P {Tj :j ≤ t}

= 1 −

n
∑

j=n−i+1

(−1)j−n+i−1

(

j − 1

n − i

) (

n

j

)

P {T1:j ≤ t},

where T1:j = min(T1, . . . , Tj ) and Tj :j = max(T1, . . . , Tj ).

We readily have P {T1:j ≤ t} = 1 − P {T1 > t , . . . , Tj > t},

P {Tj :j ≤ t} = P {T1 ≤ t , . . . , Tj ≤ t}.

In Table 2, we present the Monte Carlo estimate p̂ =

(p̂1, p̂2, . . . , p̂n) for various values of n, m, and k. All

simulation results are based on 50,000 repetitions.

Via the same simulation method we can also approximate

the other reliability characteristics of consecutive k-within-

m-out-of-n:F system. For example, mean time to failure

(MTTF) of the system can be estimated from

Ê(Tk,m:n) =

n
∑

i=1

p̂iE(Ti:n).

Table 3. Bounds, approximations and exact value for the survival
function when n = 5, m = 3, k = 2.

a t Rk,m:n(t) R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.8760 0.8735 0.8771 0.8725 0.9329 0.9027
1.3 0.5861 0.5786 0.5871 0.5711 0.7187 0.6449
1.5 0.4138 0.4061 0.4132 0.3945 0.5547 0.4746
1.7 0.3099 0.3031 0.3102 0.2903 0.4404 0.3653
1.9 0.2426 0.2369 0.2424 0.2242 0.3593 0.2917

2.0 1.1 0.8205 0.8170 0.8192 0.8150 0.8999 0.8574
1.3 0.4644 0.4571 0.4638 0.4450 0.6179 0.5314
1.5 0.2873 0.2813 0.2874 0.2656 0.4300 0.3478
1.7 0.1935 0.1892 0.1930 0.1737 0.3127 0.2432
1.9 0.1388 0.1356 0.1389 0.1217 0.2366 0.1791

Naval Research Logistics DOI 10.1002/nav
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Table 4. Bounds, approximations, and exact value for the survival
function when n = 8, m = 3, k = 2.

a t Rk,m:n(t) R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.8044 0.7914 0.8051 0.7820 0.8776 0.8298
1.3 0.4581 0.4180 0.4566 0.3496 0.5760 0.4628
1.5 0.2961 0.2544 0.2977 0.1543 0.3994 0.2768
1.7 0.2101 0.1731 0.2108 0.0652 0.2952 0.1802
1.9 0.1587 0.1268 0.1570 0.0215 0.2290 0.1252

2.0 1.1 0.7240 0.7068 0.7246 0.6877 0.8210 0.7543
1.3 0.3281 0.2908 0.3270 0.1857 0.4497 0.3177
1.5 0.1802 0.1488 0.1807 0.0189 0.2704 0.1446
1.7 0.1130 0.0890 0.1117 0.0000 0.1786 0.0893
1.9 0.0773 0.0589 0.0775 0.0000 0.1263 0.0631

5. NUMERICAL RESULTS

In this section, we present some computational results

when (T1, T2, . . . , Tn) has a multivariate Pareto distribution

whose survival function is

F̄a(t1, . . . , tn) =

(

n
∑

i=1

ti − n + 1

)−a

, a > 0,

ti > 1, i = 1, . . . , n.

It is easy to see that (T1, . . . , Tn) is exchangeable, and

P {T1:j ≤ t} = 1 − P {T1 > t , . . . , Tj > t}

= 1 − F̄a(t , . . . , t) = 1 − (j(t − 1) + 1)−a .

Thus

P {Ti:n > t} = 1 −

n
∑

j=n−i+1

(−1)j−n+i−1

(

j − 1

n − i

) (

n

j

)

× (1 − (j(t − 1) + 1)−a),

Table 5. Bounds and approximations for the survival function
when n = 15, m = 12, k = 8.

a t R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.9927 0.9858 0.9927 0.9960 0.9944
1.3 0.8340 0.8473 0.8332 0.8772 0.8552
1.5 0.6441 0.6524 0.6422 0.7066 0.6744
1.7 0.5032 0.5205 0.5007 0.5675 0.5341
1.9 0.4034 0.4122 0.4006 0.4635 0.4321

2.0 1.1 0.9852 0.9900 0.9852 0.9917 0.9885
1.3 0.7358 0.7493 0.7342 0.7973 0.7657
1.5 0.4979 0.5052 0.4946 0.5709 0.5327
1.7 0.3481 0.3562 0.3444 0.4134 0.3789
1.9 0.2544 0.2592 0.2508 0.3091 0.2800

Table 6. Bounds and approximations for the survival function
when n = 15, m = 10, k = 8.

a t R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.9973 0.9869 0.9973 0.9990 0.9982
1.3 0.8964 0.9055 0.8955 0.9430 0.9192
1.5 0.7366 0.7386 0.7326 0.8247 0.7787
1.7 0.6000 0.6200 0.5932 0.7043 0.6487
1.9 0.4951 0.5120 0.4867 0.6015 0.5441

2.0 1.1 0.9942 0.9841 0.9942 0.9979 0.9960
1.3 0.8260 0.8371 0.8235 0.8989 0.8612
1.5 0.6090 0.6374 0.6009 0.7237 0.6623
1.7 0.4501 0.4698 0.4387 0.5690 0.5038
1.9 0.3416 0.3571 0.3291 0.4508 0.3900

On the other hand, if a > 1, then E(T1:j ) = 1
j(a−1)

, and

hence

E(Ti:n) =

n
∑

j=n−i+1

(−1)j−n+i−1

(

j − 1

n − i

) (

n

j

)

1

j(a − 1)
.

We were able to compute the precise value of p for small

values of n generating all the permutations of numbers from

1 up to n (MATLAB code is available on request). The pre-

cise values of p for n = 5, m = 3, k = 2, and n = 8,

m = 3, k = 2 are found to be p = (0, 84/120, 36/120, 0, 0)

and p = (0, 0.4643, 0.4643, 0.0714, 0, 0, 0, 0), respectively.

These allow computation of the exact value of the survival

function for n = 5, and n = 8 as provided in Tables 3 and 4.

These tables also include the bounds and approximations for

the survival function. From Tables 3 and 4 it can be observed

that the approximation based on simulation is rather effec-

tive, which suggests (9) could be used as a reference value

for larger n where the computation of the exact value is not

possible.

The simulation results along with the bounds and approxi-

mations for the survival function are presented in Tables 5–8

for n = 15, m = 12, k = 8; n = 15, m = 10, k = 8; n = 30,

m = 10, k = 8, and n = 30, m = 10, k = 6, respectively. In

Table 7. Bounds and approximations for the survival function
when n = 30, m = 10, k = 8.

a t R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.9920 0.9925 0.9920 0.9973 0.9947
1.3 0.7700 0.8169 0.7528 0.8841 0.8184
1.5 0.5249 0.6394 0.4563 0.7095 0.5829
1.7 0.3710 0.4873 0.2599 0.5664 0.4131
1.9 0.2760 0.3967 0.1420 0.4601 0.3010

2.0 1.1 0.9832 0.9898 0.9831 0.9941 0.9886
1.3 0.6409 0.7281 0.5974 0.8045 0.7009
1.5 0.3629 0.4782 0.2328 0.5702 0.4015
1.7 0.2228 0.3334 0.0478 0.4083 0.2280
1.9 0.1485 0.2434 0.0000 0.3024 0.1512
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Table 8. Bounds and approximations for the survival function
when n = 30, m = 10, k = 6.

a t R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.9214 0.9619 0.9192 0.9677 0.9434
1.3 0.4587 0.5997 0.3555 0.6793 0.5174
1.5 0.2463 0.3965 0.0596 0.4655 0.2666
1.7 0.1540 0.2789 0.0000 0.3384 0.1692
1.9 0.1066 0.2107 0.0000 0.2589 0.1295

2.0 1.1 0.8609 0.9084 0.8539 0.9402 0.8970
1.3 0.2981 0.4506 0.1088 0.5374 0.3231
1.5 0.1257 0.2422 0.0000 0.3100 0.1550
1.7 0.0666 0.1513 0.0000 0.1976 0.0988
1.9 0.0407 0.1035 0.0000 0.1360 0.0680

these Tables, R̃k,m:n(t) denotes the approximation computed

from (6) and R̂k,m:n(t) shows the simulated reliability given

in (9). LB and UB denote the lower and upper bounds given

in Theorem 1 and Theorem 2, respectively. We also compute

(LB + UB)/2 as an alternative approximation. The perfor-

mance of the approximation computed from (6) is relatively

effective if m is close enough to n and/or k is close enough to

m. That is, the closer m to n and/or the closer k to m, the bet-

ter approximation. The approximation computed from (LB

+ UB)/2 seems stronger for larger n when m and k are fixed.

However, since the lower bounds are much better approxi-

mations than the upper ones for small n (this can be observed

comparing the rows of Table 3 with Table 4, and Table 6 with

Table 7) it might be more appropriate to use weighted average

of bounds, e.g. (3 · LB + UB)/4 for small n. We also observe

that for fixed a, the bounds and approximations perform bet-

ter for smaller values of t (or equivalently for high reliability

structures).

6. SUMMARY AND CONCLUSIONS

In this article, we studied the reliability of consecutive

k-within-m-out-of-n:F system consisting of exchangeable

components. The bounds and approximations based on the

probabilities associated with moving order statistics were

provided for the survival function of this system. The for-

mulas have been represented both in terms of the joint c.d.f.

and the joint survival function of T1, T2, . . . , Tn so that the

computations can be easily performed if either the joint c.d.f.

or joint survival is known.

A simulation study based on Samaniego’s signature was

also performed to estimate the system reliability. The pro-

posed method does not need to generate random vectors

from the joint distribution of T1, T2, . . . , Tn, which is a dif-

ficult task in Monte Carlo simulation. This method can be

also used to estimate the other reliability characteristics of

systems consisting of exchangeable components.

The performance of the approximations is satisfactory

under particular selections of k, m, and n. The results obtained

in the article are readily applicable for consecutive k-out-of-

n:F (m = k) and k-out-of-n:F (m = n) systems which consist

of exchangeable components.

APPENDIX

PROOF OF THEOREM 1: According to the Hunter-Worsley variant of

Bonferroni inequality we have

P

{

n
⋃

i=1

Ci

}

≤

n
∑

i=1

P {Ci} −

n−1
∑

i=1

P {CiCi+1}.

Using this inequality for (3) one obtains

Rk,m:n(t) ≥ 1 −

n−m+1
∑

i=1

p
{

T
(i)
k:m ≤ t

}

+

n−m
∑

i=1

p
{

T
(i)
k:m ≤ t , T

(i+1)
k:m ≤ t

}

.

By the exchangeability we have

Rk,m:n(t) ≥ 1 − (n − m + 1)P
{

T
(1)
k,m ≤ t

}

+ (n − m)P
{

T
(1)
k:m ≤ t , T

(2)
k:m ≤ t

}

. (10)

The probabilities in (10) can be computed using the following equations.

P
{

T
(1)
k:m ≤ t

}

= P

{

m
∑

i=1

Xi(t) ≥ k

}

=

m
∑

s=k

(

m

s

)

f (m − s, s) =

m
∑

s=k

(

m

s

)

g(s, m − s), (11)

and

P
{

T
(1)
k:m ≤ t , T

(2)
k:m ≤ t

}

= P

{

m
∑

i=1

Xi(t) ≥ k,

m+1
∑

i=2

Xi(t) ≥ k

}

= P

{

X1(t) +

m
∑

i=2

Xi(t) ≥ k,

m
∑

i=2

Xi(t) + Xm+1(t) ≥ k

}

=
∑

l

P

{

X1(t) ≥ k − l, Xm+1(t) ≥ k − l,

m
∑

i=2

Xi(t) = l

}

. (12)

Consider the probability in (12). It is clear that

P

{

X1(t) ≥ k − l, Xm+1(t) ≥ k − l,

m
∑

i=2

Xi(t) = l

}

=







P
{
∑m

i=2 Xi(t) = l
}

if k ≤ l

P
{

X1(t) = 1, Xm+1(t) = 1,
∑m

i=2 Xi(t) = l
}

if k = l + 1

0 if k > l + 1.
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Thus

P
{

T
(1)
k:m ≤ t , T

(2)
k:m ≤ t

}

= P
{

X1(t) = 1, Xm+1(t) = 1, S
(2)
m−1(t) = k − 1

}

+

m−1
∑

l=k

P
{

S
(2)
m−1(t) = l

}

(13)

=

(

m − 1

k − 1

) m−k
∑

i=0

(−1)i
(

m − k

i

)

P {T1 ≤ t , . . . , Tk+i+1 ≤ t}

+

m−1
∑

l=k

(

m − 1

l

) m−l−1
∑

i=0

(−1)i
(

m − l − 1

i

)

P {T1 ≤ t , . . . , T1+i ≤ t}.

(14)

Therefore the proof of (4) is completed.

For the proof of (5) we need to write (13) in terms of joint survival function

(or g(a, b)). It is clear that

P
{

X1(t) = 1, Xm+1(t) = 1, S
(2)
m−1(t) = k − 1

}

= P {Ek,m} − P {Ek,m ∩ {T1 > t}}

− P {Ek,m ∩ {Tm+1 > t}} + P {Ek,m ∩ {T1 > t} ∩ {Tm+1 > t}}, (15)

where Ek,m denotes the event of {m−k of T2, T3, . . . , Tm are greater than t}.

Thus we have

p{Ek,m} =

(

m − 1

m − k

) k−1
∑

i=0

(−1)i
(

k − 1

i

)

P {T1 > t , . . . , Tm−k+i > t}

=

(

m − 1

m − k

)

g(k − 1, m − k), (16)

P {Ek,m ∩ {T1 > t}} = P {Ek,m ∩ {Tm+1 > t}}

=

(

m − 1

m − k

) k−1
∑

i=0

(−1)i
(

k − 1

i

)

P {T1 > t , . . . , Tm−k+i+1 > t}

=

(

m − 1

m − k

)

g(k − 1, m − k + 1), (17)

and

P {Ek,m ∩ {T1 > t} ∩ {Tm+1 > t}}

=

(

m − 1

m − k

) k−1
∑

i=0

(−1)i
(

k − 1

i

)

P {T1 > t , . . . , Tm−k+i+2 > t}

=

(

m − 1

m − k

)

g(k − 1, m − k + 2). (18)

Using (16)–(18) in (15) and considering (15) in (13), we complete the proof

of (5). �

PROOF OF THEOREM 2: It is clear that

Rk,m:n(t) = P
{

T
(1)
k:m > t , T

(2)
k:m > t , . . . , T

(n−m+1)
k:m > t

}

≤ P
{

T
(1)
k:m > t , T

(m+1)
k:m > t , . . . , T

(s)
k:m > t

}

,

where s = ([ n
m

] − 1) · m + 1. As the order statistics T
(1)
k:m, T

(m+1)
k:m , . . . , T

(s)
k:m

are nonoverlapping (they do not have the common terms) we have

P
{

T
(1)
k:m > t , T

(m+1)
k:m > t , . . . , T

(s)
k:m > t

}

= P

{

m
∑

i=1

Xi(t) < k,

2m
∑

i=m+1

Xi(t) < k, . . . ,

s+m−1
∑

i=s

Xi(t) < k

}

=

k−1
∑

j1 ,j2 ,...,jr=0

P

{

m
∑

i=1

Xi(t) = j1,

2m
∑

i=m+1

Xi(t) = j2, . . . ,

s+m−1
∑

i=s

Xi(t)=jr

}

=

k−1
∑

j1 ,j2 ,...,jr=0

(

m

j1

)

. . .

(

m

jr

)

P {T1 ≤ t , . . . , Tj1+···+jr ≤ t ,

Tj1+···+jr+1 > t , . . . , Ts+m−1 > t}.

The proof is completed by noting that

P {T1 ≤ t , . . . , Tj1+···+jr ≤ t , Tj1+···+jr+1 > t , . . . , Ts+m−1 > t}

=

s+m−1−(j1+···+jr )
∑

i=0

(−1)i
(

s + m − 1 − (j1 + · · · + jr )

i

)

× P {T1 ≤ t , . . . , Tj1+···+jr+i ≤ t}

=

j1+···+jr
∑

i=0

(−1)i
(

j1 + · · · + jr

i

)

P {T1 > t , . . . , Ts+m−1−(j1+···+jr )+i > t}.

�
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