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Abstract One of the most important policies adopted in inventory control is the replenish-
ment cycle policy. Such a policy provides an effective means of damping planning instability
and coping with demand uncertainty. In this paper we develop a constraint programming ap-
proach able to compute optimal replenishment cycle policy parameters under non-stationary
stochastic demand, ordering, holding and shortage costs. We show how in our model it is
possible to exploit the convexity of the cost-function during the search to dynamically com-
pute bounds and perform cost-based filtering. Our computational experience show the effec-
tiveness of our approach. Furthermore, we use the optimal solutions to analyze the quality
of the solutions provided by an existing approximate mixed integer programming approach
that exploits a piecewise linear approximation for the cost function.
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1 Introduction

Much of the inventory control literature concerns the computation of optimal replenishment
policies under demand uncertainty. One of the most important policies adopted is the (R,S)
policy (also known as the replenishment cycle policy). A detailed discussion on the charac-
teristics of (R,S) can be found in de Kok (1991). In this policy a replenishment is placed
every R periods to raise the inventory position to the order-up-to-level S. This provides an
effective means of damping planning instability—deviations in planned orders, also known
as nervousness (de Kok and Inderfurth 1997, Heisig 2002)—and coping with demand un-
certainty. As pointed out by Silver et al. (1998, pp. 236–237), (R,S) is particularly appealing
when items are ordered from the same supplier or require resource sharing. In these cases
all items in a coordinated group can be given the same replenishment period. Periodic re-
view also allows a reasonable prediction of the level of the workload on the staff involved,
and is particularly suitable for advanced planning environments and risk management (Tang
2006). For these reasons (R,S) is a popular inventory policy.

As pointed out by Graves (1999) one major theme in the continuing development of
inventory theory is to incorporate more realistic assumptions about product demand into in-
ventory models. In most industrial contexts, demand is uncertain and hard to forecast. Many
demand histories behave like random walks that evolve over time with frequent changes
in their directions and rates of growth or decline. Furthermore, as product life cycles get
shorter, the randomness and unpredictability of these demand processes have become even
greater. In practice, for such demand processes, inventory managers often rely on forecasts
based on a time series of prior demand, such as a weighted moving average. Typically these
forecasts are predicated on a belief that the most recent demand observations are the best
predictors for future demand. An important class of stochastic production/inventory control
problems therefore assumes a non-stationary demand process (see e.g. Bayraktar and Lud-
kovski 2010). Under this assumption the (R,S) policy takes the non-stationary form (Rn,Sn)
where Rn denotes the length of the nth replenishment cycle and Sn the corresponding order-
up-to-level.

To compute the near optimal (Rn,Sn) policy parameters, Tarim and Kingsman (2006)
proposed a mixed integer programming (MIP) formulation using a piecewise linear approx-
imation to a complex cost function. Tarim and Kingsman assume a fixed procurement cost
each time a replenishment order is placed, whatever the size of the order, and a linear holding
cost on any unit carried over in inventory from one period to the next. Instead of including
a service level constraint—the probability that at the end of every time period the net inven-
tory is not negative set at least to a certain value (see Bookbinder and Tan 1988; Tarim and
Kingsman 2004; Tarim and Smith 2008; Tarim et al. 2009b; Rossi et al. 2008; Tempelmeier
2007; Pujawan and Silver 2008; and Rossi et al. 2011 for (Rn,Sn) under a service level
constraint)—their model employs a shortage cost scheme. So far no exact approach exists
for computing (Rn,Sn) policy parameters under a shortage cost scheme. In fact, as shown
in Tarim and Kingsman (2006), the cost structure is complex in this case and it differs sig-
nificantly from the one under a service level constraint. Tarim and Smith (2008) proposed
a constraint programming (CP) model under a service level constraint. In their work it was
shown that not only CP is able to provide a more compact formulation than the MIP one,
but that it is also able to perform faster and to take advantage of dedicated pre-processing
techniques that reduce the size of decision variable domains. Moreover dedicated cost-based
filtering techniques were proposed in Tarim et al. (2009b) for the same model, these tech-
niques are able to improve the performance of several orders of magnitude.
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In this paper, instead of employing a piecewise linear approximation to the expected total
cost function, we give an exact CP formulation of the (Rn,Sn) inventory control problem un-
der shortage cost scheme. Furthermore we propose a dedicated cost-based filtering method
(Focacci and Milano 1999) to improve the performance of the search. Our contribution is
two-fold: we can now efficiently obtain provably optimal solutions for the (Rn,Sn) inventory
control problem under shortage costs and we can gauge the accuracy of the piecewise lin-
ear approximation proposed by Tarim and Kingsman (2006). Our computational experience
shows the effectiveness of our approach.

This work is structured as follows. In Sect. 2 we introduce the problem of interest and
we develop the mathematical background that will be employed in order to develop our
CP model. In Sect. 3 we introduce CP. In Sect. 4 we discuss our CP model for computing
optimal (Rn,Sn) policy parameters. In Sect. 5 we introduce cost-based filtering techniques
for improving the efficiency of the search process. In Sect. 6 we present our computational
experience. In Sect. 7 we draw conclusions.

2 Problem definition and (Rn,Sn) policy

We consider the single stocking location, single product inventory problem over a finite
planning horizon of N periods. The demand dt in period t is assumed to be a normally dis-
tributed random variable with known probability density function (PDF) gt (dt ). Demand is
assumed to occur instantaneously at the beginning of each period. The mean rate of demand
may vary from period to period. Demands in different time periods are assumed to be inde-
pendent. Demands occurring when the system is out of stock are assumed to be back-ordered
and satisfied as soon as the next replenishment order arrives.

A fixed positive holding cost h is incurred on any unit carried over in inventory from one
period to the next. A fixed positive shortage cost s is incurred for each unit of demand that
is back-ordered. A fixed positive procurement (ordering or set-up) cost a is incurred each
time a replenishment order is placed, whatever the size of the order. In addition to the fixed
ordering cost, a positive proportional direct item cost v is incurred.

For convenience, and without loss of generality, the initial inventory level is set to zero.
We assume that the delivery lead-time is zero, and thus orders are delivered immediately.
It is assumed that negative orders are not allowed, so that if the actual stock exceeds the
order-up-to-level for that review, this excess stock is carried forward and does not return to
the supply source. However, such occurrences are regarded as rare events and accordingly
the cost of carrying the excess stock is ignored. The above assumptions hold for the rest of
this paper.

The general multi-period production/inventory problem with stochastic demands can be
formulated as finding the timing of the stock reviews and the size of non-negative replenish-
ment orders, Xt in period t , minimizing the expected total cost over a finite planning horizon
of N periods:

minE{T C} =
∫

d1

∫
d2

. . .

∫
dN

N∑
t=1

(aδt + vXt + hI+
t + sI−

t )

× g1(d1) . . . gN(dN)d(d1) . . .d(dN) (1)

subject to, for t = 1, . . . ,N,

Xt > 0 ⇒ δt = 1 (2)
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It =
t∑

i=1

(Xi − di) (3)

I+
t = max(0, It ) (4)

I−
t = −min(0, It ) (5)

Xt, I
+
t , I−

t ∈ R
+ ∪ {0}, It ∈ R, δt ∈ {0,1} (6)

where

dt : the demand in period t , a normal random variable with PDF gt (dt ),
a: the fixed ordering cost,
v: the proportional direct item cost,
h: the proportional stock holding cost,
s: the proportional shortage cost,
δt : a {0,1} variable that takes the value of 1 if a replenishment occurs in period t and 0

otherwise,
It : the inventory level at the end of period t , −∞ < It < +∞, I0 = 0

I+
t : the excess inventory at the end of period t carried over to the next period,

I−
t : the shortages at the end of period t , or magnitude of negative inventory,

Xt : the replenishment order placed and received in period t , Xt ≥ 0.

The proposed non-stationary (R,S) policy consists of a series of review times and as-
sociated order-up-to-levels. Consider a review schedule which has m reviews scheduled,
respectively, at {T1, T2, . . . , Tm}, where Tj > Tj−1, over the N-period planning horizon.
For convenience let T1 = 1 and Tm+1 = N + 1. In Tarim and Kingsman (2006), the deci-
sion variable XTi

is expressed in terms of a new variable St ∈ Z, according to the relation
XTi

= max(0, St − It−1). St may be interpreted as the opening stock level for period t , if
there is no review scheduled in this period (i.e. t /∈ {T1, T2, . . . , Tm} and, clearly, Xt = 0),
and as the order-up-to-level for the i-th review period Ti , if there is a review scheduled in
period t (i.e. t ∈ {T1, T2, . . . , Tm} and Xt ≥ 0). Let Dt1,t2 = ∑t2

j=t1
dj . According to the above

variable change the expected cost function, (1), is written as the summation of m intervals,
Ti to Ti+1 for i = 1, . . . ,m,

min E{T C} =
m∑

i=1

(
aδTi

+
Ti+1−1∑
t=Ti

E{CTi,t }
)

+ vIN + v

∫
D1,N

D1,N × g1,N (D1,N )d(D1,N ), (7)

where gi,j (Di,j ) is the PDF of Di,j and E{CTi,t } is defined as

∫ STi

−∞
h(STi

− DTi,t )g(DTi ,t )d(DTi ,t ) −
∫ ∞

STi

s(STi
− DTi,t )g(DTi ,t )d(DTi ,t ). (8)

The term v
∫

D1,N
D1,N ×g(D1,N )d(D1,N ) is constant and can therefore be ignored in the opti-

mization model. E{CTi,t } is the expected cost function of a single-period inventory problem
where the single-period demand is DTi,t . Since STi

may be interpreted as the order-up-to-
level for the i-th review period Ti and STi

− DTi,t is the end of period inventory for the
“single-period” with demand DTi,t , the expected total sub-costs E{CTi,t } are the sums of
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single-period inventory costs where the demands are the cumulative demands over increas-
ing periods.

By dropping the Ti and t subscripts in (8) we obtain the following well-known expression
for the expected total cost of a single-period newsvendor problem (Hadley and Whitin 1964,
pp. 297–299),

E{T C} = h

∫ S

−∞
(S − D)g(D)d(D) − s

∫ ∞

S

(S − D)g(D)d(D). (9)

In (9) we consider two cost components: holding cost on the positive end of period inventory
and shortage cost for any back-ordered demand.

Let G(·) be the cumulative distribution function of the demand in our single-period
newsvendor problem. A known result in inventory theory (Hadley and Whitin 1964) is con-
vexity of (9). The so-called Critical Ratio, s

s+h
, can be seen as the service level β (i.e.

probability that at the end of the period the inventory level is non-negative) provided to cus-
tomers when we fix the order-up-to-level S to the optimal value S∗ that minimizes expected
holding and shortage costs (9). By assuming G(·) to be strictly increasing, we can compute
the optimal order-up-to-level as S∗ = G−1( s

s+h
).

2.1 Stochastic cost component in single-period newsvendor

We now aim to characterize the cost of the policy that orders S∗ units to meet the demand
in our single-period newsvendor problem. Such a problem has been widely studied in the
inventory control literature (Silver et al. 1998).

Since the demand D is assumed to be normal with mean μ and standard deviation σ ,
then we can write D = μ + σZ, where Z is a standard normal random variable. Let �(z) =
Pr(Z ≤ z) be the cumulative distribution function of the standard normal random variable.
Since �(·) is strictly increasing, �−1(·) is uniquely defined. Let zβ = �−1(β), since Pr(D ≤
μ+zβσ ) = �(zβ) = β , it follows that S∗ = μ+zβσ . The quantity zβ is known as the safety
factor and S∗ − μ = zβσ is known as the safety stock. It can be shown (Hadley and Whitin
1964) that

∫ ∞

S∗
(S∗ − D)g(D)d(D) = E{D − S∗}+ = σE{Z − zβ}+ = σ [φ(zβ) − (1 − β)zβ], (10)

where φ(·) is the PDF of the standard normal random variable. Let E{S∗ − D}+ =∫ S

−∞(S − D)g(D)d(D), it follows

E{T C(S∗)} = h · E{S∗ − D}+ + s · E{D − S∗}+

= h · (S∗ − μ) + (h + s)E{D − S∗}+

= hzβσ + (h + s)σE{Z − zβ}+

= hzβσ + (h + s)σ [φ(zβ) − (1 − β)zβ]
= (h + s)σφ(zβ). (11)

The last expression (h + s)σφ(zβ) holds only for the optimal order-up-to-level S∗ that pro-
vides the service level β = s

s+h
computed from the critical ratio (CR). Instead, expression

hzασ + (h + s)σ [φ(zα) − (1 − α)zα] (12)

can be used to compute the expected total cost for any given level S such that α = �(
S−μ

σ
).
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2.2 Stochastic cost component in multiple-period newsvendor

The considerations in the former sections refer to a single-period problem, but they can be
easily extended to a replenishment cycle R(i, j) that covers the period span i, . . . , j . In Levi
et al. (2006) it is possible to find a discussion on multi-period newsvendor problems and a
sampling-based heuristic approach to find near-optimal solutions. In contrast the approach
we propose is exact.

Consider a normally distributed demand in each period with PDF gi(di),

. . . , gj (dj ). The cost for a multi-period replenishment cycle, when ordering costs are ne-
glected, can be expressed as

E{T C} =
j∑

k=i

(
h

∫ S

−∞
(S − Di,k)gi,k(Di,k)d(Di,k)

− s

∫ ∞

S

(S − Di,k)gi,k(Di,k)d(Di,k)

)
. (13)

Since demands are independent and normally distributed in each period, the term gi,j (Di,j )

can be easily computed (Fortuin 1980) once the demand in each period di, . . . , dj is known.
It is now easy to apply the same rule as before and compute the second derivative of this
expression:

d2

dS2
E{T C} =

j∑
k=i

(h · gi,k(S) + s · gi,k(S)), (14)

which is again a positive function of S, since gi,k(S) are PDFs and both holding and shortage
cost are assumed to be positive. The expected cost of a single replenishment cycle therefore
remains convex in S regardless of the periods covered.

Unfortunately, it is not possible to compute the CR as before, by using a simple algebraic
expression to obtain the optimal S∗ which minimizes the expected cost. Nevertheless, since
the cost function is convex, it is still possible to compute S∗ efficiently. In fact, (12) can be
extended in the following way to compute the cost for the replenishment cycle R(i, j) as a
function of the opening inventory level S:

j∑
k=i

(hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k)) − (1 − α(i, k))zα(i,k)]), (15)

where Gi,k(·) and σi,k denote, respectively, the cumulative distribution function (CDF) and
the standard deviation of di + · · · + dk ; α(i, k) = Gi,k(S); and zα(i,k) = �−1(α(i, k)). There-
fore we have j − i + 1 cost components: the holding and shortage costs at the end of pe-
riod i, i + 1, . . . , j . For each possible replenishment cycle we can efficiently compute the
optimal S∗ that minimizes our cost function by using gradient based methods for convex
optimization such as Newton’s method. Note that the complete expression for the cost of
replenishment cycles that start in period i ∈ {1, . . . ,N} and end in period N is

N∑
k=i

(hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k))

− (1 − α(i, k))zα(i,k)]) + v

(
S −

N∑
k=i

dk

)
. (16)
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In fact, for this set of replenishment cycles we must also consider the unit cost component.
Once S∗ is known, by subtracting the expected demand over the replenishment cycle R(i, j)

we obtain the optimal expected buffer stock level b(i, j) = S∗ − ∑j

t=1 d̃t required for such a
replenishment cycle in order to minimize holding and shortage cost. Note that every other
choice for buffer stock level will produce a higher expected total cost for R(i, j).

2.3 Upper-bound for opening inventory levels

We now propose an upper bound for the value of the opening inventory level in each period
t ∈ {1, . . . ,N}. Firstly we ignore the direct item cost v, in fact from (7) it is trivial to see that
v may only decrease the opening inventory level for the last replenishment cycle scheduled.
We consider a single replenishment cycle covering the whole planning horizon. If we relax
the original problem formulation and we ignore holding and shortage cost components at
the end of each period t ∈ {1, . . . ,N − 1}, the resulting model will reflect a single period
newsvendor problem. In this problem we incur holding and shortage cost only at the end
of the last period N and the stochastic demand is given by the sum of the demand distri-
butions in each period of our planning horizon. The optimal buffer stock b(1,N) required
to optimize the convex cost for this problem can be easily computed, as seen, by means of
the critical ratio. It is easy to see that, since we relaxed holding and shortage costs for each
period t ∈ {1, . . . ,N − 1}, then for each period t ∈ {1, . . . ,N}, every value in the domain
of St greater than

∑N

t d̃t + b(1,N) is suboptimal and should be removed from the domain.
In fact, since we assume positive shortage and holding costs, opening inventory levels for
this replenishment cycle may only be decreased by the additional cost components in the
original model.

Moreover the upper bounds computed are still valid if the planning horizon is covered
by more than a single replenishment cycle. The reason is the following. If the planning
horizon is covered by a number of replenishment cycles, again it is possible to apply a similar
reasoning and it is possible to reduce each replenishment cycle R(i, j), covering periods
{i, . . . , j}, to a single period newsvendor problem, by ignoring holding and shortage costs for
each period t ∈ {i, . . . , j − 1} and by considering only the cost component of the last period
j . Then for each replenishment cycle R(i, j) we will easily obtain a buffer stock b(i, j), by
means of the critical ratio. Since b(i, j) is increasing, that is b(i, j) ≤ b(i, j + 1), as shown
in Tarim and Smith (2008), obviously opening inventory levels computed in this case will
be lower than those computed for the former case where a single replenishment cycle covers
the whole planning horizon. Furthermore, we recall that also in this case opening inventory
levels may only be decreased when the additional holding and shortage cost components
for other periods are reintroduced in the model. It directly follows that the upper bounds
computed are valid for the original model.

2.4 Lower-bound for expected closing inventory levels

A lower bound for the value of the expected closing inventory level in each period t ∈
{1, . . . ,N}, that is opening inventory level minus expected demand, can be computed by
considering every possible buffer stock b(i, j) required to optimize the convex cost of a
single replenishment cycle R(i, j), independently of the other cycles that are planned. The
lower bound will be the minimum value among all these possible buffer values for j ∈
{1, . . . ,N} and i ∈ {1, . . . , j}.
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3 Constraint programming

Before introducing our CP model for the problem discussed, we now provide some for-
mal background on CP. CP (Rossi et al. 2006) is a declarative programming paradigm in
which relations between decision variables are stated in the form of constraints. Informally
speaking, constraints specify the properties of a solution.

Formally, a Constraint Satisfaction Problem (CSP) (Apt 2003; Rossi et al. 2006) is a
triple 〈V,C,D〉, where V is a set of decision variables each with a discrete domain of
values D(Vk), and C is a set of constraints stating allowed combinations of values for subsets
of variables in V . Finding a solution to a CSP means assigning values to variables from
the domains without violating any constraint in C. We may also be interested in finding
a feasible solution that minimize (maximize) the value of a given objective function over
a subset of the variables. In this case, the problem is denoted as Constraint Optimization
Problem (COP).

The constraints used in CP are of various kinds: logic constraints (i.e. “x or y is true”,
where x and y are boolean decision variables), linear constraints, and global constraints
(Regin 2003).

A global constraint captures a relation among a non-fixed number of variables. One of
the most well known global constraints is the alldiff constraint (Regin 1994), that can
be enforced on a set of decision variables in order to guarantee that no two variables are
assigned the same value.

With each constraint, CP associates a filtering algorithm able to remove provably infea-
sible or suboptimal values from the domains of the decision variables that are constrained
and, therefore, to enforce some degree of consistency (see Rossi et al. 2006). These filter-
ing algorithms are repeatedly called until no more values are pruned. This process is called
constraint propagation.

Example 1 Consider the following CSP. Decision variables x1, x2, x3 with domains D1 =
{0,1,2,3}, D2 = {0,1,2,3,4,5}, D3 = {0,1}, and

x1 ≥ 3, (17)

x1 + x2 = 8, (18)

(x2 > 0) ↔ (x3 = 1). (19)

We apply constraint propagation until no new deduction can be made:

x1 ∈ {0,1,2,3}
x2 ∈ {0,1,2,3,4,5}
x3 ∈ {0,1}

(17)

−→
x1 ∈ {3}
x2 ∈ {0,1,2,3,4,5}
x3 ∈ {0,1}

(18)

−→
x1 ∈ {3}
x2 ∈ {5}
x3 ∈ {0,1}

(19)

−→
x1 ∈ {3}
x2 ∈ {5}
x3 ∈ {1}.

In addition to constraints and filtering algorithms, constraint solvers also feature some
sort of heuristic search engine (e.g. a backtracking algorithm). The search algorithm first
selects a variable and then decides how to explore its domain. The process is known as
“branching” and it is guided by variable and value ordering heuristics. The ordering im-
posed by these heuristics guides the search process and has a great impact on it. During the
search, the constraint solver exploits filtering algorithms in order to proactively prune parts
of the search space that cannot lead to a feasible or to an optimal solution.
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Example 2 We present the solution process of CP, using COP P0:

x1 ∈ {3,8}, x2 ∈ {0,1,2,3,4,5}, x3 ∈ {0,1}, z ∈ {0, . . . ,10},
minimize z,

z = x1 + 6x3,

x1 ≥ 3,

x1 + x2 = 8,

(x2 > 0) ↔ (x3 = 1).

To build a search tree, we apply the lexicographic variable and value ordering heuristic. As
a search strategy we use Depth First Search. At each node we apply constraint propagation.

The CSP P0 is the root of our search tree. We first apply constraint propagation to P0. It
follows that

x1 ∈ {3,8}, x2 ∈ {0,5}, x3 ∈ {0,1}, z ∈ {8,9}.
We select the lexicographically least variable, x1, and the lexicographically least value in its
domain, i.e. 3, and generate the descendant P1, where P1 = P0 ∪ x1 ∈ {3}, that is the union
of P0 and the “partial” assignment x1 ∈ {3}.

We descend to node P1 and apply constraint propagation. It follows that

x1 ∈ {3}, x2 ∈ {5}, x3 ∈ {1}, z ∈ {9}.
We have found a solution with z = 9. Hence we add to all CSPs the constraint z < 9.

Next, we backtrack to P0, we select the next lexicographically least value not yet consid-
ered in the domain of x1, i.e. 8, we generate the descendant P2, where P2 = P0 ∪ x1 ∈ {8},
we descend to P2 and apply constraint propagation. It follows that

x1 ∈ {8}, x2 ∈ {0}, x3 ∈ {0}, z ∈ {8}.
We have found a solution with z = 8. Hence we add to all CSPs the constraint z < 8.

Next we backtrack to P0 and stop because all its descendants have been visited. Finally,
we return the optimal solution we have found in leaf P2.

In CP, optimization-oriented global constraints constitute an important class of con-
straints. These global constraints embed an optimization component, representing a proper
relaxation of the constraint itself, into a global constraint (Focacci et al. 2002). The relax-
ation employed can be a continuous relaxation, as in the examples provided in Focacci et al.
(2002), a DP relaxation, as discussed in Focacci and Milano (2001), or it can be any other
suitable relaxation.

The optimization component provides three pieces of information: (a) the optimal so-
lution of the relaxed problem; (b) the optimal value of this solution representing an upper
bound on the original problem objective function; (c) a gradient function grad(V , v), which
returns for each variable-value pair (V ,v) an optimistic evaluation of the profit obtained if v

is assigned to V . These pieces of information are exploited both for propagation purposes
and for guiding the search.

CP has recently proved to be a very effective technique for decision making under un-
certainty (see e.g. Walsh 2002; Hnich et al. 2009; Tarim et al. 2009a). A complete survey of
CP approaches for decision making under uncertainty is given in Hnich et al. (2011).
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4 Deterministic equivalent CP formulation

Building upon the considerations in Sect. 2 it is easy to construct a deterministic equivalent
CP formulation for the non-stationary (Rn,Sn) policy under stochastic demand, ordering
cost, holding and shortage cost. (For a detailed discussion on deterministic equivalent mod-
eling in stochastic programming see Birge and Louveaux 1997.)

In order to correctly compute the expected total cost for a replenishment cycle
R(i, j) with opening inventory level Si , we must build a special-purpose constraint
objConstraint(·) that dynamically computes such a cost by means of an extended
version of (15)

C(Si, i, j) = a +
j∑

k=i

(hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k))

− (1 − α(i, k))zα(i,k)]) (20)

that considers the ordering cost a associated with a replenishment cycle.
Intuitively, within this constraint the expected total cost for a certain replenishment plan

will be computed as the sum of all the expected total costs for replenishment cycles in
the solution, plus the respective ordering costs. objConstraint(·) also computes the
optimal expected buffer stock level b(i, j) for every replenishment cycle R(i, j) identified
by a partial assignment for δk∈{1,...,N} variables.

A deterministic equivalent CP formulation is

min E{T C} = C (21)

subject to

objConstraint(C, Ĩ1, . . . , ĨN , δ1, . . . , δN , d1, . . . , dN , a,h, s) (22)

and for t = 1, . . . ,N

Ĩt + d̃t − Ĩt−1 ≥ 0 (23)

Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (24)

Ĩt ∈ R, δt ∈ {0,1}. (25)

Each d̃t represents the expected value of the demand in a given period t according to its PDF
gt (dt ). The binary decision variables δt state whether a replenishment is fixed for period t

(δt = 1) or not (δt = 0). Each decision variable Ĩt represents the expected closing inventory
level at the end of period t .

In the above model the domain of Ĩt ranges over R. According to the discussion in
Sects. 2.3 and 2.4 it is possible to enforce an upper and a lower bound for the domain of
each decision variables Ĩt . Nevertheless, the interval obtained still contains an infinite num-
ber of possible real values. According to our discussion in Sect. 3, in CP decision variables
are assumed to range over finite domains. This assumption is related to the fact that a stan-
dard CP solver cannot branch on a domain containing an infinite amount of possible values.
For this reason, a key observation is needed in order to make sure that our model can be pro-
cessed by a CP solver. It should be noted that—according to the discussion in the rest of this
section—when all the δt variables have been assigned, the optimal value for each Ĩt can be
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Fig. 1 A replenishment cycle
R(i, j) is identified by the
current partial assignment for δi
variables

immediately computed within our objConstraint. For this reason, the search procedure
can simply branch on the δt variables and does not have to branch on the continuous vari-
able, which are therefore excluded from the variable selection heuristic. Bound propagation
can be employed in order to correctly propagate constraints (23) and (24), and—as we will
see in the rest of this section—within objConstraint, since they all involve continuous
variables.

Equation (23) enforces a no-buy-back condition, which means that received goods can-
not be returned to the supplier. As a consequence of this the expected inventory level at
the end of period t must be no less than the expected inventory level at the end of period
t − 1 minus the expected demand in period t . Equation (24) expresses the replenishment
condition. We have a replenishment if the expected inventory level at the end of period t

is greater than the expected inventory level at the end of period t − 1 minus the expected
demand in period t . This means that we received some extra goods as a consequence of an
order. The objective function (21) minimizes the expected total cost over the given planning
horizon. objConstraint(·) dynamically computes buffer stocks and it assigns to C the
expected total cost related to a given assignment for replenishment decisions, depending on
the demand distribution in each period and on the given combination for problem parameters
a,h, s.

In order to propagate objConstraint(·), during the search we wait for a partial as-
signment involving some or all the δt variables. In particular, we look for an assignment
where there exists some i s.t. δi = 1, some j > i s.t. δj+1 = 1 and for every k, i < k ≤ j ,
δk = 0. This will uniquely identify a replenishment cycle R(i, j) (Fig. 1).

There may be more replenishment cycles associated to a partial assignment. If we con-
sider each R(i, j) identified by the current assignment, it is easy to minimize the convex
cost function already discussed, and to find the optimal expected buffer stock b(i, j) for this
particular replenishment cycle independently on the others. By independently computing the
optimal expected buffer stock b(i, j) for every replenishment cycle identified, two possible
situations may arise:

– the buffer stock configuration obtained satisfies every inventory conservation constraint
(23) or

– for some pair of subsequent replenishment cycles this constraint is violated (Fig. 2). In
other words, we observe an expected negative order quantity.

If the latter situation arises, we can adopt a fast convex optimization procedure to compute
a feasible buffer stock configuration with minimum cost. The key idea is to identify two
possible limit situations:

– we increase the opening inventory level of the second cycle, thus incurring a higher overall
cost for it, to preserve optimality of the first cycle (Fig. 3a), or

– we decrease the buffer stock of the first replenishment cycle, thus incurring a higher over-
all cost for it, to preserve optimality of the second cycle cost (Fig. 3b).

A key observation is that, when negative order quantity scenarios arise, at optimality the
expected closing inventory levels of the first and the second cycle lie in the interval delimited
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Fig. 2 The expected total cost of
both replenishment cycles is
minimized, but the inventory
conservation constraint is
violated between R(i, k) and
R(k + 1, j)

Fig. 3 Feasible limit situations when negative order quantity scenarios arise

Fig. 4 Infeasible (a) and suboptimal (b) plans realized when the opening inventory level of the second cycle
is not equal to the expected closing inventory level of the first cycle

by the two situations described. This directly follows from the convexity of both the cost
functions. Moreover, the expected closing inventory level of the first cycle must be equal
to the opening inventory level of the second cycle. In fact, if they are not, then either the
first cycle has an expected closing inventory level higher than the opening inventory level of
the second cycle and the solution is not feasible (Fig. 4a), or the first cycle has an expected
closing inventory level smaller than the opening inventory level of the second cycle. In the
latter case we can decrease the overall cost by choosing a smaller opening inventory level
for the second cycle (Fig. 4b).

The algorithm for computing optimal buffer stock configurations in presence of negative
order quantity scenarios simply exploits the linear dependency between the opening inven-
tory level of the second cycle and the expected closing inventory level of the first cycle. Due
to this dependency the overall cost is still convex in b(i, k) (or equivalently in b(k + 1, j),
since they are linearly dependent) and we can apply any convex optimization technique to
find the optimal buffer stock configuration. Note that this reasoning still holds in a recursive
process. Therefore, we can optimize buffer stock for two subsequent replenishment cycles,
then we can treat these as a new single replenishment cycle, since their buffer stocks are
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linearly dependent, and repeat the process in order to consider the next replenishment cycle
if a negative order quantity scenario arises.

Once buffer stocks are known, we can apply (20) to the opening inventory level Si = d̃i +
· · ·+ d̃j +b(i, j) and compute the cost C(Si, i, j) associated to a given replenishment cycle.
Since the cost function in (20) is convex and we handle negative order quantity scenarios,
a lower bound for the expected total cost associated to the current partial assignment for
δt , t = 1, . . . ,N variables is now given by the sum of all the cost components C(Si, i, j),
for each replenishment cycle R(i, j) identified by the assignment. Furthermore this bound is
tight if all the δt variables have been assigned. objConstraint(·) exploits this property in
order to incrementally compute a lower bound for the cost of the current partial assignment
for δt variables. Note that only when every δt variable is ground the lower bound for the
cost becomes tight and buffer stocks computed for each replenishment cycle identified can
be assigned to the respective Ĩt variables. Finally, in order to consider the unit variable cost
v we must add the term v · ĨN to the cycle cost C(Si, i,N) for i ∈ {1, . . . ,N}. Therefore the
complete expression for the cost of replenishment cycles that start in period i ∈ {1, . . . ,N}
and end in period N is:

C(Si, i,N) = a +
N∑

k=i

(hzα(i,k)σi,k + (h + s)σi,k[φ(zα(i,k))

− (1 − α(i, k))zα(i,k)]) + v

(
Si −

N∑
k=i

d̃k

)
. (26)

In the following section we will discuss how it is possible to incorporate in our CP model
a dedicated cost-based filtering method (Focacci and Milano 1999) based on a dynamic pro-
gramming relaxation (Tarim 1996) that is able to generate good bounds during the search.
Such a technique has been already employed under a service level constraint (Tarim et al.
2009b). It should be noted that due to the non-linearity of the cost function induced by the
shortage cost scheme, the version of the problem we consider is significantly more compli-
cated than the one under a service level constraint. Nevertheless, despite the non-linearity
of the cost function, we will see that the convexity of the cost function can be exploited to
define a relaxation similar to the one employed in Tarim et al. (2009b).

5 Cost-based filtering by relaxation

Cost-based filtering is an elegant way of combining techniques from CP and Operations Re-
search (OR) (Fahle and Sellmann 2002, Focacci and Milano 1999). OR-based optimization
techniques are used, typically within optimization oriented global constraints, to remove
values from variable domains that cannot lead to better solutions. This type of domain fil-
tering can be combined with the usual CP-based filtering methods and branching heuristics,
yielding powerful hybrid search algorithms.

In Tarim et al. (2009b), the authors adopt a relaxation proposed by Tarim (1996) for the
CP model that computes (Rn,Sn) policy parameters under service level constraints. When the
relaxed model is solved it provides good bounds for the original problem. Furthermore the
relaxed problem is a Shortest Path Problem that can be solved in polynomial time. Therefore
it is easy to obtain good bounds at each node of the search tree. In the same work the authors
also explain how it is possible to take into account a partial assignment for replenishment
decisions δ1, . . . , δN and for expected closing inventory levels Ĩ1, . . . , ĨN when the relaxed
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Fig. 5 Convexity of the
expected total cost associated to a
given replenishment cycle Rn

covering periods {i, . . . , j}. The
expected total cost is a function
of the expected closing inventory
level Ĩj

problem is constructed, so that the effect of these assignments is reflected on the bound that
is obtained by solving the relaxed problem.

As shown in Tarim et al. (2009b), the CP model proposed for computing (Rn,Sn) pol-
icy parameters under service level constraints can be reduced to a Shortest Path Problem
if the inventory conservation constraint and the replenishment condition constraint, that is
constraints (23) and (24) in our model under shortage cost scheme, are relaxed for replenish-
ment periods. That is for each possible pair of replenishment cycles 〈R(i, k − 1),R(k, j)〉
where i, j, k ∈ {1, . . . ,N} and i < k ≤ j , the relationship between the opening inventory
level of R(k, j) and the expect closing inventory level of R(i, k − 1), i.e. (23) for t = k,
is not considered. The same approach can be translated to the CP model for (Rn,Sn) under
shortage cost scheme.

In Sect. 4, we provided a general function C(Si, i, j) to compute the expected total cost
of replenishment cycle R(i, j), when the order-up-to-level is set to Si . It should be noted
that if Ĩj denotes the expected closing inventory level at period j , then the following linear
relation exists between Si and Ĩj , Si −∑j

t=i d̃t = Ĩj . It follows that C(Si, i, j) may be easily
expressed in terms of Ĩj and that such a function is also convex in Ĩj (Fig. 5). Let us denote
as C(i, j, Ĩj ), C(Si, i, j) expressed as a function of Ĩj . In explaining our cost-based filtering
strategy, we perform this variable substitution because our CP model is expressed in terms
of Ĩj and not of Si .

If we consider each replenishment cycle R(i, j) independently, we can efficiently com-
pute the optimal expected closing inventory level that minimizes the expected total cost
associated to such a cycle using gradient based methods for convex optimization. This way
we obtain a set S of N(N + 1)/2 possible replenishment cycles and respective order-up-to-
levels. Our new problem is to find an optimal set S ∗ ⊂ S of consecutive disjoint replenish-
ment cycles that covers our planning horizon at the minimum cost.

In Tarim et al. (2009b) it was shown that the optimal solution to this relaxation is given
by the shortest path in a graph from a given initial node to a final node where each arc
represents a specific cost. We now adapt their approach to our model that employs a shortage
cost scheme.

If N is the number of periods in the planning horizon of the original problem, we intro-
duce N + 1 nodes. By assuming, without loss of generality, that an order is always placed
at period 1, we take node 1, which represents the beginning of the planning horizon, as the
initial one. Node N + 1 represents the end of the planning horizon. For each possible re-
plenishment cycle R(i, j − 1) such that i, j ∈ {1, . . . ,N + 1} and i < j , we introduce an arc
(i, j) with associated cost

Q(i, j) = C(i, j − 1, Ĩ ∗
j−1), (27)
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Fig. 6 The optimal expected closing inventory level for replenishment cycle Rn considered alone is a, this
minimizes the convex cost associated to replenishment cycle Rn . In order to meet the inventory conserva-
tion constraint for the stocks carried over from cycle Rn−1, the minimum expected closing inventory level
required is b. Such a value produces a higher expected total cost for Rn

where Ĩ ∗
j−1 is the expected closing inventory level that minimizes the convex cost of replen-

ishment cycle R(i, j −1). Since we are dealing with a one-way temporal feasibility problem
(Wagner and Whitin 1958), when i ≥ j , we introduce no arc.

The cost of the shortest path from node 1 to node N + 1 in the given graph is a valid
lower bound for the original problem, as it is a solution of the relaxed problem. In fact, the
expected total cost function for each replenishment cycle is convex in the expected closing
inventory level held at the end of the cycle. Therefore in order to meet the violated inventory
conservation constraints, if any exists, we will incur an overall higher expected total cost for
a given group of replenishment cycles (Fig. 6).

Furthermore, it is easy to map the optimal solution for the relaxed problem, that is the
set of arcs participating to the shortest path, to a solution for the original problem by noting
that each arc (i, j) represents a replenishment cycle R(i, j − 1). The feasibility of such a
solution with respect to the original problem can be checked by verifying that it satisfies
every relaxed constraint. If no inventory conservation constraint is violated, it is easy to see
that the computed cost is optimal for the given replenishment plan.

We will now show how to exploit this lower bound in an optimization oriented global
constraint able to dynamically produce good bounds when a partial solution is provided.
Cost-based filtering can be performed by simply noting that the costs stored in the connec-
tion matrix can be adjusted to reflect the current partial assignment for decision variables δt

and Ĩt exactly the way shown for the service level constrained model (Tarim et al. 2009b).
More specifically:

– δk = 0: if in a given partial solution a decision variable δk , k ∈ {1, . . . ,N} has been al-
ready set to 0, then we can remove from the graph every inbound arc to node k and every
outbound arc from node k. This prevents node k from being part of the shortest path, and
hence prevents period k from being a replenishment period. In this modified graph, the
cost of the shortest path will provide a valid lower bound for the cost of an optimal solu-
tion incorporating the decision δk = 0. Furthermore, an assignment for decision variables
is associated with the shortest path. If this assignment is feasible for the original problem,
then it is optimal with respect to the decision δk = 0.

– δk = 1: on the other hand, if in a given partial solution a decision variable δk , k ∈
{1, . . . ,N} has been already set to 1, then we can remove from the graph every arc con-
necting a node i to a node j , where i < k < j . This forces the shortest path to pass through
node k, and hence forces period k to be a replenishment period. In this modified graph,
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the cost of the shortest path will provide a valid lower bound for the cost of an optimal
solution incorporating the decision δk = 1. Furthermore, an assignment for decision vari-
ables is associated with the shortest path. If this assignment is feasible for the original
problem, then it is optimal with respect to the decision δk = 1.

– Ĩt assigned: if a given Ĩt , t ∈ {i, . . . , j − 1} is assigned a value, the expected closing

inventory level (Ĩj−1) for the replenishment cycle R(i, j − 1), which covers period t ,
is uniquely determined and therefore the expected total cost for such a replenishment
cycle—that is the cost of arc (i, j)—can be directly computed from C(i, j, Ĩj ), provided
that the current partial assignment for δt decision variables uniquely identifies R(i, j −1).

Building upon these three cases it is easy to obtain a gradient function that returns, for each
variable-value pair, an optimistic evaluation for the cost of an optimal solution.

6 Computational experience

In what follows, we present our computational experience. In Sect. 6.1, we analyze the com-
putational efficiency of our approach for a large number of instances and realistic planning
horizon lengths ranging from 20 to 38 periods. In Sect. 6.2, we compare the cost and the
structure of the solutions obtained with our exact approach with those obtained with the
heuristic approach proposed by Tarim and Kingsman (2006) for a set of 8-period instances
discussed in their work.

6.1 Computational performances

We now discuss the computational efficiency of our approach. A single problem is
considered and the period demands are generated from seasonal data with no trend:
d̃t = 50[1 + sin(πt/6)]. In addition to the “no trend” case (P1) we also consider three oth-
ers:

(P2) positive trend case, d̃t = 50[1 + sin(πt/6)] + t

(P3) negative trend case, d̃t = 50[1 + sin(πt/6)] + (52 − t)

(P4) life-cycle trend case, d̃t = 50[1 + sin(πt/6)] + min(t,52 − t)

In each test we assume an initial null inventory level and a normally distributed demand for
every period with a coefficient of variation σt/d̃t for each t ∈ {1, . . . ,N}, where N is the
length of the considered planning horizon. We performed tests using four different ordering
cost values a ∈ {50,100,150,200} and two different σt/d̃t ∈ {1/3,1/6}. The planning hori-
zon length N takes even values in the range [20,38]. The holding cost used in these tests is
h = 1 per unit per period. Our tests also consider two different shortage cost values s = 15
and s = 25. Direct item cost is v = 2 per unit produced.

All the experiments were performed on an Intel(R) Centrino(TM) CPU 1.50 GHz with
500 Mb RAM. The solver used is Choco (1), an open-source solver developed in Java. The
cost-based filtering techniques presented are implemented as dedicated constraints within
Choco.

The variable selection heuristic branches first on the δt variables in lexicographic order.
Note that when all the δt variables have been assigned, the global constraint objCon-
straint(·) will immediately produce an assignment for the remaining decision variables.
Values in decision variable domains are selected in lexicographic order.

Tables 1 and 2 show the time (in seconds) required by our CP model, enhanced with the
cost-based filtering technique described in the former section, to obtain an optimal solution
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Table 1 Time (in seconds) required by our CP model, enhanced with the cost-based filtering technique
described in Sect. 5, to obtain an optimal solution for test set P1 and P2. In our test results “–” means that,
within the time limit of 5 seconds, our CP approach could not find an optimal solution

a N Test set P1 Test set P2

σt /d̃t = 1/3 σt /d̃t = 1/6 σt /d̃t = 1/3 σt /d̃t = 1/6

s = 15 s = 25 s = 15 s = 25 s = 15 s = 25 s = 15 s = 25

50 20 0.150 0.030 0.020 0.020 0.030 0.040 0.050 0.050

22 – – 0.020 0.030 0.040 0.030 0.060 0.060

24 0.031 0.040 0.030 0.030 0.060 0.040 0.080 0.070

26 0.040 0.070 0.040 0.040 0.060 0.050 0.120 0.120

28 0.050 0.080 0.060 0.050 0.070 0.060 0.170 0.121

30 0.080 0.090 0.060 0.050 0.080 0.081 0.161 0.161

32 0.100 0.090 0.070 0.081 0.120 0.141 0.180 0.150

34 – – 0.060 0.070 0.140 0.080 0.180 0.160

36 0.210 0.111 0.080 0.081 0.161 0.090 0.230 0.180

38 0.171 0.100 0.090 0.080 0.140 0.120 0.210 0.241

100 20 0.030 – 0.020 0.030 0.040 0.030 0.020 0.020

22 0.030 0.030 0.030 0.030 0.040 0.030 0.031 0.030

24 0.030 0.040 0.040 0.030 0.040 0.041 0.040 0.030

26 0.040 0.040 0.040 0.040 0.080 0.050 0.050 0.050

28 0.060 0.070 0.050 0.050 0.060 0.071 0.060 0.051

30 0.061 0.060 0.060 0.060 0.071 0.080 0.061 0.080

32 0.080 – 0.070 0.070 0.081 0.090 0.071 0.070

34 0.070 0.060 0.070 0.070 0.090 0.080 0.231 0.070

36 0.080 0.101 0.071 0.071 0.101 0.100 0.090 0.090

38 0.080 0.101 0.090 0.091 0.110 0.120 0.100 0.101

150 20 0.020 0.020 0.030 0.021 0.030 0.020 0.020 0.030

22 0.030 0.030 0.030 0.020 0.030 0.030 0.030 0.030

24 0.040 0.040 0.030 0.030 0.040 0.040 0.040 0.030

26 0.040 0.040 0.040 0.040 0.040 0.050 0.050 0.061

28 0.050 0.050 0.050 0.041 0.060 0.061 0.050 0.050

30 0.070 0.071 0.050 0.061 0.070 0.070 0.060 0.070

32 0.070 4.306 0.060 0.071 0.080 0.080 0.070 0.070

34 0.070 0.070 0.060 0.070 0.100 0.080 0.070 0.071

36 0.080 0.080 0.070 0.080 0.090 0.110 0.080 0.090

38 0.090 0.100 0.100 0.080 0.110 0.120 0.110 0.121

200 20 0.030 0.030 0.030 0.020 0.031 0.040 0.030 0.020

22 0.030 0.220 0.030 0.030 0.030 0.041 0.030 0.030

24 0.030 0.040 0.030 0.040 0.040 0.040 0.030 0.041

26 0.040 0.040 0.040 0.040 0.050 0.051 0.041 0.050

28 0.050 0.050 0.051 0.060 0.080 0.060 0.060 0.050

30 0.070 0.060 0.060 0.060 0.070 0.070 0.070 0.070

32 0.080 0.080 0.060 0.060 0.080 0.090 0.070 0.070

34 0.070 – 0.070 0.070 0.090 0.080 0.080 0.081

36 0.080 0.081 0.070 0.070 0.110 0.101 0.090 0.110

38 0.100 0.090 0.091 0.090 0.121 0.100 0.110 0.110
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Table 2 Time (in seconds) required by our CP model, enhanced with the cost-based filtering technique
described in Sect. 5, to obtain an optimal solution for test set P3 and P4. In our test results “–” means that,
within the time limit of 5 seconds, our CP approach could not find an optimal solution

a N Test set P3 Test set P4

σt /d̃t = 1/3 σt /d̃t = 1/6 σt /d̃t = 1/3 σt /d̃t = 1/6

s = 15 s = 25 s = 15 s = 25 s = 15 s = 25 s = 15 s = 25

50 20 0.321 0.170 0.330 0.160 0.070 0.030 0.050 0.061

22 0.480 0.300 0.370 0.341 0.030 0.040 0.060 0.060

24 0.581 0.310 0.531 0.421 0.050 0.040 0.110 0.071

26 1.222 0.501 0.791 0.531 0.070 0.060 0.090 0.090

28 2.224 0.661 1.142 0.741 0.140 0.070 0.120 0.160

30 2.013 0.722 1.052 0.751 0.100 0.060 0.130 0.170

32 1.812 0.941 1.182 0.801 0.121 0.080 0.180 0.140

34 1.883 0.862 1.312 0.952 0.120 0.090 0.190 0.150

36 2.093 0.981 1.472 1.152 0.121 0.110 0.210 0.180

38 3.636 1.131 1.803 1.512 0.120 0.100 0.251 0.200

100 20 0.030 0.040 0.060 0.070 0.040 0.030 0.030 0.020

22 0.040 0.040 0.070 0.071 0.040 0.030 0.030 0.030

24 0.040 0.050 0.090 0.080 0.050 0.030 0.040 0.040

26 0.050 0.281 0.100 0.100 0.050 0.050 0.050 0.040

28 0.070 0.070 0.131 0.120 0.061 0.060 0.060 0.060

30 0.070 0.070 0.140 0.130 0.070 0.070 0.070 0.060

32 0.080 0.080 0.150 0.160 0.080 0.080 0.070 0.070

34 0.090 0.090 0.161 0.210 0.090 0.081 0.080 0.070

36 0.100 0.110 0.240 0.180 0.090 0.090 0.090 0.080

38 0.141 0.130 0.211 0.250 0.100 0.100 0.110 0.100

150 20 0.040 0.030 0.060 0.060 0.030 0.030 0.030 0.030

22 0.040 0.040 0.071 0.070 0.030 0.030 0.030 0.030

24 0.050 0.041 0.140 0.080 0.040 0.030 0.040 0.030

26 0.060 0.050 0.100 0.160 0.060 0.040 0.050 0.040

28 0.070 0.070 0.120 0.170 0.060 0.060 0.060 0.050

30 0.070 0.070 0.130 0.140 0.070 0.060 0.070 0.060

32 0.090 0.090 0.160 0.220 0.080 0.080 0.070 0.070

34 0.091 0.090 0.171 0.170 0.080 0.090 0.080 0.080

36 0.100 0.110 0.181 0.250 0.100 0.100 0.090 0.090

38 0.140 0.120 0.220 0.260 0.100 0.101 0.100 0.100

200 20 0.071 0.030 0.060 0.070 0.040 0.030 0.030 0.030

22 0.090 0.070 0.070 0.120 0.030 0.030 0.030 0.030

24 0.090 0.130 0.080 0.080 0.050 0.040 0.030 0.040

26 0.110 0.110 0.100 0.171 0.050 0.050 0.051 0.050

28 0.130 0.170 0.181 0.130 0.070 0.070 0.060 0.050

30 0.210 0.150 0.150 0.151 0.060 0.070 0.070 0.060

32 0.210 0.090 0.150 0.221 0.070 0.070 0.070 0.080

34 0.210 0.241 0.180 0.160 0.080 0.080 0.080 0.081

36 0.250 0.210 0.241 0.190 0.090 0.100 0.080 0.090

38 0.221 0.271 0.260 0.210 0.140 0.110 0.100 0.131
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Table 3 Expected demand values from Tarim and Kingsman (2006)

Period 1 2 3 4 5 6 7 8

d̃t 200 100 70 200 300 120 50 100

for test set P1, P2, P3 and P4. In our test results “–” means that, within the time limit of
5 seconds, our CP approach could not find an optimal solution.

When the cost-based filtering method we proposed in Sect. 5 is not used, the pure CP
approach is never able to provide an optimal solution within the given running time limit
of 5 seconds for every instance. The CP approach employing cost-based filtering generally
requires only a fraction of a second to produce the optimal solution. Only in 7 instances the
optimal solution was not produced within the given time limit of 5 seconds. The worst case
running time for our CP approach employing cost-based filtering over the whole test bed
was 6.77 minutes. Therefore even in the few cases in which an optimal solution is not found
in less than 5 seconds, our CP model provides a reasonable running time.

6.2 Comparison between exact CP and approximate MIP approaches

In this section, we compare the cost and the structure of the solutions obtained with our exact
approach with those obtained with the heuristic approach proposed by Tarim and Kingsman
(2006) for a set of 8-period instances discussed in their work.

Tarim and Kingsman (2006) proposed a piecewise linear approximation of the cost func-
tion for the single-period newsvendor type model under holding and shortage costs, which
we analyzed in this work. They were able to build a MIP model approximating an optimal
solution for the multi-period stochastic lot-sizing under fixed ordering, holding and shortage
costs. They gave a few examples to show the effect of higher noise levels (uncertainty in the
demand forecasts) on the order schedule. By using the same examples we shall compare the
policies obtained using our exact CP approach with their approximation.

Depending on the number of segments used in Tarim and Kingsman’s piecewise approx-
imation, the quality of the solutions obtained can be improved. We shall consider approxi-
mations with two and seven segments.

Tarim and Kingsman considered a set of instances defined on a planning horizon com-
prising N = 8 periods. The expected demand d̃t they considered for each period t =
1, . . . ,N is given in Table 3. The demand in each period is normally distributed about
the forecast value with the same coefficient of variation τ . Thus the standard deviation of
demand in period t is σt = τ · d̃t . In all cases, initial inventory levels, delivery lead-times
and salvage values are set to zero.

In Fig. 7–11 optimal replenishment policies obtained with our CP approach are compared
for four different instances, with respect to τ , v, a and s, with the policies provided by the 2-
segment (PW-2) and 7-segment (PW-7) approximations. For each instance we compare the
expected total cost provided by the exact method with the expected total cost provided by the
policies found using approximate MIP models. Since the cost provided by PW-2 and PW-7
is an approximation, it often differs significantly from the real expected total cost related to
policy parameters found by these models. It is therefore not meaningful to compare the cost
provided by the MIP model with that of the optimal policy obtained with our CP model. To
obtain a meaningful comparison we computed the real expected total cost by applying the
exact cost function ((20), (26)) discussed above to the (Rn,Sn) policy parameters obtained
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Fig. 7 The optimal
replenishment policy for h = 1,
a = 250, s = 10, v = 0, τ = 0.0

Fig. 8 The optimal replenishment policy for h = 1, a = 250, s = 10, v = 0, τ = 0.1

through PW-2 and PW-7. It is then possible to assess the accuracy of approximations in
Tarim and Kingsman (2006).

Figure 7 shows the optimal replenishment policy for the deterministic case (τ = 0.0).
The direct item cost (v) is taken as zero. Four replenishment cycles are planned. The (Rn,Sn)
policy parameters are R = [3,1,3,1] and S = [370,200,470,100]. The total cost for this
policy is 1460.

Figure 8 shows an instance where we consider low levels of forecast uncertainty
(τ = 0.1). In this case both PW-2 and PW-7 perform well compared to our exact CP solu-
tions. Since forecast uncertainty must be considered, all the models introduce buffer stocks.
The optimal (Rn,Sn) policy parameters found by our CP approach are R = [3,1,2,2] and
S = [384,227,449,160]. The PW-2 solution is 1.75% more costly than the exact solution,
while the PW-7 solution is slightly more costly than the exact solution.

Figure 9 shows that as the level of forecast uncertainty increases (τ = 0.2), the quality of
the PW-2 solution deteriorates, in fact it is now 3.62% more costly than the exact solution.
The optimal (Rn,Sn) policy parameters found by our CP approach are R = [3,1,2,2] and
S = [401,253,479,170]. In contrast the PW-7 solution is still only slightly more costly than
the exact solution.

As noted in Tarim and Kingsman (2006) the quality of the approximation decreases for
high ratios s/h. In Fig. 10 we consider s/h = 50 and a different demand pattern, in which
the expected demand is particularly high in the last two periods. This modified demand
pattern is suitable for showing the impact of the direct item cost v on the structure of the
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Fig. 9 The optimal replenishment policy for h = 1, a = 250, s = 10, v = 0, τ = 0.2

Fig. 10 The optimal replenishment policy for h = 1, a = 350, s = 50, v = 0, τ = 0.3

Table 4 Expected demand values for our modified demand pattern

Period 1 2 3 4 5 6 7 8

d̃t 200 100 70 200 300 120 200 300

optimal policy. The forecast of demand in each period are given in Table 4. Now the PW-2
solution is 6.66% more costly than the exact approach, while the PW-7 solution is 1.03%
more costly. The optimal (Rn,Sn) policy parameters found by our CP approach are R =
[3,1,2,1,1] and S = [483,324,592,324,486].

In Fig. 11 we consider the same instance but a direct item cost is now incurred (v = 15).
The buffer stock held in the last replenishment cycle is affected by this parameter, and is
decreased from 186 to 63. The PW-7 policy is now 0.84% more costly than the exact one.

We can conclude that, for these instances, seven segments for the piecewise linear ap-
proximation usually provide a solution with a cost reasonably close to optimal.

7 Conclusions

We presented a CP approach that finds optimal replenishment cycle policy parameters un-
der non-stationary stochastic demand and a shortage cost scheme. We have exploited the
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Fig. 11 The optimal replenishment policy for h = 1, a = 350, s = 50, v = 15, τ = 0.3

convexity of the cost function in concert with an existing relaxation strategy to dynamically
generate bounds and perform cost-based filtering during search. Our computational expe-
rience shows the effectiveness of our approach. We are now able to solve problems over a
planning horizon up to 38 periods, typically in a fraction of a second and in the worst case
in a few minutes. This means that our approach can now be applied to problems of a real-
istic size. By using our approach it is now possible to evaluate the quality of a previously
published MIP-based approximation method. For a set of problem instances we showed that
a piecewise approximation with seven segments usually provides good quality solutions,
while using only two segments can yield solutions that differ significantly from the optimal.
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