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Abstract
The recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolu-

tional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model,

ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and

to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data.

However, the default search method to find optimal operators in ONNs, the so-called Greedy Iterative Search (GIS)

method, usually takes several training sessions to find a single operator set per layer. This is not only computationally

demanding, also the network heterogeneity is limited since the same set of operators will then be used for all neurons in

each layer. To address this deficiency and exploit a superior level of heterogeneity, in this study the focus is drawn on

searching the best-possible operator set(s) for the hidden neurons of the network based on the ‘‘Synaptic Plasticity’’

paradigm that poses the essential learning theory in biological neurons. During training, each operator set in the library can

be evaluated by their synaptic plasticity level, ranked from the worst to the best, and an ‘‘elite’’ ONN can then be

configured using the top-ranked operator sets found at each hidden layer. Experimental results over highly challenging

problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance

than GIS-based ONNs and as a result, the performance gap over the CNNs further widens.

Keywords Operational neural networks � Convolutional neural networks � Synaptic Plasticity

1 Introduction

Neurons of a mammalian brain communicate with each

other through synaptic connections [1] which control the

‘‘strength’’ of the signals transmitted between neurons via

their individual neuro-chemical characteristics. During a

learning process, synaptic connections weaken or

strengthen according to the amount of stimuli received

[2, 3]. This phenomenon is known as ‘‘Synaptic Plasticity’’,

which refers to the fact that the connections between nerve

cells in the brain are not static but can undergo changes, so

they are plastic. This process is generally accepted to be

the major instrument by which living organisms are able to

learn [2]. Mammalian brains demonstrate remarkable

plasticity, enabling them to alter future behavior, emotions,

and responses to sensory input by modifying existing

neural circuits [1, 4–8]. In other words, during a learning

(training) process, the synaptic plasticity implies a signif-

icant change (positive or negative) that occurs in the
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synapse’s connection strength as the plastic change often

results from the alteration of the number of neurotrans-

mitter receptors located on a synapse. There are several

underlying mechanisms that cooperate to achieve the

synaptic plasticity, including changes in the number of

neurotransmitters released into a synapse and changes in

how effectively cells respond to those neurotransmitters

[1, 5–8]. Conventional ANNs such as MLPs and their

popular derivative CNNs can only pose a crude and over-

simplistic model for biological neurological systems due to

two primary drawbacks: (1) assumption of a homogenous

structure with an identical neuron model across the entire

network, (2) use of linear transformation (i.e., linear

weighted sum for MLPs or linear convolution for CNNs)

[9] as the sole operator. Although non-linear activation

functions are employed as a remedy to the latter, the

structure still does not match in general to the structural

characteristics of the biological neural systems which

encapsulate a diverse set of neuron types and varying

biochemical and electrophysiological properties [1, 4–8].

For example, there are about 55 distinct types of neurons in

the mammalian retina to realize visual sensing [7]. Most

importantly, neurochemical properties of each synaptic

connection accomplish the signal operation which is non-

linear in general [10, 11]. Therefore, traditional homoge-

nous ANNs, e.g., Multi-layer Perceptrons (MLPs) [11, 12]

with the linear neuron model can only approximate the

ongoing learning process that is based on the responses of

the training samples, and therefore, they are considered as

the ‘‘Universal Approximators’’. This is perhaps the reason

for the significant variations observed in their learning

performance. Generally speaking, they are effective when

dealing with problems with a monotonous and relatively

simpler solution space; however, they may entirely fail

when the solution space is highly nonlinear and complex.

Although several methods have been proposed in the lit-

erature to modify MLPs by changing the network archi-

tectures [13–20], or the neuron model and/or conventional

BP algorithm [22–24], or even the parameter updates

[25, 26]; the learning performance was not improved sig-

nificantly, as it is inherently subdued by the underlying

homogenous network configuration with the sole linear

neuron model.

In order to address this fundamental drawback, recently

a heterogeneous and non-linear network model, called

Generalized Operational Perceptrons (GOPs) [27, 28], have

recently been proposed. GOPs aim at accurately mimicking

the actual biological neuron model with distinct synaptic

connections. In this heterogeneous configuration, the nat-

ural diversity that appears in biological neurons and neural

networks has been incorporated. Specifically, the diverse

set of neurochemical operations in biological neurons (the

non-linear synaptic connections plus the integration

process occurring in the soma of a biological neuron

model) have been modelled by an ‘‘operator set’’ com-

posing of corresponding ‘‘Nodal’’ (for synaptic connec-

tion), ‘‘Pool’’ (for integration in soma) and the

‘‘Activation’’ (for activation in the axon) operators.

Therefore, the GOP neuron model naturally becomes a

superset of the Perceptrons achieving highly superior per-

formance levels in both function approximation and gen-

eralization. The function approximation capability of GOP

networks was demonstrated in the studies [27 and 28],

where it was shown that GOPs can achieve elegant per-

formance levels on many challenging problems where

MLPs entirely fail to learn such as ‘‘Two-Spirals’’, ‘‘N-bit

Parity’’ for N[ 10, ‘‘White Noise Regression’’, etc. The

success of GOPs over such problems was unprecedented

despite the fact that they were partially heterogenous, i.e.,

the same operator set is used in all neurons of each layer.

Moreover, the generalization capability of GOP networks

in classification and ranking problems was shown in

[29–34], respectively, where an extensive set of experi-

mental comparisons with MLPs has shown that GOP net-

works can outperform MLPs even when the resulting

network structure is much more compact and, thus, com-

putationally more efficient.

Following the example, a heterogenous and non-linear

network model, called Operational Neural Network

(ONN), has recently been proposed [35] as a superset of

CNNs. ONNs are derived from Generalized Operational

Perceptrons (GOPs) as the same way CNNs are derived

from MLPs with the two restrictions: ‘‘limited connectiv-

ity’’ and ‘‘weight sharing’’. In this study, a similar search

method used in [27, 28], called Greedy Iterative Search

(GIS), was utilized for ONNs to find an operator set per

layer. The final ONN can then be configured by using the

best operator sets found, each of which is assigned to all

neurons of the corresponding hidden layers. This exhibits

several limitations and drawbacks. First and the foremost

GIS has a limitation of assigning a single operator set for

the entire (hidden) layer neurons due to the two reasons: (1)

only the global (network-wise) evaluation is used to ‘‘es-

timate’’ the learning capability (called as the ‘‘Health

Factor (HF)’’ in this study) of the operator set assigned and

(2) searching for an individual operator set per neuron

prohibits heterogeneity as it creates a search space infea-

sibly large. Moreover, due to the greedy iterative nature of

GIS, to find the best possible operator set for each layer, the

number of BP runs required is proportional to the size of

the operator set library. As mentioned earlier, the resultant

ONN was still a heterogeneous network; however, its

heterogeneity was limited as intra-layer homogeneity was

still preserved by assigning a single distinct operator set to

all neurons within each hidden layer.
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In order to address these limitations and exploit further

the heterogeneity of ONNs, in this study, we propose a

novel configuration approach for Operational Neural Net-

works (ONNs) based on the synaptic plasticity paradigm.

The proposed approach can evaluate the ‘‘learning ability’’

of an individual neuron having a certain operator set in

order to measure its contribution to the ongoing learning

objective. We claim a direct relation between the tendency

of a neuron to alter its connection strengths (synaptic

plasticity) and the suitability of its operator set. We

quantify this notion by numerically computing the ‘‘health

factor’’ of a particular operator assigned to a neuron in a

particular hidden layer. Over challenging learning prob-

lems and with severe restrictions, it is demonstrated that

only an ONN compromised of hidden neurons having an

operator set with a high health factor (HF) can achieve the

desired learning performance while those with low-HF

operator sets fail to contribute well enough and thus result

in inadequate learning performance. Therefore, the funda-

mental idea is the measurement of the HF of each operator

set locally based on the synaptic plasticity principle. At

each hidden layer of the ONN, the HF of each operator set

is periodically monitored during a prior BP run and the

‘‘promising’’ operator sets yielding a high HF will gradu-

ally be favored to improve the learning performance of the

network. The so-called Synaptic Plasticity Monitoring

(SPM) sessions will allow the evaluation of each operator

set as the network gets mature during the BP training. In

order to avoid local minima, the operator set of each

neuron will be periodically altered by randomly assigning a

new operator set in the library. Since BP is a stochastic

process, it may take several sessions to properly evaluate

an operator set in a particular layer. The final HF of each

operator set will be the average HF reached during the

entire BP run with many SPM sessions. Using the final HFs

of each operator set in the library for each hidden layer of

the network, an ‘‘elite’’ ONN can then be configured using

the top operator set(s), each with a density proportional to

its HF. Note that the order of the neurons into which an

operator set is assigned does not affect the learning per-

formance due to the fully-connected nature of the ONN.

The elite ONN configured based on the operators exhibit-

ing the highest synaptic plasticity levels can then be trained

to achieve the utmost learning performance. The hetero-

geneity of the network increases with the number of

operator sets used at each layer whereas the least hetero-

gonous ONN can still be configured with a single operator

set (the one with the highest HF ever achieved on that

layer) assigned to all neurons in each layer. In this way, we

are able to exploit the role of network heterogeneity over

the learning performance evaluated on three challenging

problems: image denoising, synthesis and transformation.

Finally, with the right sets used in each hidden layer, we

shall show that the elite ONN performance constitutes

superior learning performance than GIS configured ONNs,

and the performance gap over the equivalent CNNs further

widens.

The rest of the paper is organized as follows: Section II

will briefly present the conventional ONNs while the BP

training is summarized in Appendix A (refer to [35] for

further details). Section III explains the proposed SPM in

detail and shows the configuration of the elite ONN over

the final HFs computed for each operator. Section IV first

analyzes a sample set of SPM results and then presents a

rich set of experiments to exploit the heterogeneity of the

network and to perform comparative evaluations between

the learning performances of ONNs and CNNs over chal-

lenging problems. Finally, Section V concludes the paper

and suggests topics for future research.

2 Operational neural networks

The conventional (deep) 2D CNNs have the classical

‘‘linear’’ neuron model similar in MLPs; however, they

further apply two restrictions: kernel-wise (limited) con-

nections and weight sharing. These restrictions turn the

linear weighted sum for MLPs to the convolution formula

used in CNNs. This is illustrated in Fig. 1 (left) where the

three consecutive convolutional layers without the sub-

sampling (pooling) layers are shown. ONNs borrow the

essential idea of GOPs and thus extend the sole usage of

linear convolutions in the convolutional neurons by the

nodal and pool operators. This constitutes the operational

layers and neurons while the two fundamental restrictions,

weight sharing, and limited (kernel-wise) connectivity, are

directly inherited from conventional CNNs. This is also

illustrated in Fig. 1 (right) where three operational layers

and the kth neuron with 3 9 3 kernels belong to a sample

ONN. As illustrated, the input map of the kth neuron at the

current layer, xlk, is obtained by pooling the final output

maps, yl�1
i of the previous layer neurons operated with its

corresponding kernels, wl
ki, as in Eq. (1). A close look to

Eq. (1) will reveal the fact that when the pool operator is

‘‘summation’’,Pl
k ¼

P
, and the nodal operator is ‘‘linear’’,

Wl
ki y

l�1
i m; nð Þ;wl

ki r; tð Þ
� �

¼ wl
ki r; tð Þyl�1

i m; nð Þ, for all neu-
rons, then the resulting homogenous ONN will be identical

to a CNN. Hence, ONNs are indeed the superset of CNNs

as the GOPs are the superset of MLPs.
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xlk ¼ blk þ
XNl�1

i¼1

oper2D wl
ki; y

l�1
i ;

0
NoZeroPad

0
� �

xlk m; nð Þ
�
� M�1;N�1ð Þ
0;0ð Þ ¼ blkþ

XNl�1

i¼1

Pl
k

Wl
ki w

l
ki 0; 0ð Þ; yl�1

i m; nð Þ
� �

; . . .;

Wl
ki w

l
ki r; tð Þ; yl�1

i mþ r; nþ tð Þ; . . .
� �

; . . .

" # !

ð1Þ

For Back-Propagation (BP) training of an ONN, the

following four consecutive stages should be iteratively

performed: (1) Computation of the delta error, DL
1 ; at the

output layer, (2) Inter-BP between two consecutive oper-

ational layers, (3) Intra-BP in an operational neuron, and 4)

Computation of the weight (operator kernel) and bias

sensitivities in order to update them at each BP iteration.

Stage-3 also takes care of sub-sampling (pooling) opera-

tions whenever they are applied in the neuron. BP training

is briefly formulated in Appendix A while further details

can be obtained from [35].

3 Synaptic plasticity monitoring

Synaptic plasticity is a natural process that enables learning

of a new ability or concept so that the brain can (learn to)

respond appropriately to the changes in the environment.

Therefore, a drastic ‘‘variation’’ of synaptic connection

strength indicates an ongoing learning process or equiva-

lently, it confirms the neurons’ involvement in the learning

process. Conversely, if the neuron’s synapses are idle,

which means that the strength of the synapses is not plastic,

rather static, hence the neuron is neither learning nor

involved in (or contributing to) the ongoing learning

process.

3.1 A. Computation of health factors

When this phenomenon is reflected to the neurons of an

ONN with varying synaptic connections -or equivalently

distinct operators, this can indeed be the right model to

measure the health factor (HF) of each hidden neuron when

a new operator set is assigned. First of all, the synaptic

plasticity of a hidden neuron depends on the following two

factors: (1) the hidden layer where it resides, and (2) its

operator set. As the prior studies [27, 28] have shown, in a

particular hidden layer, neurons with an improper operator

set do not contribute to the learning at all, and hence the BP

training will fail to achieve the (learning) objective.

Therefore, those neurons that contribute the most to the

learning process with the best-possible operator set(s) are

expected to exhibit a high synaptic plasticity, quantified by

a high variation in the connection strength. Therefore,

during the synaptic plasticity monitoring (SPM) in the prior

BP run, for a certain period of time (number of iterations),

the variation in the connection strength of a neuron in a

hidden layer can be computed from the strength of its

connections (weights) to the next layer neurons.

Consider the case of the kth neuron at layer l with a

particular operator set h assigned to it. Its output, ylk, will be
utilized by all the neurons in the next layer with their

individual weights as expressed in Eq. (10) in Appendix A.

Now, the principle of synaptic plasticity entails that if

wlþ1
ik 8i 2 1;Nlþ1½ � undergoes a significant change from its

initial value, then the neuron k makes a meaningful con-

tribution to the ongoing learning (training) process.

Accordingly, during the prior BP run, once a new operator

set, h, is assigned to the kth neuron at layer l, we shall

monitor the normalized average strength (power) variation

of wlþ1
ik 8i 2 1;Nlþ1½ � within a sufficient window of BP

Fig. 1 Three consecutive convolutional (left) and operational (right) layers with the kth neuron of a CNN (left) and an ONN (right)
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iterations. Then as expressed in Eq. (2), one can compute

the instantaneous health factor HFk;l
h tð Þ; by first computing

the average weight power (variance), r2k tð Þ, and then

computing the absolute change occurred after a preset

number of iterations, M.

HFk;l
h tð Þ ¼

�r2k t �Mð Þ � �r2k tð Þ
�
�

�
�

�r2k t �Mð Þ

where �r2k tð Þ ¼

PNlþ1

i¼1 r2
wlþ1
ik

tð Þ
Nlþ1

and

r2
wlþ1
ik

tð Þ ¼
PKx

r¼1

PKy

p¼1 wlþ1
ik r; pð Þ � lw

� �2

KxKy

ð2Þ

where lw is the sample mean of the weight, wlþ1
ik , of the kth

neuron. It is evident that, owing to the stochastic nature of

BP, there is no guarantee that the instantaneous health

factor, HFk;l
h tð Þ of the operator set, h 2 fh�Ng will corre-

spond to the maximum potential synaptic plasticity level

that can be achieved by this particular operator set.

Therefore, several (e.g., S) SPM sessions will be performed

to capture the overall, long-term trend of the synaptic

plasticity levels of each operator set. At the end of the prior

BP run, for each hidden layer l, the final HF of each

operator set will be the average of all the instantaneous

HFs computed during the SPM sessions, as expressed

below:

HFl
h ¼ avgk;tðHFðk;lÞ

h ðtÞÞ for 8l 1; L� 1½ �½ � ð3Þ

3.2 B. SPM Implementation

SPM is designed to compute the HF of each operator set

several times. In this way, the likelihood to ‘‘capture’’ the

potential plasticity level of a synaptic (nodal) connection

strength (weight variance) is increased. In practice, the

monitoring of the strengths (powers) of each hidden neu-

ron’s connection weights, wlþ1
ik , is performed periodically

at every M iterations. As shown in Fig. 2, the periodic

synaptic plasticity monitoring (SPM) is, therefore, an

embedded process into the prior BP that performs three

tasks: (1) Computation of the (instantaneous) HF of each

operator set at each neuron of each hidden layer, (2)

Updating the average HF of each operator set, and (3)

Assigning new operator sets randomly to each neuron.

SPM is designed to improve the network maturity by

favoring the ‘‘promising’’ sets with a high HF during ran-

dom selection in task 3. To accomplish this, once enough

statistics are obtained to compute the average HF for each

operator set, i.e., after a certain number of SPM ses-

sions,.M, the HFs are unit-normalized to approximate the

probability density function (pdf) of the operator sets in the

library. The approximate pdf is then used directly in the

random operator set assignment in task 3, i.e., the proba-

bility to choose an operator set is no longer uniform but is

the corresponding probability in the pdf, as expressed

below’’

Pl hð Þ ¼ HFl
h tð Þ

P
h HF

l
h tð Þ for 8l 2 1; L� 1½ �½ � ð4Þ

In this way, the likelihood of choosing an operator is

made to be directly proportional to its HF. As a conse-

quence of this improvised random assignment, each ran-

dom ONN, ONN*(h) that will be configured during later

SPM sessions might even have the potential to provide an

adequate learning performance on its own, given a suffi-

cient number of BP iterations. In this case, one can deduce

that the learning problem requires a high level of hetero-

geneity since ONN*(h) will be highly heterogenous due to

the random assignments. Otherwise, the final health factors

of the operator sets, HFl
h, can then be used to form an elite

ONN with the top-ranked operator sets at each hidden

layer. This will be detailed next.

3.3 C. Configuration of the elite ONN

The final HFs computed per hidden layer, HFl
h, can now be

used to form the ‘‘elite ONN’’ for the learning problem in

hand. In a particular hidden layer, the order of neurons with

a particular operator set does not matter due to a fully

connected network model, so, the aim is to determine the

optimal number of neurons that will have a particular

operator set assigned to them. Since the number of hidden

neurons in the ONN configuration is fixed in advance, e.g.,

12 for the sample ONN used in this study, this is equivalent

to finding the optimal ‘‘density’’ for each operator set.

Ideally, the density of an operator set should reflect the

synaptic plasticity level it has demonstrated during the

learning (training) process. Therefore, the density is com-

puted to be proportional to the final HF of that operator set.

There can be several approaches among which the

heterogeneity level of the ONNs differ. In an extreme case,

only the top operator set of a hidden layer with the highest

final HF is assigned to all hidden neurons of that layer. This

makes ‘‘homogenous’’ layers like the convolutional layers

of a conventional CNN, but the ONN network will still be

heterogeneous (different operator sets at each layer).

However, for certain problems and large ONNs with many

neurons, such a limited heterogeneity may cause perfor-

mance degradation. Another extreme case is to use all the

operator sets in the library with the densities proportional

to HFs; however, this may also cause a practical problem

especially for compact ONNs with only few hidden neu-

rons. Ultimately, the question that we seek the answer for
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is: should an operator set with a relatively low HF be

assigned to a neuron or that neuron is used instead for

another operator set with higher HF? Especially assigning

those operator sets with too low HFs does not make sense

in any case. In this study, we shall investigate this for

compact ONNs by assigning the top-S operator sets having

the S number of the highest HFs to the neurons of each

hidden layer, and discard the rest of the sets entirely. One

can consider the two extreme cases by simply assigning

S = N and S = 1, respectively.

Let HFl
hi
for i ¼ 1 : S, be the final HF of the ith top-S

operator set at layer l. The density, dlhi , and the number of

neurons, nlhi that will be assigned to the ith top-S operator

set can be expressed as follows:

dlhi ¼
HFl

hiPS
i¼1 HF

l
hi

! nlhi ¼ Nld
l
hi

j k
fori ¼ 2 : S

nlh1 ¼ Nl �
XS

i¼2

nlhi

ð5Þ

where Nl is the total number of hidden neurons at layer l,

and .b c denotes the floor operator. Note that the number of

neurons to which the operator set with the highest HF is

assigned, nlh1 , is computed after all the other sets are

assigned. This will ensure that all the neurons at layer l will

have an operator set assigned.

4 Experimental results

In this section we perform comparative evaluations of the

elite ONNs, configured by SPM as presented in Section III.

C, over three challenging problems: (1) Image Denoising,

(2) Image Syntheses, and (3) Image Transformation. The

latter two problems are common with [35] while we tried

ONNs over a more challenging Image Denoising problem.

In order to demonstrate the learning capabilities of the elite

ONNs better, we introduce the same training constraints:

(1) Low Resolution: We keep the image resolution very

low, e.g., thumbnail size (i.e., 60 9 60 pixels).

(2) Compact Model: We keep the elite ONN configura-

tion compact, e.g., only two hidden layers with 24

hidden neurons, i.e., Inx12x12xOut as shown in

Fig. 3.

(3) Scarce Training Data: For problems that require

learning a generalized model such as image denois-

ing, we train the network over a limited data (i.e.,

only 10% of the dataset) while testing over the rest

with 10-fold cross validation.

(4) Multiple Regressions: For the two regression prob-

lems (image syntheses and transformation), a single

network is trained to regress multiple (e.g., 4–8)

images at once.

A. Experimental Setup

In any BP training session, for each iteration, t, with the

MSE obtained at the output layer, E(t), a global adaptation

of the learning rate, e, is performed within the range

[2.10-1, 1.10-6], as follows:

HF(θ)

ONN(θ) ONN*(θ)

BACKPROP 
ITERATION

UPDATE 
HF(θ)

Randomize operators 
using P(θ)

Randomize operators 
uniformly

D
ur

in
g 

10
 S

PM
 

se
ss

io
ns

A
�er 10 SPM

 
sessions

Iter == SMRandomize 
Parameters

(Iter % M) != 0

(Iter % M) == 0

IF IF
Iter++monP += 1

Averaged per 
operator per 

layer HFs

Fig. 2 Flowchart illustrating a single SPM session

Layer 1: Feature Maps
12 @ 37x37

21x21 7x7

3x3

Layer 2: Feature Maps
12 @ 62x62Input Image Output Layer

60x60

oper2D
MaxPool

oper2D
UpSample oper2D

Fig. 3 Architecture of the compact neural network architecture used

for experiments in this study
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eðtÞ ¼
aeðt � 1Þ if EðtÞ Eðt � 1Þ and aeðt � 1Þ� 5:10�1

beðt � 1Þ if EðtÞ�Eðt � 1Þ and beðt � 1Þ� 5:10�5

eðt � 1Þ else

8
><

>:

9
>=

>;

ð6Þ

where a = 1.05 and b = 0.7, respectively. Since BP train-

ing is based on stochastic gradient descent, for each

problem we shall perform 10 BP runs, each with random

parameter initialization.

The operator set library that is used to form the ONNs to

tackle the challenging learning problems in this study is

composed of a few essential nodal, pool, and activation

operators. Table 1 presents the 7 nodal operators used

along with their partial derivatives, rwW
lþ1
ki and ryW

lþ1
ki

with respect to the weight,wlþ1
ik , and the output,ylk of the

previous layer neuron respectively. Similarly, Table 2

presents the two common pool operators and their deriva-

tives with respect to the nodal term,
PNl

k¼1

Wlþ1
i wlþ1

ik ; ylk
� �

Finally, Table 3 presents the two common activation

functions (operators) and their derivatives (cut = 10 for the

lin-cut operator). Using these lookup tables, the error at the

output layer can be backpropagated and the weight sensi-

tivities can be computed. The top section of Table 4 enu-

merates each potential operator set and the bottom section

presents the index of each individual operator set in the

operator set library, fh�Ng, which will be used in all

experiments. There is a total of N = 7x2x2 = 28 distinct

operator sets that constitute the operator set library, fh�Ng.
Let hi : ipool; iact; inodal

� �
be the ith operator set in the

library. Note that the first operator set,h0 : 0; 0; 0f g with

index

Table 1 Nodal operators and derivatives

Table 2 Pool operators and derivatives
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i ¼ 0, belongs to the native operators of a CNN to

perform linear convolution with traditional activation

function, tanh. In accordance with the activation operators

used, the dynamic ranges of the input/output images in all

problems are normalized to within [-1, 1] as follows:

Ii ¼ 2
Ii �min Ið Þ

max Ið Þ �min Ið Þ � 1 ð7Þ

where Ii is the ith pixel value in an image, I.

As mentioned earlier, and illustrated in Fig. 3, the same

compact network configuration with only two hidden layers

and a total of 24 hidden neurons, Inx12x12xOut is used in

all the experiments. The first hidden layer applies sub-

sampling by ssx ¼ ssy ¼ 2; and the second one applies up-

sampling by usx ¼ usy ¼ 2.

B. SPM Results

During each SPM session, average weight power (vari-

ance), r2k tð Þ and health factors for operator sets, HFk;l
h tð Þ,

assigned to hidden neurons (k = 1:12) of each hidden layer

(l = 1:2) are computed. Figure 4 shows the average weight

power (variance), r2k tð Þ plots of some operator sets which

belong to the hidden neurons at the 2nd hidden layer, during

the first SPM session of the prior BP run. The operator

search is performed for the 1st fold of the Image Trans-

formation problem where a single network learns to per-

form four distinct image-to-image translations. The

duration of the monitoring window M is kept as 80 itera-

tions, starting at the first iteration. Except for the first

problem (denoising) we omit the usage of the ‘‘median’’

pool operator, and therefore, reduce the operator set

library’s cardinality to 1 9 297 = 14. It is apparent from

Fig. 5 that the operator set with the highest and lowest HF2
h

is h ¼ 6:(0, 0, 6) for the pool (sum = 0), activation

(tanh = 0) and nodal (chirp = 6) and h ¼ 0:(0, 0, 0) for the

native CNN operator, linear convolution, respectively.

Note that during the random operator assignment to layer

2, the operator set h ¼ 4:(0, 0, 4) with nodal operator

Hyperbolic Sine (sinh) is assigned to 4 neurons and hence

there are 4 plots of �r2k tð Þ each corresponding to a different,

hidden neuron. For this set, the maximum health factor,

i.e., max
k

HFk;2
h¼4 80ð Þ, computed among the 4 neurons is

presented in the plot. The omitted plots belong to the

operator sets with indices 7 (HFk;2
h¼7 80ð Þ ¼ 0:01), 8

(HFk;2
h¼8 80ð Þ ¼ 0:03) and 12 (HFk;2

h¼12 80ð Þ ¼ 0:05). Note

that these operator sets share the same nodal and pool

operators with the sets, 0, 1, and 5, respectively. Obviously,

the 2nd activation function (lin-cut) has failed to improve

the HF for the operator sets 0 and 1 while much worse HF

(HFk;2
h¼12 80ð Þ ¼ 0:05) is obtained compared to

HFk;2
h¼5 80ð Þ ¼ 0:80. However, it is too early to make any

decisive judgements on the learning capability of each

operator set with a single SPM session over an immature

ONN. As reasoned earlier, several SPM sessions are indeed

Table 4 Operator enumeration (top) and the index of each operator

set (bottom)

i 0 1 2 3 4 5 6

Pool sum median

Act. tanh lin-cut

Nodal mul. cubic sin exp sinh sinc chirp

fh�Ng Index Pool Act. Nodal

0 0 0 0

1 0 0 1

2 0 0 2

3 0 0 3

4 0 0 4

5 0 0 5

6 0 0 6

7 0 1 0

8 0 1 1

… … … …
26 1 1 5

27 1 1 6

Table 3 Activation operators and derivatives
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required within the prior BP run to accurately approximate

the true synaptic plasticity level of each operator set.

Figure 5 shows the same plots of some operators for the

8th SPM session starting at BP iteration 640. The omitted

plots belong to the operator sets with indices 12

(HFk;2
h¼12 720ð Þ ¼ 0:16) and 13 (HFk;2

h¼13 720ð Þ ¼ 0:38). Note

that these operator sets share the same nodal and pool

operators with the sets, 5 and 6, respectively; however,

their learning performance is, so far, worse due to the

different activation operator used. Comparing with the

corresponding plots in Fig. 4, several observations can be

made. First of all, plots for operator sets 0, and 4 in Fig. 4

no longer exist since they are among the worst operator sets

for layer 2, their neurons are considered as unhealthy and

thus new sets in the SPM pool will randomly be assigned.

On the other hand, there are two new operator sets, 2, and

3, that were selected into the SPM pool before. Among the

common operator sets, 1, 5 and 6, HFk;2
h¼1 720ð Þ ¼ 0:09 and

especially HFk;2
h¼5 720ð Þ¼ 0:14 are now much lower than the

corresponding health factors at the first SPM session, while

the HFk;2
h¼6 720ð Þ = 2.93 becomes significantly higher than

before.

Table 5 presents the final health factors, HFl
h, at the end

of the three prior BP runs. For layer 2, the best operator set

is h ¼ 6 with a significantly high HF. The second-best set is

h ¼ 13, which uses the same pool (sum) and nodal operator

(chirp) but a different activation function (lin-cut). How-

ever, it has achieved much lower HF than h ¼ 6, while the

third-best set is h ¼ 2. All the other operator sets have

achieved HFs 0.2 or below. For layer 1, operator set h ¼ 5

has the highest HF but, unlike layer 2, the margin is quite

slim. This basically shows that several operator sets can be

used for the first hidden layer. The set h ¼ 11 has the

lowest HF for both hidden layers and thus became the

worst operator set for this problem.

On another Image Transformation fold (3rd), Fig. 6

shows the average weight power (variance), �r2k tð Þ plots of
some operator sets during the first SPM session of the prior

BP run. This time the operator set 0 (linear convolution)

has achieved the highest HF among others. At the end of

the prior BP run, the final HFs, HFl
h, presented in Table 6

indicates the top three operator sets for layer 1 are 8, 0 and

10. One can also notice that the operator set h ¼ 6 has

consistently the highest HF for layer 2, and the set h ¼ 11

has again the lowest HFs for both layers.

C. Comparative Evaluations and Results

In order to evaluate the learning performance of the

ONNs for the three regression problems, image denoising,

synthesis and transformation, we used the Signal-to-Noise

Ratio (SNR) evaluation metric, which is defined as the

ratio of the signal power to noise power, i.e.,

SNR ¼ 10log r2signal=r
2
noise

� �
. The ground-truth image is

the original signal and its difference to the actual output

yields the ‘‘noise’’ image. Besides the comparative evalu-

ations of each problem tackled by the elite ONNs and

Fig. 4 For Image Transformation problem (1st cross-validation), SNR (bottom, right) and average weight power (variance), r2k tð Þ plots for 2nd
layer neurons with operator sets, h: 0, 1, 4, 5 and 6. This is for the first (p = 1) SPM session of the prior BP of the sample ONN
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conventional CNNs, the following sub-sections will espe-

cially present a detailed evaluation of the proposed SPM

for finding the best and also the worst (set of) operator

set(s) for each problem. Finally, an experimental analysis

will exploit the role of heterogeneity in ONNs to achieve

the maximum learning performance. For this we shall

evaluate the best ONN trained during the prior BP,

ONN*(h), and the ONNs configured by top-S ranked

operator sets used and then trained from scratch with 10

individual BP runs among which the best ONN with the

highest learning performance will be taken. Similarly, for a

fair comparison, 10 individual BP runs, each compromising

of 240 iterations, are performed and the best network with

the top performance on the training set is selected for the

comparative evaluation.

(1) Image Denoising

The denoising application for additive White Gaussian

Noise (AWGN) is a typical domain for deep CNNs that

have recently achieved state-of-the-art performances

[36–40]. ONNs outperformed CNNs over AWGN denois-

ing [35] with a SNR gap around 1 dB. To make a more

challenging application, in this study we corrupted images

by ‘‘Salt and Pepper’’ noise with p = 0.4 probability.

Unlike traditional approaches, which mostly deal with mild

noise, such a noise probability is so high that makes most

of the corrupted images practically incomprehensible by

the naked eye. In order to perform comparative

evaluations, we used 1000 images from Pascal VOC

database. Such a restriction has been applied in order to

evaluate the learning potential of ONNs for harsh denois-

ing applications. The dataset is partitioned into train (10%)

and test (90%) with 10-fold cross-validation. So, for each

fold, both network types are trained 10 times by BP over

the train (100 images) partition and tested over the rest

(900 images). For this problem, we have used the pool

operator, ‘‘median’’ but omit the activation operator ‘‘lin-

cut’’. Therefore, the operator library is still composed of

2x1x7 = 14 operator sets. The prior BP run for SPM has

been performed only once to rank the operator sets per

layer, and then an elite ONN formed with top-S ranked sets

is then trained for each fold. At the end, the average per-

formances (over both train and test partitions) of the

10-fold cross-validation are compared for the final

evaluation.

Figure 7 shows the HF bar plots per operator set from

the prior BP run of the first fold. For layer-1, the top-4

operator sets are h ¼ 2, h ¼ 8, h ¼ 0 and h ¼ 10. It is

expected to see the two top operators (h ¼ 8 and 10) use

median pool operator in the first layer. For layer 2, the set

h ¼ 4, with nodal operator sinh becomes the best with a

significant margin. The 2nd and 3rd top operators are h ¼ 3

and h ¼ 0 with exponential and linear nodal operators,

respectively.

Interestingly, the native sole operator of a CNN, h ¼ 0

(convolution) has the 3rd rank in both layers. Especially, for

Fig. 5 For Image Transformation problem (1st cross-validation), SNR (bottom, right) and average weight power (variance), r2k tð Þ plots for 2nd
layer neurons with operator sets, h: 1, 2, 3, 5 and 6. This is for the 8th (p = 8) SPM session of the prior BP of the sample ONN
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layer-1, the difference between HF1
0 and HF1

2 or HF
1
8 is not

significant. However, for layer-2 there is a significant gap

between HF2
0 and the HF of the top operator set, HF2

4 .

Therefore, one can expect that this will naturally reflect on

the performances of the CNN and the elite ONN.

Figure 8 shows the train and test SNR plots of the top-

performing CNNs and ONNs among the 10 BP runs cor-

responding to each fold whereas Table 7 presents the

average SNR values, respectively. The results clearly show

that the elite and the worst ONNs configured according to

the top-S and bottom-S operator sets found during SPM

obtain the best and the worst results. This basically vali-

dates the notion that an SPM during a prior BP run can

indeed rank the operator sets at each layer accurately from

the best to the worst. For this problem, it is quite apparent

that the elite ONN with S = 3 performs significantly better

than the one with S = 1. This shows that increasing the

heterogeneity level of the ONN improves both the learning

Fig. 6 For Image Transformation problem (3rd cross-validation), the average weight power (variance), r2k tð Þ plots for 1st layer neurons with

operator sets, h: 0, 2, 5, 7, 11 and 13. This is for the 1st (p = 1) SPM session of the prior BP of the sample ONN

Table 6 For Image Transformation problem (3rd cross-validation), at the end of the prior BP run, the final health factors, HFl
h, are presented

below for all operator sets in the library, 8h 2 fh�Ng, assigned to neurons in levels 1 and 2 (L1 and L2)

h: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

L1 2.03 1.70 1.37 1.24 1.59 1.39 0.90 1.80 2.10 1.79 2.01 0.39 1.72 0.53

L2 0.13 0.12 0.16 0.13 0.06 0.24 0.72 0.16 0.20 0.26 0.10 0.01 0.13 0.24

The maximum (bold) and minimum (red) HF values are italicized

Table 5 For Image Transformation problem (1st cross-validation), at the end of the prior BP run for 1st X-validation set, the final health factors,

HFl
h, are presented below for all operator sets in the library, 8h 2 fh�Ng, assigned to neurons in levels 1 and 2 (L1 and L2)

h: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

L1 1.15 1.15 0.97 1.26 0.82 1.31 0.74 0.85 1.09 0.88 0.74 0.33 1.12 0.80

L2 0.09 0.22 0.20 0.18 0.02 0.13 0.67 0.04 0.20 0.17 0.04 0.00 0.17 0.23

The maximum (bold) and minimum (red) HF values are highlighted

Neural Computing and Applications (2021) 33:7997–8015 8007

123



and generalization performance for image denoising. The

elite ONN with S = 3 significantly surpasses the CNN

([ 1.5 dB on both train and test average SNR values).

For a visual evaluation, Figs. 9 and 10 show randomly

selected original (target),noisy (input) images and the

corresponding outputs of the best CNNs and ONNs from

the test partition. Over both train and test denoising

examples, the elite ONN exhibits a substantial increase in

denoising performance from those highly corrupted input

images. Most of the object edges are intact and the back-

ground uniformity has been highly preserved. On the other

hand, the CNN results show a severe blurring on the edges

and deterioration of both foreground and background tex-

tual patterns, some of which makes it impossible to realize

the true content of the restored image.

(2) Image Synthesis

Image syntheses is a typical regression problem where a

single network learns to synthesize a set of images from

individual noise (WGN) images. As recommended in [35],

we train a single network to (learn to) synthesize 8 (target)

images from 8 WGN (input) images, as illustrated in

Fig. 11. We repeat the experiment 10 times (folds) each

with different set of target images, so 8x10 = 80 images

randomly selected from Pascal VOC dataset. The gray-

scaled and down-sampled original images are the target

outputs while the WGN images are the input. For each trial,

we first performed a single prior BP run with S = 30 SPM

sessions each with M = 80 iterations in order to compute

HFl
h using which 2 elite (and 2 worst) ONNs are configured

with top-S and bottom-S operator sets for S = 1 and S = 3.

Figure 12 shows the average HF bar plots per operator

set from each prior BP run of the 10-fold cross validation.

For layer-1, the top three operator sets are usually h ¼ 10

and h ¼ 9or8, and sometimes h ¼ 7. It appears that the

activation operator (lin-cut) makes a significant difference

in the top operator sets with nodal operators exp, cubic and

sine. The operator set, h ¼ 7, corresponds to linear con-

volution with lin-cut activation operator, and in 3 out of 10

cross-validations, it was one of the top-3 operator sets. For

layer-2, the set h ¼ 6, with nodal operator chirp was

always the top operator set in all cross validation runs

without any exception. It is indeed the most dominant

set almost in all runs with the highest final HF usually more

than 3 times higher than any other. The 2nd and 3rd top

operators were usually h ¼ 9 and h ¼ 13 with sine and

chirp nodal operators, respectively. On the other hand, the

worst three operators for this layer are h ¼ 4 or 11,

h ¼ 3 or 10, and h ¼ 0 or 7, which correspond to sinh, exp

and linear convolution operations respectively.

Figure 13 shows the SNR plots of the top-performing

CNNs and elite ONNs among the 10 BP runs for each

syntheses experiment (fold) whereas Table 8 presents the

average SNR and MSE levels, respectively. The results

again show that the elite and the worst ONNs configured

according to the top-S and bottom-S operator sets perform

as expected. For this particular problem, it is quite apparent

that the elite ONN with S = 1 performs significantly better

than the one with S = 3. This is actually an expected out-

come due to the superiority of the operator set, h ¼ 6,

whereas the usage of the 2nd and 3rd top operator sets

instead of the best operator set degrades the learning per-

formance. In other words, for this problem increasing the

heterogeneity level of the ONN does not improve the

learning performance. In terms of average SNR, the elite

ONN with S = 1 significantly surpasses the CNN

([ 2.5 dB) and also surpassed the GIS-configured ONN in

[35] around 1.3 dB despite the fact that the total number of

hidden neurons is less (24 vs. 48). This basically shows that

SPM can find better operator sets than GIS.

For a visual comparative evaluation, Fig. 14 shows a

random set of 14 syntheses outputs of the best CNNs and

elite ONNs with the target image. The performance gap is

also clear here especially some of the CNN outputs have

suffered from severe blurring and/or textural artefacts.

Fig. 7 HFl
h vs. h plots for l = 1 (top) and l = 2 (bottom) used in all

10-fold cross validation runs for Image Denoising
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(3) Image Transformation

This problem aims to test whether a network can (learn

to) transform one set of images to another. It is commonly

referred to as ‘‘Image-to-Image Translation’’ in contem-

porary literature and various Deep CNNs have recently

been proposed for related tasks [42], [43] such as edge-to-

image, gray-scale-to-color image, day-to-night (or vice

versa) photo translation, etc. It is worth noting that, in all

these applications, the input and output (target) images are

closely related and contain the same contextual informa-

tion, albeit with a certain degree of corruption. In [35], this

problem has become more challenging where each image is

transformed to an entirely different image. Moreover, it

was also tested whether or not a single network can learn to

transform an input image to an output image and vice

versa. Evidently, such an inverse problem was the hardest

problem tackled in this study due to the distinct and

complex patterns and texture of input and output images.

To further intricate the problem, the same network was

trained to (learn to) transform 4 (target) images from 4

input images. In this study, we adopted the same experi-

mental settings in [35], and accordingly we repeat the

experiment 10 times (folds) using the close-up ‘‘face’’

images most of which are taken from the FDDB face

detection dataset [44].

Figure 15 shows the average HF bar plots per operator

set from each prior BP run of the 10-fold cross validation.

For layer-1, the top three operator sets are usually h ¼
1 or 8 and h ¼ 2 or 9, and h ¼ 0. It appears that the acti-

vation operator does not make a difference in the top-2

operator sets with nodal operators cubic and sine. The third

operator set, h ¼ 0, corresponds to linear convolution and

in 4 out of 10 cross-validations, it was one of the top-3

operator sets. Occasionally, h ¼ 3, and h ¼ 5, too with

nodal operators exponential and chirp, respectively, were

among the top-3 too. For layer-2, the set h ¼ 6, with nodal

operator chirp was always the top operator set in all folds

without any exception. It is indeed the most dominant

set almost in all runs with the highest final HF usually more

than 3 times higher than any other. The 2nd and 3rd top

operators were usually h ¼ 9or2 and h ¼ 13 which corre-

spond to sine and again chirp nodal operators. Similar to

the image syntheses problem, the worst two operators for

this layer are h ¼ 4or11 and h ¼ 0or7, (sinh and linear

convolution), respectively. These operators were never

found to be amongst the top-5 operators in any fold.

Figure 16 shows the SNR plots of the best CNNs and

ONNs among the 10 BP runs for each fold whereas Table 9

presents the average SNR and MSE levels, respectively.

Similar arguments and conclusions can be drawn as before.

As in the Image Synthesis problem, the elite ONN with

Fig. 8 Best SNR levels for each denoising fold achieved by the top-

performing CNNs (grey) and elite ONNs for the train (top) and test

(bottom) set partitions of Pascal database

Table 7 Train and test average

SNRs achieved in Image

Denoising during 10-fold cross-

validation

Avg. SNR Elite (S = 1) Elite (S = 3) CNN Worst (S = 3) Worst (S = 1)

Train 5.74 6.09 4.25 -1.12 -0.96

Test 5.14 5.42 3.70 -1.34 -1.44

The best (bold) and worst (red) SNR values are italicized
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S = 1 surpassed the elite ONN with S = 3. This is, once

again, an expected outcome due to the superiority of the

operator set, h ¼ 6, where the usage of other two sets in the

elite ONN with S = 3 causes a performance loss. Once

again, we can see that when there is such a dominant

operator set in a hidden layer and limited number of neu-

rons in a compact network, the usage of the best operator

set yields the top performance.

On the other hand, the performance of the worst ONN

with S = 3 is better than the worst ONN with S = 1 and

even the CNN. Especially for 2 folds out of 10, SNR[ 9

dB which indicates that one of the operator set is under-

evaluated. This is perhaps because S = 30 SPM sessions or

M = 80 iterations for a session were not sufficiently long

enough to capture the true synaptic plasticity level of this

Input TargetCNN ONN

Fig. 9 Randomly selected original (target) and noisy (input) images

and the corresponding outputs of the best CNNs and ONNs from the

train partition

Input TargetCNN ONN

Fig. 10 Randomly selected original (target) and noisy (input) images

and the corresponding outputs of the best CNNs and ONNs from the

test partition
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operator set. In either case, this shows that for this partic-

ular problem, the heterogenous ONN with three different

operator sets at each hidden layer significantly surpasses a

homogenous network like CNN, which performs only

better than the worst ONN with S = 1.

Figures 17 and 18 show the image transformation

results for the 1st, 3rd and 4th folds, respectively. In

Fig. 17, the elite ONN with top-1 operator set has shown a

superior performance compared to the three CNN config-

urations, CNN (default configuration that is same as ONN),

CNNx4 and CNNx16 with 4 and 16 times more network

parameters, respectively. This is the toughest fold (1st fold)

where the two inverse problems (two input and output

images are swapped). Although the CNN with 16 times

more parameters (having 48 hidden neurons at each hidden

layer) is trained over a single (1 ? 1) image transforma-

tion, the result is improved but still far from a satisfactory

level. Similar observations can be made on the results

shown in Fig. 18.

As in Image Syntheses problem, the elite (top-1) ONN

with 24 neurons also surpassed the ONN (with 48 neurons)

configured by GIS in [35] by more than 3 dB SNR on the

average. As before, the proposed SPM has resulted better

Fig. 11 The outputs of the BP-trained ONN with the corresponding

input (WGN) and target (original) images from the 2nd syntheses fold

Fig. 12 Average HFl
h vs. h plots for l = 1 (top) and l = 2 (bottom)

from 10-fold X-validation runs for Image Synthesis

Fig. 13 Best SNR levels for each synthesis fold achieved by the top-

performing CNNs (grey) and ONNs
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operator sets than the GIS. For instance, for fold 1, it was

reported in [35] the best operator sets found by GIS are 0

and 13 for the 1st and 2nd hidden layers whereas the

corresponding top operator sets are 1 and 6 by SPM,

respectively. With these operator sets, the SNR achieved

by the GIS optimized ONN and the elite (top-1) ONN are

10.99 dB versus 14.83 dB yielding a gap more than

3.5 dB. Once again, this shows how crucial to find the best

operator set(s) for each hidden neuron to achieve an utmost

learning performance.

5 Conclusions

Synaptic plasticity is a natural process that enables the

learning of a new ability, concept, or response to changes

in the environmental stimuli. This study uses this essential

paradigm to configure a highly heterogenous neural net-

work model, the ONN, that is inspired from two basic

phenomena: (1) varying synaptic connections of

heterogeneous, non-linear neurons in bio-neurological

systems such as the mammalian visual system, (2) direct

relation between diversity of neural operators and compu-

tational power [4] in biological neural networks wherein

adding more neural diversity allows the network size and

total connections to be reduced [10]. Empirically, these

studies have proven that only the heterogeneous networks

with the right operator set and proper training can truly

provide the required kernel transformation to discriminate

the classes of a given problem, or to approximate the

underlying complex function. In neuro-biology, this fact

has been revealed as the ‘‘neuro-diversity’’ or more pre-

cisely, ‘‘the biochemical diversity of the synaptic connec-

tions’’ [1, 4–8].

To find the right operator set for each hidden neuron,

this study proposes to use the synaptic plasticity paradigm

periodically during the learning (the prior BP training)

process. During the later SPM sessions, those operator sets

that exhibit a high synaptic plasticity level or the so-called

health factor (HF) are favored whilst the others are

TargetCNN ONN TargetCNN ONN

Fig. 14 A random set of 14 synthesis outputs of the best CNNs and

ONNs with the target images. The WGN input images are omitted

Fig. 15 Average HFl
h vs. h plots for l = 1 (top) and l = 2 (bottom)

from 10-fold X-validation runs for Image Transformation

Table 8 Average SNR and

MSE achieved in Image

Synthesis during 10-fold cross-

validation

Avg. Elite (S = 1) Elite (S = 3) CNN Worst (S = 3) Worst (S = 1)

SNR 12.76 10.88 10.23 -0.55 -0.76

MSE 0.77 1.24 1.34 18.64 20.91

The best (bold) and worst (red) SNR values are italicized
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suppressed to improve the maturity of the network, and

finally, they are all ranked based on their HFs. An elite

ONN is then formed by using the top-S ranked operator

sets in the neurons of each hidden layer. By assigning two

different S values, we then exploit the network hetero-

geneity over the learning performance of the ONNs. To

establish a complete ‘‘Proof of Concept’’, the bottom-S

ranked operator sets are also used in the so-called ‘‘worst’’

ONNs and evaluated against the elite ONNs, and the CNN.

Naturally, it can be expected that the elite ONNs should

surpass the native CNN while the worst ONNs should

perform the poorest of all. Over the challenging learning

problems that are tackled in this study, this expectation

holds in general; only in some minority cases, the need for

more SPM sessions is observed. This is due to the

stochastic nature of backpropagation where the true

synaptic plasticity potential of an operator set may not be

revealed unless a sufficient number of evaluation sessions

are performed. A surprising observation worth mentioning

is that the conventional CNNs with the same hyper-pa-

rameters and configuration may perform even poorer than

the worst-3 ONNs (ONNs configured by the bottom-3

operator sets). We foresee that the main reason is due to the

homogenous nature of CNNs where its sole operator, the

linear convolution, performs rather poorly in at least one of

the hidden layers. So, the lack of divergence may actually

cause it to perform even poorer than the worst-3 ONN but

not the worst-1 ONN, which also suffers from the limited

heterogeneity (i.e., same operator set is used for each

layer).

In all problems tackled in this study, the elite ONNs

exhibit a superior learning capability conventional CNNs

while the performance gap widens when the severity of the

problem increases. For instance, in image denoising, the

gap between the average SNR levels in train partition was

higher than 1.5 dB. On a harder problem, image synthesis,

the gap widens to above 2.5 dB. Finally, on the hardest

problem among all, image transformation, the gap excee-

ded beyond 10 dB unless a more complex CNN is used.

This is true for the GIS configured ONNs in [35] where

SPM has shown to be a better method for searching the top-

1 operator set than the GIS. Finally, besides the learning

performance, it is worth mentioning that the ONNs also

exhibit a superior generalization ability in the test partition

of the Image Denoising problem. This is actually an

expected outcome since the native operator of the CNN,

linear convolution, is an inferior choice especially for

layer-2 and it is revealed that this problem requires a higher

level of network heterogeneity for the utmost performance.

Fig. 16 Best SNR levels for each synthesis fold achieved by the top-

performing CNNs (grey) and ONNs

Network

Input Target ONN CNN CNNx4 CNNx16

4 4 4 4 4 4 1 1

Fig. 17 Image transformation of the 1st fold including two inverse

problems (left) and the outputs of the elite ONN and three CNN

configurations (equivalent, CNNx4 and CNNx16 with 4 and 16 times

more parameters, respectively). On the bottom, the numbers of input

target images are shown

Table 9 Average SNR and MSE achieved in Image Transformation during 10-fold cross-validation

Avg. Elite (S = 1) Elite (S = 3) CNN Worst (S = 3) Worst (S = 1)

SNR 14.07 12.86 2.78 5.86 -0.49

MSE 0.9 1.19 11.94 7.45 24.33

The best (bold) and worst (red) SNR values are italicized
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We can conclude that this requires a deeper investigation

especially for larger and more complex networks and we

believe that heterogeneity is the key factor for many large-

scale machine learning problems and datasets. This will be

the topic of our future research.
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