
Metrika (2012) 75:163–180
DOI 10.1007/s00184-010-0320-x

Limit theorems for the spacings of weak records

Enkelejd Hashorva · Alexei Stepanov

Received: 11 May 2008 / Published online: 15 July 2010
© Springer-Verlag 2010

Abstract Let W (1), W (2), . . . be weak record values obtained from a sample of
independent variables with common discrete distribution. In the present paper, we
derive weak and strong limit theorems for the spacings W (n + m) − W (n), m ≥
1, n → ∞.
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Almost sure convergence

1 Introduction

Let X1, X2, . . . be independent random variables with common distribution function
F which has support on non-negative integers. The sequences of weak record times
L(n) (n ≥ 1) and weak record values W (n) (n ≥ 1) were introduced in Vervaat
(1973) as

L(1) := 1, L(n + 1) := min
{

j : j > L(n), X j ≥ X L(n)

}
,

W (n) := X L(n).
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164 E. Hashorva, A. Stepanov

Weak records have been studied later in Stepanov (1992, 1993), Aliev (1998,
1999), López-Blázquez and Wesołowski (2001), Wesołowski and Ahsanullah (2001),
Stepanov et al. (2003), Wesołowski and López-Blázquez (2004), Dembińska and
López-Blázquez (2005), Dembińska and Stepanov (2006), Danielak and Dembińska
(2007). The material related to weak records is presented in the books of Arnold et al.
(1998) and Nevzorov (2001).

If F is continuous, then weak record values and times agree with record values
and times, which are intensively discussed in the literature; see e.g. Resnick (1987),
Arnold et al. (1998) and Nevzorov (2001).

The joint density function of weak record values is given by

P{W (1) = k1, . . . , W (n) = kn} = P{X1 = kn}
n−1∏

i=1

P{X1 = ki }
P{X1 ≥ ki } ,

where 0 ≤ k1 ≤ · · · ≤ kn, F(kn) < 1 and for n = 1 the product in the last equality
is equal to 1.

It immediately follows that the sequence W (n) (n ≥ 1) forms a Markov chain.
Formulaes for conditional densities are presented in the next Sects. 1 and 2.

Asymptotic properties of the ratio of weak records W (n +m)/W (n) (m ≥ 1, n →
∞) have been investigated in Dembińska and Stepanov (2006). With some motivation
from the aforementioned paper we discuss in the present work the asymptotic behavior
of the random spacings

�(n, m) := W (n + m) − W (n) (m ≥ 1, n → ∞).

We will show that the convergence in distribution of h(W (n))�(n, m) (m ≥ 1, n →
∞), where h is a positive measurable function, is closely related to the asymptotic
behavior of the conditional excess h(n)(Xn − n)|Xn ≥ n.

Another type of results (given in Sect. 4) concerns the almost sure behavior of
�(n, m). In our study, we will show that �(n, m) does not tend to zero with probabil-
ity one for any choice of discrete distribution function F with infinite upper endpoint.
At the same time the sequence of spacings of weak record values can converge with
probability one to infinity. This holds, in particular, for F(n) = 1−n−α, α > 0, n ∈ N.

In the next section, we present some preliminaries followed by results in Sect. 3,
where the convergence in distribution of �(n, m), n → ∞ is discussed. Almost sure
convergence is investigated in Sect. 4. Several illustrating examples are presented in
Sect. 5. The proofs of all the results are given in Sect. 6 (the last section).

2 Preliminaries

We consider distribution functions F with infinite upper endpoint and support on non-
negative integers. In order not to repeat this, we formulate the following assumption.

Assumption 2.1 The discrete distribution function F has support on N ∪ {0} and the
inequality F(n) < 1 holds for all n ∈ N.
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Let Xn (n ≥ 1) be a sequence of independent random variables with distribution
function F satisfying Assumption 2.1 and W (n) (n ≥ 1) be the corresponding random
sequence of the weak record values. Set throughout the paper

p(n) := P{X1 = n}, q(n) := P{X1 ≥ n} = 1 − F(n − 1) (n ≥ 0).

It follows easily that for 0 ≤ kn ≤ · · · ≤ kn+m, n ≥ 1, m ≥ 1

P{W (n + m) = kn+m, . . . , W (n + 1) = kn+1|W (n) = kn} = p(kn+m)

q(kn)

n+m−1∏

i=n+1

p(ki )

q(ki )

(1)

and

P{W (n+m)= j |W (n)= i}= p( j)

q(i)

j∑

l1=i

p(l1)

q(l1)
. . .

j∑

lm−1=lm−2

p(lm−1)

q(lm−1)
(0≤ i ≤ j, m ≥1),

(2)

where
∏n

i=n+1
p(ki )
q(ki )

= 1 and the sum
∑ j

l1=l
p(l1)
q(l1)

. . .
∑ j

lm−1=lm−2

p(lm−1)
q(lm−1)

is equal to 1

when m = 1 and to
∑ j

l1=l
p(l1)
q(l1)

when m = 2.
We will make use of both results in the proof of almost sure convergence. Related

results obtained in Dembińska and Stepanov (2006) are collected in the two lemmas
below.

In the following,
d→,

p→,
a.s→ stand for convergence in distribution, convergence in

probability, and almost sure convergence, respectively.

Lemma 2.1 Let F be a distribution function satisfying Assumption 2.1.

(a) For any two integers i, k with k ≥ i , we have

P{W (n + 1) ≥ k|W (n) = i} = q(k)

q(i)
.

(b) For any i = 0, 1, . . ., the equality

∞∑

n=1

P{W (n) = i} = p(i)

q(i + 1)

holds.

Lemma 2.2 For any choice of discrete F satisfying Assumption 2.1

W (n)
a.s.→ ∞ (n → ∞).
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Further, if for any constant K > 1

lim
n→∞

1 − F(K n)

1 − F(n)
= 0, (3)

then

W (n + m)

W (n)

p→ 1 (m ≥ 1, n → ∞).

We write in the following X ∼ G to indicate that the random variable X pos-
sesses the distribution function G. If also Y ∼ G we write alternatively X ∼ Y
without mentioning explicitly the distribution function G. Denote by NB(m, p) and
Gamma(a, λ) the Negative Binomial and the Gamma distribution function, respec-
tively. In our notation NB(m, p) (m > 0, 0 < p < 1) possesses the probability mass
function

�(m + k)

�(m)�(k + 1)
pm[1 − p]k (k ≥ 0),

and Gamma(a, λ) (a > 0, λ > 0) possesses the density function

λa

�(a)
xa−1 exp(−λx) (x > 0),

where �(·) is the Gamma function.

3 Weak limit results

Let Xn (n ≥ 1) be independent random variables with discrete distribution F satisfy-
ing Assumption 2.1 and Xh,n (n ≥ 1) be independent random variables (in the same
probability space) with distribution function Fh,n given by

Fh,n(x) := P{h(n)(X1 − n) ≤ x |X1 ≥ n} (x ≥ 0),

where h(t), t ∈ R is a positive measurable function.
In this section we focus on the weak convergence of the scaled spacings �(n, m).
In view of Lemma 2.1 for any x ≥ 0, n > 1, we have

P{Xh,n ≥ x} = P{X1 ≥ n + x/h(n)}
P{X1 ≥ n}

= P{W (n + 1) ≥ n + x/h(n)|W (n) = n}
= P{h(n)(W (n + 1) − n) ≥ x |W (n) = n}
= P{h(n)(W (n + 1) − W (n)) ≥ x |W (n) = n}
= P{h(n)�(n, 1) ≥ x |W (n) = n},
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which shows that the scaled spacings h(n)�(n, 1) are closely related to the random
sequence Xh,n .

We assume in the following that the convergence in distribution

Xh,n
d→ Y (n → ∞) (4)

holds with Y ≥ 0 almost surely. If Y = 0 or Y = ∞ (almost surely) we suppose that
the above convergence holds in probability.

Convergence in (4) is closely related to the Gumbel max-domain of attraction of F .
It is well-known from extreme value theory that if F is in the max-domain of attraction
of the unit Gumbel distribution �(x) = exp(− exp(−x)), then there exists a positive
measurable function w (see e.g. Falk et al. (2004) or Kotz and Nadarajah (2005)) such
that

lim
u↑xF

1 − F(u + x/w(u))

1 − F(u)
= exp(−x) (x ∈ R), (5)

where xF := sup{x : F(x) < 1}. We write for short F ∈ G M D A(w).
Consequently if F ∈ G M D A(w), then (4) holds with

h(n) = w(n) and Y ∼ Gamma(1, 1). (6)

Note in passing that the scaling function w can be defined asymptotically (see e.g.,
Embrechts et al. (1997)) by

w(t) = 1 + o(1)

E{X1 − t |X1 > t} (t → ∞).

At this point, we begin presenting results of our work.

Theorem 3.1 Let Xn (n ≥ 1) be independent random variables with common distri-
bution function F satisfying Assumption 2.1. Suppose that there exist h and Y such
that (4) holds. Then

(h(W (n))�(n, 1), . . . , h(W (n + m))�(n + m, 1))
d→ (Y0, . . . ,Ym) (n → ∞),

(7)

where Y0, . . . ,Ym are independent random variables with Yi ∼ Y, 0 ≤ i ≤ m.

The following corollary is immediate (recall (6)):

Corollary 3.1 Under the assumptions and the notation of Theorem 3.1 if F ∈
G M D A(w), then (7) holds with h(n) = w(n), n ≥ 1 and Y ∼ Gamma(1, 1).

In the above corollary the limiting random variable Y possesses a continuous distribu-
tion function. We consider next a case when the limiting random variable Y possesses
a discrete distribution. Let us define a random variable Yβ as Yβ ∼ NB(1, 1 − β), if
β ∈ (0, 1) and Yβ = 0, Yβ = ∞ (almost surely) for β = 0 and β = 1, respectively.
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168 E. Hashorva, A. Stepanov

Lemma 3.1 Let Xn (n ≥ 1) be independent random variables with common distri-
bution function F satisfying Assumption 2.1. If

lim
n→∞

1 − F(n + 1)

1 − F(n)
= β ∈ [0, 1], (8)

then (4) holds with h(n) = 1 and Y ∼ Yβ . Furthermore, (7) is satisfied.

By imposing some asymptotic condition on the scaling function h, we are able to
generalize 3.1. More precisely, we assume that

lim
n→∞ nh(n) = ∞ (9)

and

lim
n→∞

h(an+1)

h(an)
= 1, (10)

where an is a non-decreasing sequence of integers such that limn→∞ an+1/an = 1.
Clearly the above conditions hold if limn→∞ h(n) = c ∈ (0,∞). For such instance
our next theorem holds with the same assumptions as in Theorem 3.1.

Theorem 3.2 Let Xn (n ≥ 1) be independent random variables with common distri-
bution function F satisfying Assumption 2.1. Suppose that there exist h and Y such
that conditions (4), (9), and (10) are satisfied. If P{Y < ∞} = 1, then for given
integers k1, k2, . . . , km and m ≥ 2

(h(W (n))�(n, k1), . . . , h(W (n))�(n + km−1, km))
d→ (Zk1 , . . . ,Zkm ) (n →∞),

(11)

where Zki ∼ ∑ki
j=1 Y j and Y1, . . . ,Ym are independent random variables with the

same distributions as Y .

The corollary below follows from Lemma 3.1, Theorem 3.1, and Theorem 3.2.

Corollary 3.2 Let Xn (n ≥ 1) be independent random variables with common dis-
tribution function F satisfying Assumption 2.1.

(a) If F ∈ G M D A(w) and h(n) = w(n), n ≥ 1 is such that (10) holds, then (11)
also holds with Zki ∼ Gamma(ki , 1), 1 ≤ i ≤ m.

(b) If (8) holds, then (11) is valid with h(n) = 1, n ≥ 1 andZki ∼ NB(ki , 1−β), 1 ≤
i ≤ m. Furthermore, Zki = 0 or Zki = ∞ if β = 0 or β = 1, respectively.

We discuss next the convergence of the expectations of �(n, m).

Theorem 3.3 Let Xn (n ≥ 1) be independent random variables with common distri-
bution function F satisfying Assumption 2.1. Suppose that (8) holds with β ∈ [0, 1).
If, in addition,

1 − F(n + 1)

1 − F(n)
≤ β∗ ∈ [β, 1) (12)
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is valid for all large enough n, then for any m ≥ 1

lim
n→∞ E{�(n, m)} = βm

1 − β
.

Remark (a) Condition (9) in Theorem 3.2 can be dropped if W (n +m)/W (n)
a.s→ 1

holds for any integer m.
(b) The convergence in (10) holds, for example, if h is bounded and regular varying

at infinity with index α ∈ R. We refer the reader for details on regular variation
to Resnick (1987) or Embrechts et al. (1997). A key result for regularly vary-
ing functions is the uniform convergence theorem, see e.g., Theorem A 3.2 in
Embrechts et al. (1997).

(c) If limn→∞ h(n) = ∞ and the Assumption 2.1 holds, then for a given positive
real x we have

lim
n→∞

1 − F(n + x/h(n))

1 − F(n)
= 1.

The above asymptotics implies Xh,n
p→ 0 as n → ∞. This case is therefore not

interesting.

4 Almost sure convergence

In this section we focus on the almost sure convergence of �(n, m), m ≥ 1. It is
interesting that �(n, m) cannot converge to 0 with probability 1 for any F satisfy-

ing Assumption 2.1, despite the fact that �(n, m)
p→ 0 in the case when (8) holds

with β = 0. In view of Theorem 3.2, β = 1 implies �(n, m)
p→ ∞ as n → ∞.

Imposing some additional conditions, we strengthen this convergence to almost sure
convergence; see Theorem 4.3 below.

Theorem 4.1 Let Xn (n ≥ 1) be a sequence of independent random variables with
common distribution function F satisfying Assumption 2.1. Then for any m ≥ 1

P{�(n, m) > 0 i.o.} = 1.

We get immediately:

Corollary 4.1 For any choice of discrete F satisfying Assumption 2.1, the random
sequence �(n, m) can not converge to zero with probability one.

Corollary 4.2 Let Xn (n ≥ 1) be a sequence of independent random variables with
common distribution function F satisfying Assumption 2.1, and let (8) hold with β ∈
(0, 1]. Then for any m ≥ 1, k ≥ 0

P{�(n, m) > k i.o.} = 1.
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In the next theorem we exclude the case β = 1.

Theorem 4.2 Under the assumptions and notation of 4.2, if β ∈ (0, 1) then for any
m ≥ 1

P{�(n, m) = 0 i.o.} = 1.

It follows from Corollary 3.2 or Theorem 4.2 that for β ∈ (0, 1) the sequence �(n, m)

cannot converge to infinity with probability 1.

In the previous section we showed that if β = 1, then �(n, m)
p→ ∞ as n → ∞.

In the next theorem we strengthen this to almost sure convergence.

Theorem 4.3 Let Xn (n ≥ 1) be a sequence of independent random variables with
common distribution function F satisfying Assumption 2.1. If

∞∑

n=1

(
p(n)

q(n)

)2

< ∞, (13)

then for any m ≥ 1

�(n, m)
a.s.→ ∞ (n → ∞).

5 Examples

5.1 Let us consider the case when F is the geometric distribution with parameter
p ∈ (0, 1). We have

lim
n→∞

1 − F(n + 1)

1 − F(n)
= 1 − p ∈ (0, 1),

hence Theorem 3.2 implies (set h(n) = 1, n ≥ 1)

�(n, m)
d→ Y ∼ NB(m, p) (n → ∞, m ≥ 1).

The above convergence can be confirmed directly since �(n, m) is a negative bino-
mial random variable with parameters m and p, and the distribution function does not
depend on n at all.
5.2 Define a discrete distribution function F such that for all n large we have F(n) =
1 − nαC−nδ

, α ∈ R, δ ∈ (0,∞), C ∈ (1,∞). It follows that

lim
n→∞

1 − F(n + 1)

1 − F(n)
= β,
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with β = 1 if δ < 1, and β = 1/C or β = 0 if δ = 1 or δ > 1, respectively. If
β = 1/C , then Corollary 3.2 (part (b)) yields

�(n, m)
d→ Y ∼ NB

(
m, 1 − 1

C

)
(n → ∞).

By Theorem 3.3 we obtain

lim
n→∞ E{�(n, m)} = E{Y } = m

C − 1
.

For β = 0 or β = 1, the convergence in probability to 0 or ∞ follows. In the latter
case (corresponding to δ < 1) we can not say if the convergence holds almost surely
because (13) is not valid.
5.3 Let us consider the case when F is a Poisson distribution with positive parameter
λ. It is well-known that F does not belong to the max-domain of attraction of any
univariate max-stable distribution function. We have

1 − F(n)

1 − F(n − 1)
= 1 − 1

1 + λ
n+1 + λ2

(n+1)(n+2)
+ · · ·

≤ λ/(n + 1) → 0 (n → ∞).

Hence Corollary 3.2 (part (b)) implies �(n, m)
p→ 0 as n → ∞ for any m ≥ 1.

5.4 Let F be such that p(n) = exp(−a(n −1)b)− exp(−anb), n ≥ 1 with a > 0, b ∈
(0, 1]. Setting

w(t) := abtb−1 (t > 0)

we obtain as t → ∞
1 − F(t + x/w(t))

1 − F(t)
∼ exp

(
−atb

[(
1 + x

abtb

)b − 1

])
→ exp(−x) (∀x ∈ R).

For h(n) := w(n),∀n ≥ 1 we have

nh(n) = abnb → ∞ (n → ∞).

Hence, Theorem 3.2 implies that for any integer m

ab(W (n))b−1�(n, m)
d→ Y ∼ Gamma(m, 1) (n → ∞).

Also, observe that

1 − F(K n)

1 − F(n)
= exp

(

−anb

[( [K n]
n

)b

− 1

])

→ 0 (K > 1, n → ∞),
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where [x] is the integral part of the number x . Condition (3) is fulfilled and

W (n + m)

W (n)

p→ 1 (m ≥ 1, n → ∞).

5.5 Let q(n) = n−α, n ≥ 1, α > 0. We have

lim
n→∞

q(n + 1)

q(n)
= 1.

Consequently, �(n, 1)
p→ ∞ as n → ∞. Furthermore

p(n)

q(n)
= 1 −

(
1 − 1

n + 1

)α

∼ α/n (n → ∞);

hence condition (13) is fulfilled, and thus �(n, 1)
a.s→ ∞, n → ∞.

6 Proofs

Proof of Theorem 3.1 Applying the first part of Lemma 2.1 for x ≥ 0, we obtain

P{h(W (n))�(n, 1) ≥ x} = E{I {�(n, 1) ≥ x/h(W (n))}}
= E{I {W (n + 1) ≥ W (n) + x/h(W (n))}}
= E{E{I {W (n + 1) ≥ W (n) + x/h(W (n))}|W (n)}}
= E

{
q(W (n) + x/h(W (n)))

q(W (n))

}
,

where I {A} is the indicator of A. Choose x ∈ R a continuity point of the distribution
function of Y . The convergence in (4) implies

lim
n→∞

q(n + x/h(n))

q(n)
= P{Y ≥ x}.

In view of Lemma 2.2, W (n) → ∞ almost surely as n → ∞. Hence for any k > 0

lim
n→∞

q(W (n) + k/h(W (n)))

q(W (n))
= lim

n→∞
q(n + k/h(n))

q(n)
= P{Y ≥ k} a.s. (14)

The claim for m = 0 follows now from the bounded convergence theorem.
Next, let k > 0 be an integer and 0 ≤ x0 ≤ x1 ≤ · · · ≤ xk be continuity points of

the distribution function of Y . By Lemma 2.1 and the Markov property of the random
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sequence W (n), almost surely we have for i = 0, 1, . . . , k

P{h(W (n + i))�(n + i, 1) ≥ xi |W (n), . . . , W (n + i)}
= P{W (n + i + 1) ≥ xi/h(W (n + i)) + W (n + i)|W (n), . . . , W (n + i)}
= P{W (n + i + 1) ≥ xi/h(W (n + i)) + W (n + i)|W (n + i)}
= q(W (n + i) + xi/h(W (n + i)))

q(W (n + i))
(n > 1).

Consequently, we obtain

P{h(W (n))�(n, 1) ≥ x0, . . . , h(W (n + k))�(n + k, 1) ≥ xk}
= E

{
I {h(W (n))�(n, 1) ≥ x0, . . . , h(W (n + k − 1))�(n + k − 1, 1) ≥ xk−1}

×
[

q(W (n + k) + xk/h(W (n + k)))

q(W (n + k))
− P{Y ≥ xk}

]}

+P{Y ≥ xk}P{�(n, 1) ≥ x0, . . . , h(W (n + k − 1))�(n + k − 1, 1) ≥ xk−1}.

As above, for n → ∞

q(W (n + k) + xk/h(W (n + k)))

q(W (n + k))

a.s→ P{Y ≥ xk}.

The claim follows now by passing to the limit and using induction with respect to k. �

Proof of Lemma 3.1 Let Y ∼ NB(1, 1−β) and set h(n) := 1, n ≥ 1. By the assump-
tion, for any k ≥ 1

lim
n→∞

1 − F(n + k)

1 − F(n)
= βk .

Since P{Y ≥ k} = βk the random sequence Xh,n (n ≥ 1) converges in distribution
as n → ∞ to Y , provided that β ∈ (0, 1). If β = 0, then

lim
n→∞ P{Xh,n ≥ 1} = lim

n→∞
1 − F(n + 1)

1 − F(n)
= 0.

Hence Xh,n
p→ Y = 0 as n → ∞. In the same way, one can show that Xh,n

p→ ∞
when β = 1. �

Proof of Theorem 3.2 Condition (9) implies that for any M, ε > 0 the inequality

(n − 1)

n + M/h(n)
> 1 − ε
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holds for all large n. For arbitrary K > 1 choose ε such that (1 − ε)K > 1. Then, for
M a continuity point of the distribution function of Y , the inequality

K (n − 1) > n + M/h(n)

holds for all large n. Consequently,

1 − F(K (n − 1))

1 − F(n − 1)
= P{X1 > K (n − 1)}

P{X1 ≥ n}
≤ P{X1 ≥ n + M/h(n)}

P{X1 ≥ n} (n → ∞)

→ P{Y ≥ M} → 0 (M → ∞).

Then, Lemma 2.2 implies that for any m ≥ 1

Z∗
n := W (n + m)

W (n)

p→ 1 (n → ∞).

The proof follows from Theorem 3.1 and Slutsky lemma (see e.g. Kallenberg (1997))
if we show that for any m ≥ 1

Zn := h(W (n + m))

h(W (n))

p→ 1 (n → ∞). (15)

Let Znk (k ≥ 1) be a subsequence of Zn(n ≥ 1). By the subsequence principle
for convergence in probability (p. 555 in Embrechts et al. (1997)) it suffices to show
that there exists a subsequence Znk j

( j ≥ 1) such that Znk j

a.s→ 1 as j → ∞. By the
convergence in probability proved above and the mentioned principle there exists a
subsequence Z∗

nk j
( j ≥ 1) such that

Z∗
nk j

a.s→ 1 ( j → ∞).

Since as n → ∞, we have W (n)
a.s→ ∞, Wnk j

is a non-decreasing subsequence (almost
surely) and (10) holds, then

Znk j

a.s→ 1 ( j → ∞).

The last implies (15) and completes the proof. �
Proof of Corollary 3.2 (a) It is well-known (cf. Resnick (1987)) that the assumption
F ∈ G M D A(w) implies

lim
n→∞ nw(n) = ∞
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and

lim
n→∞

1 − F(n − 1)

1 − F(n)
= 1.

Since Y has a continuous distribution function, it follows that

lim sup
n→∞

w(n) = 0.

Further, by the fact that the convergence in (5) holds uniformly for x in compact
sets of R, for any sequence xn, n ≥ 1 such that limn→∞ xn = x , we have

lim
n→∞

1 − F(n + xn/w(n))

1 − F(n)
= lim

n→∞
1 − F(n + x/w(n))

1 − F(n)
= exp(−x).

Set now xn = x + w(n), n ≥ 1. By the asymptotic property of w(n), we have
limn→∞ xn = x . Consequently,

lim
n→∞

1 − F(n + 1 + x/w(n))

1 − F(n)
= lim

n→∞
1 − F(n + (x + w(n))/w(n))

1 − F(n)
= exp(−x),

∀x ∈ R.

Hence, we obtain

lim
n→∞

1 − F(n + x/w(n))

1 − F(n)
= lim

n→∞
P{X1 ≥ n + x/w(n)}

P{X1 ≥ n} = P{Y ≥ x} = exp(−x).

Thus (9) is satisfied with h(n) = w(n),∀n ≥ 1. The proof of the first statement
follows now from Theorem 3.2 and (6).

(b) Clearly, h(n) = 1,∀n ≥ 1 satisfies both (9) and (11). The the proof of the
second statement follows from Lemma 3.1 and Theorem 3.2. �

Proof of Theorem 3.3 Since �(n, m) = �(n+m−1, 1)+· · ·+�(n, 1), it is enough to
prove the result for m = 1. By assumption (12) and the fact that W (n)

a.s→ ∞, n → ∞
we obtain that

q(W (n) + k)

q(W (n))
≤ βk∗

holds almost surely as n → ∞ for any k ≥ 1. Further as in (14) (set h(n) = 1, n ≥ 1)

q(W (n) + k)

q(W (n))

a.s.→ P{Z1 ≥ k} = βk (n → ∞),
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where Z1 ∼ NB(1, 1 − β). Since �(n, 1), n ≥ 1 is a non-negative random sequence
we may write

E{�(n, 1)} =
∞∫

0

P{�(n, 1) ≥ s} ds

=
∞∫

0

P{W (n + 1) ≥ s + W (n)} ds

=
∞∫

0

E
{

q(W (n) + s)

q(W (n))

}
ds.

The dominated convergence theorem implies thus

lim
n→∞ E{�(n, 1)} =

∞∫

0

P{Z1 ≥ s} ds = E{Z1} = β

1 − β
,

and the result follows. �
Proof of Theorem 4.1 As remarked in Balakrishnan and Stepanov (2010), for a
sequence of events A1, A2, . . . the equality

P{An i.o.} = α ∈ [0, 1]

holds iff

lim
n→∞

∞∑

k=0

P{An . . . An+k−1 An+k} = α,

where Ai denotes the complement of the event Ai .
Choose An = {�(n, 1) > 0} and An = {�(n, 1) = 0}. Making use of (1), we

obtain

∞∑

k=0

P{�(n, 1) = 0, . . . , �(n + k − 1, 1) = 0,�(n + k, 1) > 0}

=
∞∑

k=0

∞∑

i=0

∞∑

j=i+1

P{W (n + 1) = · · · = W (n + k) = i, W (n + k + 1)

= j | W (n) = i}P{W (n) = i}

=
∞∑

k=0

∞∑

i=0

(
p(i)

q(i)

)k q(i + 1)

q(i)
P{W (n) = i} = 1.
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Consequently, P{�(n, 1) > 0 i.o.} = 1. Since �(n, m) ≥ �(n, 1) (m ≥ 1) almost
surely, the result follows. �

Proof of Corollary 4.2 The corollary can be proved in the same manner as Theo-
rem 4.1. �

Proof of Theorem 4.2 In view of (8) for given ε > 0 we can find I ∈ N such that

β − ε <
q(i + 1)

q(i)
< β + ε (i ≥ I ).

By the argument given in the proof of Theorem 4.1,

P{�(n, m) = 0 i.o.} = lim
n→∞ cn,m,

where

cn,m =
∞∑

k=0

P{�(n, m) > 0, . . . ,�(n + k − 1, m) > 0,�(n + k, m) = 0}.

Taking into account that

{�(n, m) > 0, . . . ,�(n + k − 1, m) > 0,�(n + k, m) = 0}
= {W (n) < W (n + m), . . . , W (n + k − m − 1) < W (n + k − 1),

W (n + k − 1) < W (n + k) = · · · = W (n + k + m)},
P{�(n, m) > 0, . . . ,�(n + k − 1, m) > 0,�(n + k, m) = 0}
=

∞∑

in=0

P{�(n, m) > 0, . . . ,�(n + k − 1, m) > 0,�(n + k, m) = 0 | W (n) = in}

×P{W (n) = in}

and applying (1), we obtain

cn,m =
∞∑

k=0

∞∑

in=0

P{W (n) = in}
q(in)

∞∑

in+1=in

p(in+1)

q(in+1)
· · ·

∞∑

in+m−1=in+m−2

p(in+m−1)

q(in+m−1)

∞∑

in+m=max{in+1,in+m−1}

p(in+m)

q(in+m)
· · ·

∞∑

in+k−1=max{in+k−m−1+1,in+k−2}

p(in+k−1)

q(in+k−1)

×
∞∑

in+k=in+k−1+1

pm+1(in+k)

qm(in+k)
.
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Clearly,

cn,m ≥
∞∑

k=0

∞∑

in=I

P{W (n) = in}
q(in)

∞∑

in+1=in

p(in+1)

q(in+1)
· · ·

∞∑

in+m−1=in+m−2

p(in+m−1)

q(in+m−1)

∞∑

in+m=max{in+1,in+m−1}

p(in+m)

q(in+m)
· · ·

∞∑

in+k−1=max{in+k−m−1+1,in+k−2}

p(in+k−1)

q(in+k−1)

×
∞∑

in+k=in+k−1+1

pm+1(in+k)

qm(in+k)
.

Since in, in+1, . . . , in+k ≥ I , we get

∞∑

in+k=in+k−1+1

pm+1(in+k)

qm(in+k)
≥ (1 − β − ε)mq(in+k−1 + 1).

Taking into account that

q(max{in+k−m− j + 1, in+k− j−1})
q(in+k− j−1)

≥ β − ε (1 ≤ j ≤ k − m),

we find the lower bound for cn,m :

cn,m ≥
∞∑

k=0

∞∑

in=I

(1 − β − ε)m(β − ε)kP{W (n) = in}

= (1 − β − ε)m

1 − β + ε
P{W (n) ≥ I }.

Since W (n)
a.s→ ∞ as n → ∞ (see Lemma 2.2), we get

P{�(n, m) = 0 i.o.} ≥ (1 − β)m−1.

The result follows now from Kolmogorov’s zero-one law since {�(n, m) = 0 i.o.} is
a tail event. �

123



Limit theorems for the spacings of weak records 179

Proof of Theorem 4.3 For any positive integer x and large enough integer J we obtain

∞∑

k=1

P{�(k, 1) < x} =
∞∑

k=1

∞∑

j=0

P{�(k, 1) < x |W (k) = j}P{W (k) = j}

=
∞∑

k=1

∞∑

j=0

P{W (k + 1) < x + j |W (k) = j}P{W (k) = j}

=
∞∑

k=1

∞∑

j=0

[1 − P{W (k + 1) ≥ x + j |W (k) = j}]P{W (k) = j}

= O(1) +
∞∑

j=J

[
1 − q(x + j)

q( j)

] ∞∑

k=1

P{W (k) = j}.

Condition (13) implies β = 1. Then for all large enough n and ε > 0

q(n)

q(n + 1)
<

1

1 − ε

and

∞∑

j=J

[
1 − q(x + j)

q( j)

] ∞∑

k=1

P{W (k) = j} <
1

1 − ε

x−1∑

k=0

∞∑

j=0

p( j)

q( j)

p( j + k)

q( j + k)
.

The strong convergence for �(n, 1) comes now from the following observation. Let
un > 0 and

∑∞
n=1 u2

n < ∞, then
∑∞

n=1 unun+k < ∞ (k ≥ 0). Further, the random
sequence �(n, m) is monotone non-decreasing in m, and thus the proof follows. �
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