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ABSTRACT

Reinforcement Learning faces an important challenge in partial observable environments that has
long-term dependencies. In order to learn in an ambiguous environment, an agent has to keep previous
perceptions in a memory. Earlier memory based approaches use a fixed method to determine what to
keep in the memory, which limits them to certain problems. In this study, we follow the idea of giving
the control of the memory to the agent by allowing it to have memory-changing actions. This learning
mechanism is supported by an intrinsic motivation to memorize rare observations that can help the
agent to disambiguate its state in the environment. Our approach is experimented and analyzed on
several partial observable tasks with long-term dependencies and compared with other memory based
methods. 1
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1 Introduction

Reinforcement Learning (RL) has proved itself as a feasible machine learning method in problems that involve sequential
decision making [Sutton and Barto, 1998]. Many algorithms guarantee to converge to an optimal policy when the state
of the agent is clearly apparent. However, such optimality guarantee vanishes under partial observability where the
agent is no longer capable of receiving necessary information about the task to be learned. In such environments, the
observation space may be smaller than the state space and be ambiguous so that an observation may correspond to
different states calling for different optimal actions. In order to overcome this issue, the agent may benefit from an
additional memory, storing previous observations. This way, it can clarify its state to learn a policy solving the task.

Besides, finding a good policy for a problem, the speed of learning is another focus of Reinforcement Learning. A
relatively alternative approach to improve RL is intrinsic motivation where the reward function is supported by an
additional intrinsic reward [Singh et al., 2010]. This reward is determined by a motivation that is persistent throughout
the agent’s life and is driven by aspects like curiosity, novelty and surprise. Applying intrinsic motivation enables the
agent to be adaptable to various problems and explore them better, which is more consistent with the idea of lifelong
learning. Intrinsic motivation is coupled by many RL studies, proving its advantages [Bellemare et al., 2016, Zhang
et al., 2019]. However, this concept is not yet introduced to memory management under partial observability.

Many algorithms that tackle RL under partial observability, devised a fixed method that manages the memory. Such
methods include keeping a fixed or variable length window of information gathered previously in the external memory
[Lin and Mitchell, 1992, McCallum, 1996], learning a finite state machine [Meuleau et al., 1999b], predicting state
representations [Littman and Sutton, 2002] and learning through long short-term memory [Zhu et al., 2017, Mnih et al.,
2016, Wang et al., 2016]. However, these methods are limited to certain problems because of their strict assumptions

1Our code is available at https://github.com/gliese876b/smm
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about them. Our argument is that the control of the memory can be given to the agent and the agent can learn what to
store in it based on the task [Peshkin et al., 1999]. Such an idea allows the agent to be more adaptable for different tasks,
especially for the ones that possess long-term dependency between an observation and the corresponding action. In
these problems, the observation that affects the optimal action at a time step is taken some unfixed time steps ago, so the
content of the external memory should be changed based on the dynamics of the problem. Rather than directly following
a fixed method to determine the memory content, the agent can be intrinsically rewarded for keeping observations in the
memory, which will be useful in the future. This approach can motivate the agent to form an external memory with rare
perceptions without ignoring the dynamics of the problem.

In this paper, we introduce the notion of intrinsic motivation to memory based RL under partial observability. We
enhance the action set of the agent to include actions that can modify the memory and provide an intrinsic reward based
on the content of the memory that the agent decides to keep. Our work is inspired by a previous study [Peshkin et al.,
1999], yet we form the memory in a different way and also, support this memory management learning process by
intrinsic motivation to keep rare observations. Our experiments include tests on partially observable tasks that require
long-term dependency and comparisons with the original approach and other similar methods.

2 Background and Related Work

In this section, we provide a brief summary of the topics that our study is based on. The section defines the environment
model for partial observability, mentions several reinforcement learning approaches to address the problem, and
discusses a concept, namely intrinsic motivation, to improve learning performance together with its implementations in
RL.

2.1 POMDPs

A general model for realistic problems with limited information is given by the Partially Observable Markov Decision
Process (POMDP). A POMDP is defined by a tuple 〈S,A, T,R,Ω, O〉 where S is a finite set of states, A is a finite set
of actions, T : S ×A× S → [0, 1] is a transition function, R : S ×A× S → < is a reward function, Ω is a finite set
of observations, and O : S ×A→ Π(Ω) is the observation function [Kaelbling et al., 1996].

The POMDP model has been addressed in two ways in the literature. The first of these aims to keep a belief state
[Astrom, 1965], which is a probability distribution over the set of states, by assuming that the agent has access to
the state space of the problem and the transition function, and can update this belief state with observations from the
environment. The other is the hidden state POMDP approach [McCallum, 1996], which assumes that the agent has no
access to the problem structure and only takes observations from the environment. Under this setting, the agent needs to
keep an estimated state to base its actions upon. In this study, we follow the latter approach.

2.2 Reinforcement Learning in POMDPs with Hidden States

Many reinforcement learning methods that have proven themselves in fully observable environments, fail in partially
observable ones and lose the guarantees of reaching the optimal policy [Chrisman, 1992]. The main reason for this is
the perceptual aliasing problem that occurs in such environments [Whitehead and Ballard, 1991]. Perceptual aliasing
happens when more than one state corresponds to the same observation. In this case, the agent cannot distinguish
between different states, where the best action may be different, and therefore cannot find the optimal policy. This
situation makes the task of reinforcement learning in POMDPs with hidden states a difficult and unexplored field.

Methods aimed at RL in such environments are divided into two; memory-based and memoryless. Memoryless methods
aim to converge to the best policy without an additional storage of the information gathered from the environment. In
such problems, finding the best memory-free policy is classified as NP-Hard [Littman, 1994]. On the other hand, the
eligibility trace approach has been shown to be useful in practice. One of the methods using eligibility traces, Sarsa(λ),
is an on-policy learning algorithm that updates all of the entries in the value function at a step based on their eligibility
[Loch and Singh, 1998].

Memory based approaches depend on the addition of memory to tackle the problem of partial observability. In an
environment with limited sensory information, the agent has to predict the state it is in, based on the observations it
receives for the goal of finding the right course of action. To avoid perceptual aliasing, the agent must use a memory
where it can hold past observations, actions, or rewards. Using this memory, the agent forms an estimated state for its
place in the state space.

The simplest method of generating state estimation using memory is to keep a fixed length window [Lin and Mitchell,
1992]. In this method, the current state estimation is formed by adding the current observation to the external memory
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where a fixed number of past observations are kept. The agent acts based on this state estimation to solve the given task.
A better approach is to increase the memory as needed and allow it to have different lengths. Utile Suffix Memory,
Nearest Sequence Memory, and U-Tree methods are examples of such variable length memory methods [McCallum,
1996, Zheng and Cho, 2011]. For example; USM and U-Tree form a tree of observations and actions where each leaf
node contains a set of values for each action. Each branch in this tree can be considered as an estimated state which the
agent forms its policy on.

Unlike window based methods, Long Short-Term Memory approach, which uses deep neural networks, has proven
itself in partial observable problems based on visual data [Hochreiter and Schmidhuber, 1997, Bakker, 2001, Le et al.,
2018, Zhu et al., 2017]. In this approach, there are forget gates in the recurrent neural network in addition to input and
output gates, so that this internal memory is not constrained by a time interval and can hold useful information for a
long-term.

One study that holds external memory is keeping it as a finite state machine and generating it online by using stochastic
gradient descent [Meuleau et al., 1999b]. Such a finite state machine is capable of representing every state of an
environment by storing all gathered information. Another study uses past observations of the agent to generate predictive
state representations based on future observations and action predictions [Littman and Sutton, 2002, Singh et al., 2003,
James and Singh, 2004]. The study of [Icarte et al., 2019] proposes an approach where an external reward machine is
learned with the help of a labelling function in order to represent the reward function and the problem is decomposed
into smaller solvable tasks.

The study inspired this paper is aimed to keep an external memory as a binary string and let the agent learn its
management. In this way, the memory is not controlled by a fixed method but can be managed by the agent according to
the needs of the problem [Peshkin et al., 1999, Lanzi, 2000]. VAPS(1) algorithm is used to learn a policy by stochastic
gradient descent, where the agent has additional actions to set the memory to any value at a time. VAPS(1) is shown to
learn a good policy in POMDPs with long-term dependencies.

Methods that use the window-based memory are based on the assumption that the required distinctive information
is temporally close to the current moment, but this assumption is not always realistic. The LSTM approach, which
is independent of the time interval, also faces the problem of the neural network being too customized for each
environment. Although many studies in the literature present deep networks that show good RL performance in an
environment, these deep networks may be too specialized in a level that cannot show learning in a different problem
and may be limited to problems based on visual data [Henderson et al., 2018]. Then, the predictive state representation
approach requires a comprehensive exploration of the infrastructure of the problem to achieve good results and the
reward machines require an additional labelling function to be formed during learning. Finally, in the approach where
external memory is kept as a binary string, the memory is unrelated from the observations and the order of gathering
them. There is a room for improvement for the task of learning memory management in RL, which is an undiscovered
field.

2.3 Intrinsic Motivation

Intrinsic motivation, inspired by the field of psychology, has been used in Reinforcement Learning. According to this
concept, the agent receives intrinsic rewards from the satisfaction of the action itself, independent of an external goal.
Therefore, this motivation never disappears and continues every time the internal reward is active. Examples of concepts
that cause intrinsic motivation are curiosity, novelty, and surprise [Singh et al., 2010].

In the traditional reinforcement learning structure, the rewards are determined by the model and given outside of the
learning mechanism. Recent studies show that, in addition to external reward, intrinsic rewards contribute to learning
performance of the agent [Singh et al., 2010, Barto, 2013]. The new reward function which determines the rewards
the agent receives, is defined as R̂(s, a, s′) = R(s, a, s′) +Rint(s, a, s′) where Rint(s, a, s′) represents the intrinsic
motivation that corresponds to reaching state s′ by taking action a at the state s.

The use of intrinsic motivation in reinforcement learning can be addressed under two main headings [Aubret et al.,
2019]. The first of these is gaining knowledge. In this approach, solutions are sought for the problems of exploration
and state representation in RL by giving intrinsic rewards to the actions that enable the agent to get more information
from the problem. Studies show that the intrinsic rewards given through perception novelty enable the agent to explore
and learn the problem better [Bellemare et al., 2016, Ostrovski et al., 2017].

Another use of intrinsic motivation is the problem of skill learning. The aim here is to learn different and generalizable
skills by using intrinsic motivation or to infer which skills should be learned by following a curriculum. With this
approach, it has been shown that with predefined intrinsic rewards, learning performance improves in problems requiring
hierarchy where external reward is sparse [Kulkarni, 2016, Zhang et al., 2019].
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Although the concept of intrinsic motivation has been studied extensively in fully observable reinforcement learning
problems, the number of studies in partially observable problems is quite limited. This situation arises from the difficulty
of learning through the lack of necessary information. Hence, the effect of intrinsic motivation in partially observable
environments remains an unexplored area.

3 Self Memory Management

Partial observability creates a significant challenge for Reinforcement Learning; having limited and aliased information
about the environment, the agent is unable to devise a policy that can perform well. In order to overcome this issue, it is
required to keep a memory of the history, besides the current observation, so that the different states that map to the
same observation can be distinguished.

Our study follows the concept of keeping a memory under partial observability and is inspired by the approach that
gives the control of the memory to the agent [Peshkin et al., 1999]. Unlike several studies which use a fixed method to
control the memory, our approach, that we name as Self Memory Management (SMM), puts the agent in charge and
allow it to modify the memory by augmenting the action space with memory-changing actions. This learning processes
is supported by providing an intrinsic motivation to keep key information in memory. In an ambiguous environment,
relatively rare observations become distinctive and can help the agent to disambiguate its state. An intrinsic reward can
be consistently provided based on the memory content, so that memories with uncommon observations are supported.

Such an approach possesses several advantages. First, it enables the agent to be more flexible according to the dynamics
of the problem. Each environment may require a different memory content based on the task to be learned. An agent
may need to remember an old observation to make the best decision in future in one problem whereas it may need to
remember just the previous one to get a sense of direction in the other. With SMM, the agent can learn the best memory
content which allows it to solve the task, while interacting with the environment. Second, the idea of keeping rare
observations in memory is not forced but supported. Thus, what the task requires is not ignored and added into agent’s
decision making. The agent can learn to store a rare observation in memory when it is useful for the task.

Following sections defines the form of the memory, which is different from the one in the study of Peshkin et al [Peshkin
et al., 1999], the intrinsic reward that our approach provides and the overall algorithm.

3.1 Defining Memory and Actions over Memory

Our definition of a memory mt at time t is a sequence of observations that is previously perceived and is notated as;

mt = 〈oi, oj , ..., ok〉

where oi, oj , ..., ok represent the observations at times i, j, k respectively and i < j < k < t. That is, the observations
are ordered from left to right according to the time that they are gathered. Note that i, j, k and t are not necessarily
consecutive numbers. An empty memory m = 〈〉 has the size of zero, that is |m| = 0.

Our method composes the action space with a set of actions modifying the memory. The set of memory actions A, that
we have in this study, consists of two actions; A = {apush, askip} and the effects of these actions are defined by a
function T : M × Ω×A →M where M defines the set of all possible memories.

At time t, for a memory mt = 〈oi, oj , ..., ok〉 and the current observation ot, a memory action at determines the next
memory mt+1 according to

mt+1 = T(mt, ot, at) =


〈oi, oj , ..., ok〉, if at = askip,

〈oi, oj , ..., ok, ot〉, if at = apush and |mt| < c,

〈oj , ..., ok, ot〉, if at = apush and |mt| = c,

where c ≥ 0 is the capacity of the memory, a parameter to bound it. With this definition, taking the action apush pushes
ot to the end and if the memory is at its full capacity, pops the oldest observation oi from it. On the other hand, the
action askip skips ot without changing the memory.

The advantages of defining the memory in this way is two-fold. First, keeping the observations in a sequence enables the
memory to keep them ordered, giving the agent a sense of direction. By this definition, a memory 〈o′, o′′〉 is a different
memory than 〈o′′, o′〉, hence it represents a different experience of the problem. Second, T restricts the transitions
between memories. The agent cannot jump between completely distinct memories, therefore the set of visited memories
is kept bounded according to the observations gathered from the environment.
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3.2 Using Intrinsic Motivation

The memory management method proposed in this study is based on learning what to keep in the memory. This learning
process can be supported by giving intrinsic motivation to changes on memory. Our method attacks the problems
where there is long-term dependency between the information and the corresponding action. That is, the required
observation to take an optimal action at a moment is temporally distant. This kind of problems require the agent to keep
the observation in memory for the time that it is going to be important.

We argue that such observations are rare in an ambiguous environment. Therefore, an agent motivated to keep rare
observations in memory can improve its learning performance. In this paper, we define the intrinsic motivation to keep
a memory m as;

Rint(m) = β ·

[(∑
o∈m

(1− P (o))

)
− c

]
where c ≥ 0 is the memory capacity, β ∈ [0, 1] is a parameter to control the intrinsic reward and P (o) ∈ [0, 1] is
the probability of gathering observation o. This probability can be calculated by keeping a count of each visit of an
observation and forming a probability distribution over observations based on their frequency of occurrence.

Note that Rint(m) is bounded to [−c, 0] but the magnitute of the reward decreases with the addition of infrequent
observations to the memory. Such a function motivates the agent to utilize the memory to its full capacity by keeping
rare observations in it. Also, by being a negative value, it does not diverge the agent away from a goal state, keeping the
main aim of it unchanged.

3.3 Overall Method

Having an external memory, the agent needs to form a state estimation by using it in order to make better decisions.

At a time t, the agent’s state estimation xt is formed by concatenating the memory mt = 〈oi, oj , ..., ok〉 with the current
observation ot as below;

xt = mt + ot = 〈oi, oj , ..., ok, ot〉
where oi, oj and ok are previously seen observations at times i, j and k in the memory. The set of estimated states,
formed by this approach, is notated as X .

A composed set of actions Â = A×A is formed by using the environment actions A and the memory actions A. With
these definitions, the agent aims to learn a policy π : X × Â→ [0, 1].

At a time t, with the estimated state xt formed by the memory mt and the current observation ot, the agent takes a
composed action (at, at) according to its current policy πt where at is the action to pass to the environment and at is
the action over the memory. Taking action at in the environment results in the next observation ot+1 and the agent’s
next memory mt+1 is determined according to T(mt, ot, at). The next estimated state xt+1 is formed by concatenating
mt+1 with ot+1. The agent gets a reward r̂t according to the new reward function;

r̂t = R̂(xt, (at, at), xt+1) = R(xt, (at, at), xt+1) +Rint(xt, (at, at), xt+1)

where R(xt, (at, at), xt+1) reduces to the original reward function R(st, at, st+1) and Rint(xt, (at, at), xt+1) =
Rint(mt+1) as the intrinsic motivation to keep the memory mt+1.

These modifications alters the setting that the learning mechanism operate on while the interaction between the agent
and the environment is kept the same. The agent provides an action from A and gets observations and rewards from Ω
and R. Moreover, the proposed method is independent of the used reinforcement learning algorithm. Different learning
methods can be used to learn the agent’s policy.

We implemented our approach on top of Sarsa(λ) algorithm [Loch and Singh, 1998] that shows faster convergence under
partial observability. In this setting; we have a Q value for each (x, (a, a)) pair and at a time t, the agent experiences
〈xt, (at, at), r̂t, xt+1〉 and follows the update rules;

ηt(xt, (at, at)) = 1 (1)

∀(x 6= xt or (a, a) 6= (at, at)), ηt(x, (a, a)) = γληt−1(x, (a, a)) (2)

∀x, (a, a), Qt+1(x, (a, a)) = Qt(x, (a, a)) + αηt(x, (a, a))δt (3)
where ηt(x, (a, a)) is the eligibility trace of the estimated state - composed action pair (x, (a, a)), α is the learning rate,
λ is the trace decay constant, γ is the discount factor and δt = r̂t + γQt(xt+1, (at+1, at+1))−Qt(xt, (at, at)) is the
TD-error at time step t.
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4 Experiments

We experimented on three partially observable environments that can show the effect of our approach. Each of these
have a long-term dependency, requiring the agent to keep a temporally distant observation in memory to the point where
it is useful. We picked Sarsa(λ) as the underlying learning algorithm for our approach. We compared Sarsa(λ) with self
memory management (abbreviated as Sarsa(λ) w/ SMM), with Sarsa(λ) with a memory of fixed window (abbreviated
as Sarsa(λ) w/ FW), and the incremental implementation of VAPS(1) algorithm [Peshkin et al., 1999] since it is the
original study proposing the idea of agent controlled memory. VAPS(1) algorithm is implemented differently in terms
of the action space: In the original study, the authors add a new action for setting each bit of the memory but taking this
action wastes a time step making no changes in the environment. In order to have a fair comparison, we implemented
their second approach, which allows the agent to have composite actions that can directly set the entire memory to a
value.

In addition to methods with external memory, the experiments consist of two baselines that use LSTM to summarize the
history of the agent; A3C [Mnih et al., 2016] and ACER [Wang et al., 2016].

4.1 Setup

The experiments are presented in terms of two aspects; learning performance and the number of times the external
memory is changed, that is mt 6= mt+1. These metrics are selected so that our approach can be shown to improve the
learning speed by learning how to manage the memory with minimal changes.

Both of the Sarsa(λ) versions are tested with ε-greedy action selection with ε decaying from 0.2 to 0.001 and the rest
of the parameters are set as λ = 0.9, α = 0.01, γ = 0.9 whereas Sarsa(λ) with SMM used β = 1.0 in the main
experiments. VAPS(1) algorithm follows Boltzmann law to select actions, having a stochastic policy. The Boltzmann
temperature value is decayed over episodes, as the original study suggests.

For A3C and ACER, we used Stable Baselines implementations [Hill et al., 2018]. We followed a setting similar to the
study of [Icarte et al., 2019]. Both of the methods used a network of 5 fully connected layers with 64 neurons per layer.
During learning, the methods used 32 sampled experiences from a buffer of size 100,000 with the learning rate of 0.01.
We selected the number of hidden neurons for the LSTM as 128, where the rest of the parameters are left as default.

Due to the stochastic process in each algorithm, we present the average results over 50 experiments where each episode
either ended when the agent reached to the goal state or to the step limit of 500.

4.2 Load/Unload

U L
Figure 1: Sketch of the Load/Unload problem where the locations marked with U and L determine the states that the
agent gets unloaded and loaded respectively. The observations are limited to the presence of a wall in four navigational
directions.

Load/Unload (Figure 1), is a simple problem [Peshkin et al., 1999] where the agent is capable of loading at location
L and unloading at location U . An episode starts with the agent unloaded at U and ends when the agent reaches the
location U after getting loaded at L. The agent has two deterministic actions to go west and east and is rewarded
with 1.0 only when it reaches the location U as loaded. The problem is partially observable since the agent only gets
observations based on a presence of a wall in four directions, but it does not know whether it is loaded or not. The agent
has to keep a memory of being loaded, on the states in the corridor where each of them provides the same observation.
Overall, the domain has |S| = 8, |A| = 2, |Ω| = 3. This is the environment which VAPS(1) is experimented on, with a
1 bit of memory in the original study.

In order to demonstrate the speed of learning, Figure 2a shows the number of steps to complete an episode in the
problem, rather than total collected reward, since the environment provides a reward only when the agent reaches to
the goal state. It shows that a fixed window memory fails to compete with the other methods that show convergence
to a better policy. Sarsa(λ) with SMM, starts strong on reaching to the goal state in lesser number of steps. Since
the observations at the loading and unloading stations are relatively rare, the agent with SMM is motivated to keep
them in memory, leading to a better learning performance. While VAPS(1) agent has to learn when to set or clear its
memory, SMM is supported by intrinsic motivation, thus it learns what to store in the memory much quickly. Both of
the LSTM-based methods show convergence, but they are less sample-efficient compared to SMM. Also, it can be seen
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Figure 2: (a) Number of steps to complete an episode, (b) number of changes on external memory during an episode in
Load/Unload problem. VAPS(1) algorithm has a 1 bit memory where both Sarsa(λ) with FW and Sarsa(λ) with SMM
has a memory with a capacity of 1 observation. The lines represent the average of 50 experiments and shaded areas are
the 95% bootstrapped confidence intervals.

in Figure 2b, this learning performance of SMM is achieved with a minimum number of changes over the memory,
compared to the other external memory based methods. In fact, SMM updates the memory only when the agent reaches
to an end of the corridor but leaves it unchanged in the middle part.

4.3 Modified Meuleau’s Maze

G

S

Figure 3: Sketch of Modified Meuleau’s Maze where the start and the goal states are marked with S and G,
respectively. The observations are limited to the presence of a wall in four navigational directions.

Another partially observable environment we tested on is Modified Meuleau’s Maze [Meuleau et al., 1999a], shown
in Figure 3. The agent has four navigational actions as north, east, south, west, starts from the state with S and aims to
reach the goal state with G. The observations are partial in terms of the presence of a wall in four directions and the
agent is rewarded for reaching G with 5.0 where other actions get -0.01. The actions are stochastic in this version, where
the agent is capable of moving to the intended direction with 0.8 probability and can end up in a random direction with
0.2 probability. In this problem, the states in the corridors provide aliased observations and may require opposite actions
(like in the vertical corridors) and unlike other domains, the agent has to update its memory whenever it reaches to a
corner or a T-junction, rather than keeping a fixed memory content. The environment has |S| = 65, |A| = 4, |Ω| = 8.

In this problem, we experimented on Sarsa(λ) with FW and VAPS(1) with different memory capacities, yet they were
unable to get a good learning performance. Figure 4a shows the best achieved performance among several configurations
for these methods. In the figure, the effect of SMM supported by intrinsic motivation is clear. Sarsa(λ) with SMM,
displays a rapid learning and converges to a near optimal performance in this stochastic environment whereas Sarsa(λ)
with FW and VAPS(1) fail to do so, even with a bigger memory capacity. While ACER is unable to reach to the goal
state, A3C also learns the best policy but its convergence is slower compared to SMM. Faster convergence of SMM is
attained by keeping the observations at the corners and T-junctions, which are relatively uncommon, in the memory. For
example, while being in a location inside a vertical corridor is ambiguous, keeping a bottom-left corner observation in
memory allows the agent to go north, then having a T-junction observation with north direction blocked allows it to go
south. This way, the agent learns to update its memory repeatedly so that it reaches the goal. Keeping a memory based
on a window is not beneficial under this setting, since the temporal distance to key observations varies on different
states of the problem. The performance of VAPS(1) algorithm shows that it is restricted to deterministic domains with
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Figure 4: (a) Total reward collected throughout an episode, (b) number of changes on external memory during an
episode in Modified Meuleau’s Maze problem. VAPS(1) algorithm has a 3 bit memory where Sarsa(λ) with FW
and Sarsa(λ) with SMM has a memory with a capacity of 3 and 1 observations, respectively. The lines represent the
average of 50 experiments and shaded areas are the 95% bootstrapped confidence intervals.

sparse rewards. While the other external memory based approaches constantly update the memory, SMM achieves a
good learning performance with minimum memory changes, shown in Figure 4b.

4.4 Modified Tree Maze

S

Figure 5: Sketch of Modified Tree Maze where the agent starts from the state with S and aims to reach to a leaf
which is determined at the beginning of each episode. The agent observes the turns it needs to take only at the first two
steps of the episode.

Modified Tree Maze, shown in Figure 5, is another partial observable problem that contains long-term dependency
[Steckelmacher et al., 2018]. The agent starts from the location S and needs to reach to a state at the end of a leaf. It
has three deterministic actions to go north, east, south. The goal state to reach is determined at the beginning of each
episode, making the problem more complex. An episode ends with a reward of 10 when the agent reaches to the goal
state and -0.1 for reaching to other leaf states. All regular steps of the agent are also rewarded by -0.1. An observation
is limited to the location in the corridor (represented as left-most, middle and right-most), the number of taken turns and
an additional bit to represent the required turns to take in each T-junction, which are only available in the first two steps
of the episode. In this way, the agent has to keep these first observations in memory until they are useful, in order to
reach to the desired goal state. As a result, the environment has |S| = 140, |A| = 3, |Ω| = 14.

In this problem, we allowed VAPS(1) to have a 2 bits of memory while FM and SMM had a memory capacity of 2
observations so that all external memory based methods have enough capacity to learn the task.

As shown in Figure 6a, only VAPS(1) and Sarsa(λ) with SMM learns in this problem while the others show none but
random achievements. Sarsa(λ) with SMM outperforms all by reaching to a near optimal performance with a total
reward of 9.86 in the last episodes. The methods using LSTM, A3C and ACER, cannot devise a good policy, supporting
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Figure 6: (a) Total reward collected throughout an episode, (b) number of changes on external memory during an
episode in Modified Tree Maze problem. VAPS(1) algorithm has a 2 bit memory where both Sarsa(λ) with FW and
Sarsa(λ) with SMM has a memory with a capacity of 2 observations. The lines represent the average of 50 experiments
and shaded areas are the 95% bootstrapped confidence intervals.

the argument that they require specific configurations for a problem to learn it. Similar to the other results, the number
of changes that SMM applies to the memory converges to a minimum value, as Figure 6b shows. Note that SMM does
not fix the content of the memory at the beginning of an episode in this setting, but updates it when the corresponding
observation is no longer required to solve the task. For example, the first observation in the episode contains the
direction that the agent needs to take in the first T-junction. SMM removes this observation from the memory by storing
a new one, when the agent takes that turn. This shows that SMM learns a fitting behaviour for the task.
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Figure 7: (a) Total reward collected by Sarsa(λ) with SMM on different λ values, (b) total reward collected by Sarsa(0.9)
with SMM on different β values in Modified Tree Maze problem. Sarsa(λ) with SMM has a memory with a capacity
of 2 observations. The lines represent the average of 50 experiments and shaded areas are the 95% bootstrapped
confidence intervals.

We further tested Sarsa(λ) with SMM on several values of its parameters in Modified Tree Maze. To avoid
overcrowding in the figures, we kept this set of values small. Figure 7a shows the effect of various λ values on the
learning performance. As expected, lower λ translates to a slower convergence to a good policy since higher λ allows
Sarsa(λ) algorithm to propagate the TD-error to a larger set of eligible estimated state - composed action pairs. In
Figure 7b, the effect of β, therefore the amplitude of intrinsic rewards, on learning can be seen. While learning with
β = 0 is slow, even a small value as β = 0.2 improves the learning speed of SMM. Here, even though the intrinsic
reward is small, it can modify the policy so that the agent is motivated to keep rare observations in memory, leading to a
greater learning performance.

5 Conclusion

This study proposes a main layout where a reinforcement learning agent learns how to manage its own memory with an
intrinsic motivation to keep useful observations in it. The proposed method, self memory management, defines the form
of the memory, the actions changing the memory and the intrinsic reward to be provided to the learning updates. It can
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be coupled with many reinforcement learning algorithms and is shown to work in partially observable environments
that have long-term dependency. In the experiments, we compare our method with the original study that proposes the
idea to allow the agent to control the memory and show that with the help of intrinsic motivation, it outperforms several
memory based approaches in various POMDPs, with minimal changes on the memory.

There are ways to do further research on this paper, which acts as a preliminary study. First, the set of memory actions
A can be extended to give more control to the agent and the capacity bounding parameter c can be disregarded, giving
the full control of the memory size to the agent. Second, the definition of intrinsic reward can be altered as some
problems may require additional heuristics on what to keep in the memory, besides the rare observations. Finally, the
more memory based approaches in the literature can be included in the experiment set.
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