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ABSTRACT

FUZZY BAYES CLASSIFICATION

Necla Kayaalp

M.S. in Applied Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Asst. Prof. Dr. Güvenç Arslan

May 2013

Recent developments show that Naive Bayesian Classifier (NBC) performs

significantly better in applications although it is based on the assumption that

all attributes are independent of each other. However, in the NBC each variable

has a finite number of values which means that in large data sets NBC may not be

so effective in classifications. For example, variables may take continous values.

To overcome this issue many researchers used Fuzzy Naive Bayesian Classification

(FNBC) for partitioning the continous values. On the other hand the choice of

distance function is an important subject that should be taken into consideration

in fuzzy partitioning or clustering.

In this thesis, a new Fuzzy Bayes Classification is proposed for numerical at-

tributes without considering the independence assumption. In order to get high

accuracy in classification membership functions are constructed by using Fuzzy

C-Means Clustering (FCM). The main objective in using FCM is to obtain mem-

bership functions directly from the data set instead of consulting to an expert.

The proposed method is demonstrated on two well-known data sets from the

literature which consist of numerical attributes only. The results show that the

proposed Fuzzy Bayes Classification is at least as well as comparable to other

methods.

Keywords: Mahalanobis distance; Bayes classification; Fuzzy set theory.
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ÖZ

BULANIK BAYES SINIFLANDIRICISI

Necla Kayaalp

Uygulamalı İstatistik, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Yöneticisi: Yrd. Doç. Dr. Güvenç Arslan

Mayıs 2013

Son gelişmeler, tüm niteleyicilerin (attribute) birbirinden bağımsız olduğu

varsayımına dayanmasına rağmen, Naive Bayes Sınıflamanın (NBS) uygula-

malarda oldukça iyi bir biçimde işlediğini göstermektedir. Bununla birlikte,

NBSde, her değişken, büyük veri kümelerinin sınıflamalarında çok da etkin ola-

mayacağı anlamına gelen sınırlı sayıda değere sahiptir. Sözgelimi, değişkenler

sürekli değerler alabilirler. Bu sorunun üstesinden gelmek için birçok araştırmacı

sürekli değerleri bölüntülemek (kesikli hale getirmek) için Bulanık Naive Bayes

Sınıflamasını (BNBS) kullanr. Öte yandan, uzaklık fonksiyonu seçeneği, bulanık

bölüntülemede ya da kümelemede dikkate alınması gereken önemli bir konudur.

Bu tezde, bağımsızlık varsayımı dikkate alınmadan sayısal niteleyiciler için

yeni bir Bulanık Bayes Sınıflaması önerilmiştir. Sınıflamada, yüksek doğruluğu

elde etmek için, Bulanık C-Means Kümelemesi (BCM) kullanılarak üyelik fonksiy-

onları oluşturulmuştur. BCM kullanımındaki temel amaç, bir uzmana danışmak

yerine üyelik fonksiyonlarını doğrudan veri setinden elde etmektir. Önerilen

yöntem, yalnızca sayısal niteleyicileri içeren ve alanyazında iyi bilinen iki veri

seti üzerinde gösterilmiştir. Sonuçlar, önerilen Bulanık Bayes Sınıflamasının en

azından diğer yöntemlerle karşılaştırılabilir olduğunu ve genellemede daha iyi

olduğunu göstermektedir.

Anahtar Kelimeler : Mahalanobis uzaklığı; Bayes sınıflandırıcısı; Bulanık küme

teorisi.
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Chapter 1

Introduction

A main objective of data analysis is to process and organize data in order to ex-

tract useful information from it. It is known that there has been a huge amount

of information pollution in recent years due to the fact that there is too much

data to be processed in data analysis because of the increasing use of computers.

In addition to the increasing use of computers and the internet, easy access to

data and increasing capacities of data storage led to the potential of misuse of

data. Another problem is how to deal with such large data sets. Moreover, there

may be redundant data, which should be avoided, if possible. In fact, today it can

be said that traditional approaches to data analysis and information processing

are not effective or even not appropriate at all. Another important aspect to be

considered nowadays is to guard against poor quality of data to be processed.

Various approaches have been proposed to eliminate such handicaps and to over-

come similar problems during data analysis. One of the most common approaches

is, classification, which is a data analysis technique especially used in machine

learning, pattern recognition, decision making problems, and communication net-

works. By using classification procedures, we can discover new information from

significant amount of data. Therefore, the classification speed becomes an im-

portant task in classification in order to save time and such procedures help to

make classification as soon as possible. Moreover, because of overwhelming de-

velopments in science and technology, information or data is changing in a rapid

1



CHAPTER 1. INTRODUCTION 2

fashion as well. Thus, there exists abundance of data which also has to be pro-

cessed by appropriate and sometimes new approaches in classification procedures,

which may help to update changes and make accurate classifications.

Classification has a very broad field of study. The main task of classification

is to group instances by using relevant features. For this reason a classifier can

be defined as a function that maps a class label to instances by some of the avail-

able features [21]. A data set may sometimes consist of pre-classified instances.

This is called supervised classification. In supervised classification, we have a

set of observations with given classes and a new observation is classified into one

of the given classes. More briefly, observations are pre-classified or class labels

are known so that it can be predictive. Unlike the supervised classification, in

unsupervised classification, all given observations are unclassified. That is, unsu-

pervised learning occurs when observations have not been previously classified.

Therefore, it is not predictive in contrast to supervised classification.

One of the widely used classifiers is the Naive Bayesian Classifier (NBC) which

was proposed by Duda and Hart in 1973 [15]. This classifier is constructed with

the strong independence assumption of conditional probabilities. This means

that all attributes are conditionally independent given the label of the class C.

It can be observed that naive Bayesian classifier has been widely used and gives

surprisingly high performance in classification despite those strong assumptions.

However, many researchers stressed their concern with those assumptions and

tried to improve this classifier by considering various extensions.

In recent years researchers also considered additional aspects such as uncer-

tainty, quality of data, and effects of distance functions used in the algorithms,

that needs further investigation. When naive Bayesian classifier is faced with

uncertain (imperfect) data, its performance may decrease [21]. During the past

several years, researchers have been attracted by uncertainty in classification

problems. Randomness, which is related to probability theory, is used for elimi-

nating uncertainty. However, it is well known that not all types of uncertainties

can be handled by randomness. On the other hand they may sometimes be ex-

pressed by human knowledge which can be handled with fuzzy set theory. In
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such situations, attributes are expressed by fuzzy membership functions within

the perspective of fuzzy logic. These membership functions then can be used in

classification. Uncertainty problems may arise in knowledge based systems since

usually experts are consulted when membership functions are constructed. Al-

though expert systems began to attract researchers interests, it still may reduce

the performance of classification and this may lead to misclassification. In order

to get an efficient performance in classification, distance functions are taken into

consideration in order to obtain membership functions instead of consulting to

an expert. In recent years one can find many studies which investigate their use

and performance in various algorithms such as clustering or classification. At the

same time, the choice of distance functions is another topic of research within

this methodology.

One of the main goals in this study is to use fuzzy set theory in the frame-

work of Bayesian classification to deal with uncertainty related to membership

functions. It is known from the literature that constructing appropriate member-

ship functions is not an obvious task. Different approaches have been proposed

in order to construct membership functions from experts or training sets. For

instance, Wu and Chen used α-cuts of fuzzy equivalence relations for generating

rules from training set [37]. In [37], one can find other methods studied in the

past. However, most of them are related to fuzzy if-then rules, that is if-then rules

are generalized in those studies. Moreover, Hasuike et al., developed a method

based on Shannon entropy and Human’s interval estimation in order to construct

membership functions [38]. Recently, researchers became interested in fuzzy func-

tions in order to generalize membership functions. For details see [41]. In the

proposed approach the fuzzy membership functions are constructed directly from

the data set by applying Fuzzy C-Means (FCM) algorithm. Namely, a learned

Mahalanobis distance is used in FCM algorithm after a Mahalanobis distance is

learned.

The thesis is organized as follows. In chapter 2, some preliminaries are pre-

sented and some basic concepts are overviewed. In chapter 3, a special type of

classification, Bayesian classification is summarized. The emergence and devel-

opment of this type of classification is described as well. In chapter 4, a new
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approach to naive Bayesian classification which is called Fuzzy Naive Bayesian

Classification, is given. Besides, not only distance metric learning but also FCM

clustering algorithm is explained. In chapter 5, the proposed method is applied

on two data sets, the Fisher Iris data set and Seed data set from the literature

[39]. In chapter 6, the results are analyzed and further directions for research of

this study are given.



Chapter 2

Classification Problem

In this chapter, the classification problem is outlined and different classification

methods are shortly given. Classification is one of the most commonly applied

data mining methods used to obtain information from data. In other words,

classification is a process of learning or data mining. In this thesis, one of our

goal basically is data classification. Data classification is a process consisting of

two steps; the first step is the learning step where a model is established. The

second step is the classification step where new examples are classified by using

the model established in the first step.

In general a classifciation task uses a training set, in which there is a set of

observations and each observation is described by a set of attributes with known

class values. Observations are also known as examples, tuples or instances. More

formally, each observation is described as (X;C), where X is an attribute vector

and C is a class label. A classifier is a function mapping every attribute vector

(input data) to the corresponding class labels (output data). In other words, it

is a function that assigns a class label to the observations.

A training set or data set in classification can be considered as an infor-

mation system (IS) composed of attributes and observations such that IS =

(U,A, Va, fa), where A = (a1, a2, ..., an, C), is a finite set of attributes including

both conditional and decision attributes, U = {x1,x2, ...,xm} is a finite set of

5



CHAPTER 2. CLASSIFICATION PROBLEM 6

Instances a1 a2 a3 ... an C
x1 x11 x12 x13 ... x1n c1
x2 x21 x22 x23 ... x2n c2
x3 x31 x32 x33 ... x3n c3
... ... ... ... .... ... ...
xm xm1 xm2 xm3 ... xmn cq

Table 2.1: Training Set

observations (universe), Va is the domain of attributes and fa : U −→ Va is an in-

formation function such that f(X, a) ∈ Va for each a ∈ A,X ∈ U . The attributes

ai, i = 1, 2, ...,m are called conditional attributes and C is called a decision at-

tribute or class label [29]. We will denote the finite number of different classes

by ci, i = 1, 2, ..., q; that is f(x, c) ∈ Vc, where Vc = {c1, c2, ..., cq}. Table 2.1 is

another way for representing such an IS with one decision attribute.

It is seen that a1, a2, ..., an are attributes, C is a decision attribute or class label

and xi’s are observations. For example, consider observation x1 = (x11, x12, , x1n),

which is an n-dimensional attribute vector corresponding to the attributes

a1, a2, ..., am, respectively.

The above definition of a classification problem can be found in many books

which deal with the classification problem. However, in this study, we assume

that the classification problem can be defined as follows.

Definition. Classification task is composed of a training set D = (U,A, f, Vc),

where U is a finite set of observations, A is a finite set of attributes, f is an

information function and Vc is a set of class labels. Assume that each class

can be represented by a class center which is unknown. We denote those class

centers by V = {v1, v2, ..., vn}. In other words, it is assumed that the space X is

partitoned into q well-defined subsets. Under this assumption each class can be

identified by a Voronoi diagram [6] as follows:

V or(vi) =
{
x ∈ Rd|d(vi, x) ≤ d(vj, x), ∀vj ∈ V

}
(2.1)

Many algorithms have been proposed for classification. Some well-known
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classification algorithms are given below:

• Fisher’s Linear Discriminant[7]: This is one of the oldest classification used

and implemented in computer packages. The aim of this approach is to find

a projection of high dimensional data onto a low dimensional space such

that the distance within the classes is minimized. To do so, variance and

covariance matrices are used. The problem emerges when the covariance

matrix is singular. This happens, for example, when we have the total

number of observations smaller than the total number of attributes.

• Rule Based Method [8]: This classifier is a function of attributes based

on rules. It is very practical in a small data set, though not very conven-

tient for large data sets. Another problem is how to define rules and make

generalization of those rules to obtain meaningful classifications.

• K-Nearest Neighbor [9]: In this method, a new object is classified with re-

spect to the closest k-objects in the training set. Even though it seems very

basic and very applicable, there are some shortcomings. For instance, the

distribution of observations may be sophisticated and may not be compre-

hensible. In addition, it may be very slow compared to other methods.

• Neural Networks [10]: Networks have the ability to get information from

complicated data sets. They were very popular in the past but now they are

not the one applied because of the complexity. Therefore, one cannot figure

out an efficient algorithm for classification. Those algorithms are learned

by examples which is changing all the time; thus, such algorithms cause too

much waste of time and misclassifications.

• Decisicion Tree [11]: Decision tree is a powerful, widely used classification

by using a tree structure. This approach is based on partioning the sample

space, that is, each space is divided into subspaces and those subspaces are

also divided into other subspaces and so forth. This approach is similar to

rule based method, major difference being in the manner of drawing a tree

structure. Furthermore, representing rules by a decision tree makes it more

attractive than neural networks. It becomes very simple to interpret and
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classify objects. Nonetheless, the main concern of this approach is that it

gets much more complicated while the decision tree is growing.

• Support Vector Machines: This method is an attractive type of classifi-

cation that is used mostly nowadays. This classifier is based on decision

planes which can be a linear plane or a curve. These decision planes which

have decision boundaries split a set of examples which have different class

memberships. (For more details see [12].)

• Bayesian Networks [13]: This method is also called belief networks.

Bayesian approach depending on probability distributions was firstly used

by Fisher. (For details see [14].) Naive Bayes Classification is a special case

of Bayesian Networks under some independence assumptions. This method

will be discussed in details in the following sections.



Chapter 3

Bayesian Classification

Throughout this chapter Bayes’ theorem is overviewed and Bayesian Classifica-

tion is represented in details. Recent studies are given as well. Bayesian clas-

sification is a statistical classification method based on Bayes Theorem. Duda

and Hart [15] studied this method in pattern recognition for the first time. Fol-

lowing this, Clark and Niblett pointed out the practical importance of Bayes

Classification [17]. Then, in 1992, Langley et al. [18] improved this method.

3.1 Bayes’ Theorem and Bayesian Classification

Bayes’ theorem which took its name from an English man was first proposed in

18th century by Thomas Bayes, who studied probability and decision theories.

There exist two distinct interpratations which are the Bayesian interpratation

and the frequentist interpretation of Bayes theorem, in probability theory. While

in the Bayesian interpretation, probability measures a degree of belief, in the

frequentist interpretation, probability measures a proportion of outcomes. This

theorem is based on a simple idea, which is, using prior knowledge, in order to

obtain posterior knowledge about an observation. In other words, according to

the Bayesian interpretation, the posterior probability can be derived from an ap-

propriate prior probability and a ”likelihood function” derived from a probability

9
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model for the data to be observed. Let x be an observation. Then the posterior

probability is defined as:

p(C|x) =
p(x|C)p(C)

p(x)
(3.1)

where

C stands for a class label

p(C) is posterior probability of C before x is observed

p(C|x) is posterior probability of C given x, that is, after x is observed

p(x|C) is likelihood, the probability of observing x given C

p(x) is marginal likelihood of observed x, assuming that p(x) > 0.

Bayesian classification is a classification method that has many different vari-

ants depending on structure and assumptions of attributes, such as independence.

Many different types of this classification approach are proposed, such as naive

bayes, semi-naive bayes, selective naive bayes and others. A specific kind of this

approach is known as the Naive Bayesian Classifier (NBC) which has totally in-

dependent attributes. Unless the attributes are totally independent, semi-naive

bayes type of classification is used [19].

3.2 Naive Bayesian Classification(NBC)

Consider a training set of examples (tuples) D together with their related class

labels. Each tuple, X, n-dimensional attribute vector, is represented as X =

(x1, ..., xn), showing m values of n attributes a1, a2, ..., an, respectively. Thus, each

attribute represents a feature vector. Assume that there are q classes; c1, c2, ..., cq.

Given a new tuple or example, the classifier will estimate the class, by using the

maximum posterior probability given X. Namely, p(ci|X) will be maximized.

This probability will be evaluated with Bayes theorem

p(Ci|X) =
p(X|Ci)p(Ci)

p(X)
. (3.2)

Since p(X) is the same for all classes, just the maximization of p(X|Ci)p(Ci) is

required. However, it is known that X is an n-dimensional attribute vector which
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may be computationally unattractive to compute. To simplify the computation

of naive Bayesian classification, in which attribute values are independent of each

other, under the given class, the following formula can be used

p(X|Ci) =
n∏
k=1

p(xk|Ci), i = 1, 2, ..., n. (3.3)

Therefore, p(Ci)
∏n

k=1 p(xk|Ci) will be maximized in order to classify a new in-

stance. More formally,

NBC(C∗) = arg max
Ci

{
p(Ci)

n∏
k=1

p(xk|Ci)

}
(3.4)

where C∗ is a new class to be determined, Xk’s are the attributes for the given X

instance, Ci represents each possible class and p(xk|Ci) represents the posterior

probability of instance x given class i. In 2009, a naive Bayesian possibilistic

network classifier which is very similiar to NBC was introduced by Haouari et al.

[21] to cope with imperfect data and uncertainty that may occur in data sets.

The difference is that NBC depends on probability theory while this approach

depends on possibility theory.

It is obvious to see that the aim of Bayesian classification is to find the best

class for a new observation by using probability, namely, new observation is as-

signed to the best class with the highest probability. Due to the fact that the

data sets are spesific data sets, the resulting probabilities may not reflect the real

scores and therefore it may result in low performance in classification. It is not

a realistic classification although it can generate a confidence value with respect

to its choice. Clark and Niblett, in 1989 showed that despite all these negations,

naive bayes classification has the highest performance among other types. Recent

researches declared the good performance of naive Bayesian classification, and in

1997, Friedman [20] analyzed this classification method illustratively. Neverthe-

less, owing to the dependency/indpendency assumptions, it is shown that there

exist a classification error [22]. It is mentioned that NBC is based on the condi-

tional independence assumption. Hence, NBC is extended through the indepen-

dency conditions such as selective naive Bayes classification [23], semi-nave Bayes



CHAPTER 3. BAYESIAN CLASSIFICATION 12

classification [19], tree augmented naive Bayes classification [20], K-dependence

Bayesian classification [24], etc. Indeed, dependency between attributes may re-

flect the accuracy of classification. For instance, the aim of selective naive Bayes

classification is to eliminate redundant attributes in order to make efficient classi-

fication. Moreover, in order to get high accuracy in classification weighted naive

Bayes classification based on frequency of attributes or correlation coefficient is

proposed and experiments have proved effectiveness of this method. Weighted

Naive Bayes Classifier (WNBC) was proposed for first time as:

WNBC(C∗) = arg max
Ci

{
p(Ci)

n∏
k=1

p(Xj|Ci)wj

}
(3.5)

where wj is the weight of j-th attribute [25]. Thus, when weight of an attribute

is great then that means its impact is great. This method is constructed for data

set containing linguistic attribute values. Another important key in this model is

how weights of each attributes are determined. There have been many methods

used for determining weights. In the method proposed in the next chapter we

use weights in a different way instead of the powers of conditional probability.

WNBC softens independency assumptions by taking weight of each attribute

into consideration. In 2006, Yager extended naive Bayes classifier in a different

manner by using ordered weighted averaging (OWA) operators. He showed that

the extended naive Bayes classifier is a special case of OWA operators:

ENBC(C∗) = arg max
Ci

{
p(Ci)

n∑
j=1

wj

k∏
j=1

p(Xj|Ci)

}
(3.6)

where wj is the weight of the j-th attribute [26]. In this study, we use only weights

without dealing with the independency assumption. We expect that weights are

sufficient for assigning or identifying essential attributes for classification since

those weights take active roles when it will have a great impact, in which case it

is close to 1 and a small impact in which case it is close to 0.
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3.3 Fuzzy Bayes Classification

In this section, recent studies about fuzzy bayes classification and its importance

are explained. It is observed that there has been considerable research on fuzzy

Bayesian classification. Nevertheless we note that mainly rule-based methods or

some classification methods, using expert knowledge, are applied in order to make

classification. An important part of our goal is to construct fuzzy membership

functions without consulting an expert. For this reason, membership functions are

constructed by using FCM clustering in which a learned Mahalanobis distance

is used instead of other known types of distances. Thus, FCM clustering is

also described briefly in this section. However, distance metric learning will be

explained later in the proposed method, in chapter 5.

Even though NBC operates under the strong naive assumptions of indepen-

dency, problems may emerge when imperfect and imprecise data are encountered

because Bayesian approaches basically use probability theory. Another impor-

tant problem which is observed is that, in NBC attributes or variables may have

discrete domains whereas in real life most of the variables are continuous. There-

fore, using such type of classification, one cannot handle all kinds of uncertainties

in data classification. To overcome such problems several approaches have been

suggested in the literature. The main approach and the one that is mostly used

is Fuzzy Set theory, which was proposed by Zadeh in 1965 [27].

Foundation of fuzzy logic is emerged against the binary system of Aristotle

logic and it tries to identify at which ratio (degree) events take place by assigning

membership degrees to events. Fuzziness occurs when information is not clear.

The word fuzzy which was first proposed by Zadeh in 1962 means vagueness

or uncertainty. In fuzzy logic systems, fuzzy sets, which have been introduced

by Zadeh in 1965, are used for analysis as an extension of classical sets. Fuzzy

set theory has been developed to simplify the complexity of real life problems

where human judgment is at the forefront and to obtain more effective results.

Fuzzy set theory, in conjunction with helping a decision-maker to make the best

decision under known constraints, makes it possible to produce models with new

alternatives, taking the human factor into consideration. On the other hand,
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when uncertainty in the models can be expressed by linguistic variables, it also

allows those variables to be used in a mathematical expression [16].

In 2002, Störr proposed a fuzzy naive Bayes classifier (FNBC) combining the

Naive Bayes Classifier and fuzzy theory without loss of information

FNBC(c∗) = arg max
ci∈C

{ ∑
x1∈X1

p(x1|ci)µx1 ...
∑
xn∈Xn

p(xn|ci)µxn

}
(3.7)

where µxi ∈ [0, 1] is a membership function of xi ∈ Xi [28]. The general idea here

is to obtain posterior information by using the likelihood function (prior informa-

tion). Then the classification procedure is applied. However, in both approaches

probability theory is used. Here, we note that the membership functions of fuzzy

numbers already contain information which is obtained from probabilities. Thus,

in this study a new classifier that includes only membership functions instead of

probabilities is proposed. It is expected that the new classifier will perform at

least as good as classical classifiers.

In the same year, Tang et. al. studied the classification problem based on

clustering [29]. In their study, instances are classified in accordance with fuzzy

naive Bayesian classifier based on fuzzy clustering. It is noted that in NBC all

attributes are assumed to be nominal meaning that they have finite number of

records but in large data sets attributes may take continuous records which may

result in complexity. To cope with this complexity, the domain of continuous

attributes is partitioned. They proposed a new fuzzy Bayesian classifier after

applying unsupervised FCM clustering algorithm.

In this thesis, a new Fuzzy Bayesian Classifer constructed only with condi-

tional membership functions, is proposed. To construct the conditional member-

ship functions, an approach similiar to the approach in [29] is used. However,

there exist important differences between our approach and the approach used in

[29]. The first important difference is that in the FCM algorithm the Euclidean

distance is used whereas we use learned Mahalanobis distance in order to obtain

cluster centers. The second important difference is that they define posterior

knowledge in terms of probability, i.e., membership functions are turned into
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probability. However, after evaluating maximum membership degree we again

use memberhsip functions in order to obtain posterior knowledge.



Chapter 4

Proposed Method

Over the past few years, research in the literature has shown that distance metrics

and their use in various algorithms such as clustering or classification is important

for high performance especially in visual pattern recognition, face verifications,

biological data classifications and others. Choice of an appropriate distance func-

tion to be used in the learning algorithm is important in order to obtain valid

results and high performance [1], [3], [31], [5]. Two of the most commonly used

metric distances are the Euclidean and Mahalanobis distances which are special

cases of Bregman divergences. It is known that k-Means Clustering algorithms

will work only if the distance function is a Bregman divergence [4]. As a conse-

quence the Bregman divergences make it possible to apply the k-Means clustering

algorithm with different dissimilarity measures. This means that the researcher

can try different potentially suitable measures before deciding of the final choice

of the measure to be used.

Although Euclidean distance is used in many applications because of its sim-

plicity, it may not reflect the real distance in some applications. A generalization

of the Euclidean distance is the Mahalanobis distance. Instead of using predefined

distance functions on the basis of some prior information, a different approach is

to learn distance functions from available information. Therefore, in this study,

one of our aims is to learn an appropriate Mahalanobis distance from the data set.

It is expected that this will be important in order to achieve high performance

16
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algorithms to be used in clustering. Xiang et. al [1] used must-link and cannot-

link information for the purpose of learning a Mahalanobis distance. Motivated

by this approach we investigate how to obtain such side information by using

rough set theory. The application of rough sets is expected to give better results

because the main goal of rough set theory is to draw inferences from data objec-

tively without referring to experts or without using subjective prior information

[2].

In the literature, the problem of learning distance functions is defined as a

pairwise constraint problem where pairs of data points are specified as similar or

dissimilar. Such pairwise constraints are used to learn a distance metric. Xiang

et. al used pairwise constraints in the form of must-link and cannot-links to learn

a Mahalanobis distance metric. A must-link identifies pairs of data points that

must be in the same class. However, a cannot-link identifies pairs of data points

that must be in different classes. This motivated us to consider these links in

terms of indiscernibility relations, indirectly related to rough set theory. In other

words, those links will be constructed based on similarities or dissimilarities,

which are given implicitly in the data set by the features or attributes of the

examples.

The basic idea is to identify instances that are considered to be indistinguish-

able as must-links. Similarly, sets of distances that are considered to be definitely

distinguishable are identified as cannot-links. After identifying these links, the

same steps as in the article of Xieng et. al [1] are applied to learn a Mahalanobis

distance that will be used in Fuzzy C-Means (FCM) clustering algorithm in order

to find cluster centers which will be used in the proposed classification algorithm.

In this thesis, we use cluster centers in order to obtain fuzzy membership

functions and use these fuzzy membership functions in a new FBC method. It is

observed that there has been considerable research on fuzzy Bayes classification.

Nevertheless we note that mainly rule-based methods [34], [35] or methods that

use expert information are applied in classification problems. An important part

of our goal here is to construct fuzzy membership functions without consulting an

expert since membership functions or prior probabilities are generally designed
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with the help of human expert. Due to the fact that knowledge of human experts

is not comprehensive which means that they are usually specialized on a specific

field of study, prior information may actually not be reliable for using in posterior

information. In other words, human experts may not be objective just because

of their limited knowledge. For that matter, we will be focusing on the solution

of a problem that can arise from experts in order to make accurate classification.

Namely, new examples will be classified such that there will be no need for con-

sulting an expert. As a result accuracy in classification is expected to be better.

Another important aspect of learning algorithms is the generalization ability. By

using this ability one can generalize accuracy of classification for testing set. In

chapter 5, generalization performance of two data sets, Iris and Seed, are given

[39].

Most of the classification problems are based on probability theory. One of

the problems when using probability theory is that in a typical classification

problem we only have one data set to be used. If the quality of the sample

is bad the results may also be inaccurate. One possible alternative approach

is to use fuzzy set theory. In particular, the proposed classifier basically uses

membership functions obtained directly from the data set. Here, we note that

the membership functions of fuzzy numbers already contain information which

may also be obtained from probabilities. The proposed classifier is defined as:

FBC(x0) = arg max
1≤j≤t

{µ(cj|x0)} , (4.1)

where

µ(cj|x0) =
µl(cj)

max {µ1(x0), ..., µl(x0), ..., µk(x0)}

where

l = arg max1≤i≤k {µi(x0)}, and maxi {µi(x0)} > 0.

In this formula, µi(x0) denotes the membership degree of a new example x0

belonging to cluster i such that µi(x0) =
∑

aw
∗
aµi,a(f(x0, a)) where µi,a denotes
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the component of the membership function for the ith cluster corresponding to

attribute a ∈ C, and w∗a is the weight of attribute a such that
∑

aw
∗
a = 1. The

weights wa are determined using formula 5.1, given in chapter 5. However, in

this step, clusters are taken into consideration instead of classes. Let l denote the

index of the cluster to which x0 belongs, that is

l = argmax
1≤i≤k

{µi(x0)}

Using the fuzzy membership function of the chosen cluster the memberships of

the class centers (c1, c2, . . . , cq) are evaluated in order to determine the class.

Hence,

c0 = argmax
1≤j≤q

{µl(cj)} .

will be the class assigned to the new example x0.

In order to explain our approach explicitly, let us give an example. Table 4.1

is a sample data set containing 20 examples with 3 attributes one of which is the

class attribute. This sample data set is chosen from a well-known data set, the

Fisher Iris data set. In Figure 4.1, one can see that optimal fuzzy partition is

done by applying unsupervised FCM clustering. The chosen data set is seperated

into 3 clusters. It is also shown which example belongs to which class in Figure

4.1, by using class label information.
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Instances a1 a2 Ck
x1 5, 4 1, 7 1
x2 5 1, 4 1
x3 4, 5 1, 3 1
x4 4, 7 1, 6 1
x5 4, 7 1, 3 1
x6 5, 4 1, 5 1
x7 5, 8 1, 2 1
x8 5, 1 1, 5 1
x9 5, 2 1, 5 1
x11 5, 9 4, 2 2
x12 6 4 2
x13 6, 2 4, 5 2
x14 5 3, 5 2
x15 6, 7 5 2
x16 6, 1 4, 7 2
x17 5, 9 4, 8 2
x18 6, 1 4, 6 2
x19 6, 2 4, 3 2
x20 5, 7 4, 5 2

Table 4.1: A subset of the Fisher Iris data set
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Figure 4.1: Clusters of the chosen Iris sample data set

The proposed method can be explained by analogy to gravitational forces of

planets acting on nearby objects. Let x denote a new example to be classified.

We first try to find the planet from which the new object is attracted the most by

its cluster center; that is, the center of clusters are used as gravitational centers of

planets for assigning a new object. Then, we check the distance of this planet in

order to determine its class. Namely, the classification is completed by checking

the location of the chosen gravitational center with respect to the class centers

(See Figure 4.1). It is seen that, in the given example, a new example has a

maximum membership degree to the first cluster. Accordingly, the membership

degrees of each class center are evaluated and it is observed that the second class

center has maximum value of belongingness, which means that the new example

is assigned to the second class. (See Figure 4.2).

Bayes theory is a kind of probability theory providing a mathematical frame-

work for making inference with probabilities and Bayes theorem is a statement in

conditional probabilities such that prior probabilities are mapped into posterior

probabilities by using class label information or outcome of classification events.

Generally, prior probabilities are obtained by frequencies of attributes or knowl-

edge of an expert which may not yield high accuracy in classification algorithms.

However, prior probabilities may be generated objectively without consulting to
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Figure 4.2: The process for classification of a new example

an expert. In this thesis, it is shown that this prior knowledge can be derived

from the data set. Then, posterior information is obtained based on this prior

knowledge. To sum up, the logic behind Bayes theorem is to get posterior knowl-

edge by using prior knowledge. In the proposed method one can see that Bayesian

logic is used implicitly such that in order to classify a new example class label

information is used. To be more precise, in the proposed method partition of

samples into clusters are achieved as in the Naive Bayes Classifier (see Figure

4.3). Then, the basic principle as in Bayes theorem is applied in order to find

conditional membership functions. More formally, conditional probabilities and

conditional membership functions are defined as

p(Cj|x) =
p(x|Cj)p(Cj)∑
i p(x|Ci)p(Ci)

and

µ(Cj|x) =
µl(Cj)

maxi µi(x)
, l = arg max

1≤i≤k
{µi(x)}

respectively.



CHAPTER 4. PROPOSED METHOD 23

Figure 4.3: The partition of the sample space within probabilities and fuzzy
approaches

The main steps of the proposed classifier are as follows (see Figure 4.2):

A. Obtaining Clusters

1. Determine the sets for must-links and cannot-links using similarities.

2. Use Xiang et al.’s (2008) algorithm to find optimum matrix W ∗ for

A = W ∗(W ∗)T (see Table 4.2) to be used as a Mahalanobis distance

dA(x, y) =
√

(x− y)TA(x− y)

3. Apply FCM algorithm with dA(x, y) to find optimal k clusters.

4. In a similar way with [29], construct membership functions

µ1(x), µ2(x), ..., µk(x) based on cluster centers for each cluster.

B. Applying proposed Fuzzy Bayes Classifier with constructed membership

functions.

1. Find cluster with highest membership for a new example x0.

2. By evaluating memberships of class centers determine the class.

It is seen that the new proposed classifier consists of two main parts. In the

first part, unsupervised fuzzy clustering is applied and optimal fuzzy partition is

found. In the design of unsupervised fuzzy clustering, a positively definite matrix

A is learned from data by using pairwise constraints; must-links and cannot-links.

Second, FCM algorithm is applied in order to find cluster centers vi, i = 1, 2, ..., k.
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Third, membership functions of each attribute for each cluster are constructed by

using cluster centers that are found (achieved) in the third step of the first part

[29]. In the last step of the first part, weights of each attributes are determined.

We note here that the first part is tested and run by R programming [40]. In

the second part, a new FBC is applied to new examples, using fuzzy membership

functions obtained in the first part.

In the following, we will explain the first part in more detail. One of the main

steps in the new FBC is to construct fuzzy membership functions. In order to

achieve this, must-links and cannot-links have to be determined. A must-link

identifies pairs of data points that must be in different classes. For various other

distance learning algorithms one may refer to [1]. Motivated by this study, such

links were considered in terms of indiscernibility relations which is also related to

rough set theory. We note here that rough set theory is used to draw inferences

objectively from data without referring to an expert.

4.1 Obtaining Clusters

4.1.1 Step 1. Obtaining must-links and cannot-links sets

In the first step, we focus on pairwise constraints in the form of must-links and

cannot-links to be used in the algorithm in order to learn a Mahalanobis distance.

The basic idea in this step is to minimize dissimilarity values between point pairs

(examples) which are determined as must-links and maximize dissimilarity value

between those point pairs which should be cannot-links. If applied appropriately,

this step will also help to overcome problems such as poor quality of data set and

inconsistencies in the data set. In the following, we give some basic definitions

used for constructing those must-link and cannot-link sets.

Since in clustering and classification problems, objects/examples are described

by attributes we will use the notion of a data table to describe a general data set.

A data table is also referred to as an information system and consists of a 4-tuple
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〈U,A, V, f〉, where U is a finite set of objects and A = {a1, a2, . . . , am} is a

finite set of attributes. The domain of an attribute a ∈ A is denoted by Va and

V =
⋃
a∈A Va. The function f is a total function such that f(x, a) ∈ Va for each

a ∈ A, x ∈ U , and it is called an information function. If the set of attributes

A is divided into condition attributes (C 6= φ) and decision attributes (D 6= φ),

then the data table is called a decision table [3].

An important step in the proposed method is the construction of the must-

link and cannot-link sets. This will be achieved by using similarities between

examples of the data set. The following definitions will be used to obtain the sets

of must-links and cannot-links.

Definition. [2] The similarity value between two examples xi, xj ∈ U with re-

spect to attribute aq is defined as

simaq(xi, xj) = 1− |f(xi, aq)− f(xj, aq)|
max (aq)−min (aq)

, (4.2)

if aq is a numerical attribute and as

simaq(xi, xj) =

{
1

card aq
, iff(xi, aq) 6= f(xj, aq)

1, otherwise

if aq is a nominal attribute.

We note that, in general, distance functions are used in order to compute

similarity. However, in our method, the similarity is based on differences between

attribute values of attribute aq, that is, attribute values are directly used in order

to compute similarity.

Definition. [2] The similarity value between two examples xi, xj ∈ U with re-

spect to an attribute set B ⊆ A is defined as

simB(xi, xj) =
∑
a∈B

wasima(xi, xj) (4.3)

where the weights wa correspond to the attribute a ∈ B.
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Remark. Note that, in order to determine the weights the mutual entropy values

are generally used. However, in our method we will use a different approach. This

approach is almost a new approach that is not used before in the literature. The

weights are determined by using class labels as follows.

Suppose that there are t classes in the data set. For a ∈ C, let

Ai(a) = {x ∈ U |min (Ci(a)) ≤ f(x, a) ≤ max (Ci(a))}

where Ci(a) is the set of values for attribute a belonging to class i, 1 ≤ i ≤ t.

Denoting by

Bj(a) = Aj(a)\
t⋃
i=1
(i 6=j)

Ai(a),

the weights wa are defined as

wa =

∑t
i=1 s (Bi(a))

s(U)
(4.4)

The number of examples, here, is counted such that the examples having common

values are eliminated in this counting. However, weights are normalized in order

to see the impact of that attribute with respect to each class. Therefore;

w∗a =
wa∑
awa

(4.5)

For instance, for the same sample data set given before in Table 4.1, the

weights of each attribute are w∗1 = 11/30 and w∗2 = 19/30. See figure 4.3.

Let’s consider another example. We have chosen another sample data set

consisting of 4 attributes with 2 classes from Fisher Iris data set and by the same

logic given above weights of each attribute are calculated as 0.15, 0.19, 0.33, 0.33

(See Fig. 4.4).

Definition. [2] The indiscernibility relation IRB with respect to an attribute set
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Figure 4.4: Weights of two attributes for data set in Table 4.1
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Figure 4.5: Weights of 4 attributes of Iris data set
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B ⊆ U is defined as

IRB = {(xi, xj) ∈ U × U : simB(xi, xj) ≥ thB}

where thB is the threshold value for the similarity relation.

Using these definitions, elements similar to an element xi ∈ U can be defined

as:

SB(xi) = {xj ∈ U : simB(xi, xj) ∈ IRB}

Based on these definitions, for a given data set, a must-link set is defined as:

S = {(xi, xj)|simB(xi, xj) ≥ thB} ,

and a cannot-link set is defined as:

D = {(xi, xj)|simB(xi, xj) ≤ thB} ,

where thB is the threshold value for the similarity relation.

As can be seen from these definitions, S is a set which contains points which are

considered to be definitely in a same class whereas D is a set which contains points

which are considered definitely to be in different classes. To illustrate this idea, we

used the sample data set before, obtained from the Fisher Iris data set. In Figure

4.5 one can see points inside circles indicating some of the elements belonging to

S whereas points connected with lines indicate some elements belonging to D.

4.1.2 Step 2. Learning Optimal Mahalanobis Distance

In the second step the algorithm given in Xiang et al.’s study [1] is used in order

to find an optimum matrix W ∗ for A = W ∗(W ∗)T to be used as a Mahalanobis

distance. For this purpose Xiang et al. [1] introduced a transformation such that

y = W Tx where W ∈ Rn×d, with d ≤ n. Based on this transformation, the sum
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Figure 4.6: Some similarity-dissimilarity pairs

of the squared distances of the point pairs in S is defined as:

dw =
∑

(xi,xj)∈S

(W Txi −W Txj)
T (W Txi −W Txj) = tr(W TSwW ),

where tr is the trace operator and Sw, covariance matrix of the point pairs in S

is calculated as:

Sw =
∑

(xi,xj)∈S

(xi − xj)(xi − xj)T

Similarly, for the point pairs in D, we have

db = tr(W TSbW ),

where Sb is the covariance matrix of the point pairs in D is calculated as:

Sb =
∑

(xi,xj)∈D

(xi − xj)(xi − xj)T .

Since dw and db represent the sum of squared distances between point pairs in

must-links and cannot links, respectively the optimal matrixW ∗ can be calculated

as

W ∗ = arg max
{WTW=I}

tr(W TSbW )

tr(W TSwW )
,
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where I is identity matrix and the constraint W TW = I is given in order not

to have degenerate solutions. The important point here is that W cannot be a

square matrix when d < n. In that case A is defined as follows:

A =

{
(W ∗(W ∗)T , if d < n

I, if d = n

In order to find optimal W ∗ tr(W TSwW ) is used.

Theorem 4.1 [1] Suppose that W ∈ Rn×d, W TW = I, and r(≤ n) is the rank of

matrix Sw. If d > n− r, then tr(W TSwW ) > 0. If d ≤ n− r, then tr(W TSwW )

may be zero.

Case1: d > n− r Assume that λ∗ is the optimal solution of the equation

λ∗ = max
{WTW=I}

tr(W TSbW )

tr(W TSwW )

Then

max
WTW=I

tr(W T (Sb − λ∗Sw)W ) = 0

From above equation a new function which is a function of λ can be defined such

as:

η(λ) = max
WTW=I

tr(W T (Sb − λ∗Sw)W )

Thus, the aim is to find a λ such that η(λ) = 0 holds.

In that case, tr(W TSwW ) > 0, and then not only η(λ) < 0 implies that λ > λ∗

but also η(λ) > 0 implies that λ < λ∗. This shows that one can find λ with an

iteration method.

In order to find the optimal value for λ∗, lower and upper bounds are deter-

mined by using the following theorem:

Theorem 4.2 [1] Let r be the rank of Sw. If d > n− r then

tr(Sb)

tr(Sw)
≤ λ∗ ≤

∑d
i=1 αi∑d
i=1 βi
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where α1, ..., αd are the first d largest eigenvalues of Sb, and β1, , βd are the first

d smallest eigenvalues of Sw.

The optimal matrix W ∗ is finally calculated by using the eigenvalue decom-

position of Sb − λ∗Sw. For this reason, the null space of Sb + Sw can first be

eliminated by using the following theorem:

Theorem 4.3 [1] W ∗ can be found in the orthogonal complement space of the

null space of Sb + Sw.

When the dimensionality (n) is greater than the number of data points (N),

then the rank of Sb +Sw will be smaller than N . In this case, there is no need for

eigenvalue decomposition of n×n dimensionality. When n < N , then symmetrical

indicator matrices are defined in order to facilitate computational complexities.

The following notation is used as in [1].

Let X be the data matrix containing N points such that X = [x1, x2, ., xN ] ∈
Rn×N . A similar indicator matrix Ls ∈ RN×N can be introduced as follows:

Ls(i, j) = Ls(j, i) =

{
1, (xi, xj) ∈ S
0, (xi, xj) /∈ S

where S is a must-link set.

Moreover, a symmetrical indicator matrix Ld ∈ RN×N can be introduced as

follows:

Ld(i, j) = Ld(j, i) =

{
1, (xi, xj) ∈ D
0, (xi, xj) /∈ D

where D is cannot-link set.

Now, suppose that Lw = diag(sum(Ls))− Ls and Lb = diag(sum(Ld))− Ld,
where sum is an N -dimensional vector which records the sum of each row of the

matrix. Therefore, we can justify that Sw = 1
2
XLwX

T and Sb = 1
2
XLbX

T and

those imply that Sw + Sb = X
(
1
2
Lw + 1

2
Lb
)
XT



CHAPTER 4. PROPOSED METHOD 33

Preprocess
P1: Eliminate the null space of Sw + Sb and get a linear transformation
y = W T

1 x where W1 only consists of the eigenvectors
corresponding to the non-zero eigenvalues of Sw + Sb.
P2: Reconstruct the matrices Sw = W T

1 SwW1 and Sb = W T
1 SbW1.

Algorithm
Input Sw, Sb ∈ Rn×n, the lower dimensionality d, and an error ε.
A1: Compute the rank r of the matrix Sw
A2: If d ≤ n− r go to step 7

Case 1: d > n− r
A3: λ1 ← tr(Sb)

tr(Sw)
, λ2 ←

∑d
i=1 αi∑d
i=1 βi

, λ← (λ1 + λ2)/2.

A4: Find optimal λ value
While λ2 − λ1 > ε, do
Compute η(λ).
If η(λ) > 0 then λ1 = λ; otherwise λ2 = λ.
Then λ = (λ1 + λ2)/2.
End while.
A5: W ∗ = [µ1, ..., µd], where µ1, ..., µd are the d eigenvectors of Sb − λSw.
A6: A = W ∗(W ∗)T ; STOP

Case 2: d ≤ n− r
A7: W ∗ = Z.[v1, ..., vd], where vi, i = 1, 2, ..., d are d eigenvectors corresponding
to the d largest eigenvalues of ZTSbZ and Z = [z1, z2, ..., zn−r] are the
eigenvectors corresponding to n− r zero eigenvalues of Sw.
A8: A = W1W

∗(W ∗)T (W1)
T .

Table 4.2: Xiang et al.’s Algorithm for Learning Matrix A

Let L = XTX(1
2
Lw + 1

2
Lb) ∈ RN×N . Non-zero eigenvalues of L and corre-

sponding eigenvectors can be calculated if N < n.

Case 2: d ≤ n−r If W is the null space of Sw, then tr(W TSwW ) = 0 and (λ)∗

is finite. Therefore, tr(W TSwW ) is maximized after y = ZTx transformation:

V ∗ = arg max
V TV

(V T (ZTSbZ)V ),

where Z ∈ Rn×n−r is a matrix whose column vectors represent the eigenvectors

corresponding to n − r zero eigenvalues of SW . W ∗ = ZV ∗ is obtained after V ∗

is evaluated.

In Table 4.3, there are 19, 3-dimensional instances with 2 classes. By applying

the algorithm given in Table 4.2 a transformation is obtained for the case d = 2.

It is observed that the instances within the same class are gathered together.

Therefore, the examples in different classes are split up very well. (See Figure

4.6).
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Instances a1 a2 a3 Ck
x1 4 3,9 1, 7 1
x2 4, 6 3,6 1 1
x3 4, 5 2,3 1, 3 1
x4 4, 7 3,2 1, 6 1
x5 4, 7 3,2 1, 3 1
x6 5, 4 3,9 1, 5 1
x7 5, 8 4 1, 2 1
x8 5, 1 3,7 1, 5 1
x9 5, 2 3,5 1, 5 1
x10 7 3,2 4, 7 1
x11 5, 9 3 4, 2 2
x12 6 2,2 4 2
x13 6, 2 2,2 4, 5 2
x14 5 2 3, 5 2
x15 6, 7 3 5 2
x16 6, 1 2,9 4, 7 2
x17 5, 9 3,2 4, 8 2
x18 6, 1 3 4, 6 2
x19 6, 2 2,9 4, 3 2

Table 4.3: Another subset from Fisher Iris data set
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Figure 4.7: Transformation

So far constructing must-links, cannot-links and learning a positively definite

matrix to be used in Mahalanobis were explained. Next, the FCM algorithm will

be outlined in order to obtain the optimal cluster number and their corresponding

cluster centers.

4.1.3 Optimal Fuzzy C-Means Clustering

4.1.3.1 Fuzzy C-Means Clustering

Cluster analysis has been a major research tool since the 1960’s. Since then

it became a well-known method that divides a training set into several sub-

sets(clusters) which have similar objects. Untill now, many resarchers have pro-

posed different types of clustering methods such as fuzzy clustering, conducted

with respect to similarity/dissimilarity between cluster centers and data points.

Zadeh, in 1965, approached similarity/dissimilarity by a function (membership

function) because some objects may not belong to one cluster only. We know that

membership functions take values between zero and one. Therefore, a similarity

value close to one means that there exists a big difference in similarity between

the sample and cluster [30]. However, it is not that easy to calculate this differ-

ence. To solve such problems, many different algorithms are proposed and coded.

Since the inputs are vectors, to compute the difference, we will use norms. Note

that, in this study we will use Mahalanobis and Euclidean norms.



CHAPTER 4. PROPOSED METHOD 36

Let X be a set of observations such that

X =



x11 x12 ... x1q

x21 x22 ... x2q

... ... ... ...

... ... ... ...

xp1 xp2 ... xpq


and let each row be an example, Xk, k = 1, 2, ..., p. Suppose we will divide the

data set into c clusters and let uik be the membership degree of object k in the

i-th fuzzy cluster. with 0ik ≤ 1;∀i, k and
∑c

i=1 uik = 1,∀k. First of all, we have

to find out optimal c and optimal level of fuzziness which is represented as m. To

find out one has to use iteration methods. The most common one used is FCM

that is stated as [30]

J(u, v) =
nd∑
k=1

c∑
i=1

(uik)
m ‖xk − vi‖

where

0 < uik ≤ 1,∀i, k∑c
i=1 uik = 1,∀k.

4.1.3.2 FCM Algorithm

The main objective of the FCM algorithm is to minimize the following function

[33]:

J(u, v) =
n∑
i=1

k∑
j=1

(uij)
m‖xi − vj‖2A

where

1 ≤ j ≤ k, and m ≥ 1 is the weight of fuzzy membership values,

‖x‖A =
√
xTAx is an inner product norm,

uij is the membership degree of the ith instance jth cluster,
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1. Initialize U = [uij] matrix, U (0) randomly such that

c∑
i=1

u
(0)
ik = 1, 1 ≤ k ≤ n.

2. Calculate cluster centers:

v
(l)
i =

∑
k=1 nu

(l−1)α
ik Xk∑

k=1 nu
(l−1)α
ik

, 1 ≤ i ≤ c

3. Update Uk, U (k+1)

uij =
1∑c

k=1

(
‖xi−vj‖
‖xi−vk‖

) 2
m−1

4. If
∥∥U (k+1) − U (k)

∥∥ ≤ ε then STOP; otherwise return to step 2.

Table 4.4: FCM Clustering Algorithm

vj is jth cluster center,

n is the number of data points,

k is number of cluster centers and xi is ith data.

It is important to note at this point that in this algorithm a learned Maha-

lanobis distance is used in the inner product. Therefore, it is expected that the

error in clustering will be minimized. Table 4.4, shows the main steps for the

FCM clustering algorithm [42].

It can be observed that the learned Mahalanobis distance improves the per-

formance of the clustering algorithm. For instance, when applied to Fisher’s Iris

data set consisting of 150 instances, the learned Mahalanobis distance performs

better than the Euclidean distance. Obtaining prior knowledge by constructing

must-links and cannot-links may be an effective way for learning a positive def-

inite matrix A from data set instead of consulting an expert, especially when it

will not be possible to consult an expert. This means that a distance metric with

good quality should identify irrelevant attributes and crucial attributes.
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4.1.4 Constructing Membership Functions

After the FCM clustering algorithm is applied, cluster centers are determined.

Then those centers are sorted in an ascending order such that v1j < v2j < ... < vkj

where v1j, v2j, ..., vkj are the first components of each cluster center, namely cluster

centers are are ordered with respect to their attributes [29]. In the study published

in [29], one can see that they used only three different types of fuzzy membership

functions which are given below:

µ1,aj(xj) =


1, if xj ≤ v1j

v2j−xj
v2j−v1j , if v1j ≤ xj ≤ v2j

0, if xj > v2j

µt,aj(xj) =


0, if xj ≤ v(t−1)j

xj−v(t−1)j

vkj−v(k−1)j
, if v(t−1)j ≤ xj ≤ vtj

v(t+1)j−xj
v(t+1)j−vtj

, if vtj < xj ≤ v(t+1)j

0, if xj > v(t+1)j

µk,aj(xj) =


0, if xj ≤ v(k−1)j

xj−v(k−1)j

vkj−v(k−1)j
, if v(k−1)j ≤ xj ≤ vkj

1, if xj > vkj

where 1 < t < k, and µk,aj is the set of fuzzy partition of domain of jth attribute.

As mentioned before that Naive Bayes Classifier is the most common classi-

fier used in practice whereas it has strong independency assumptions. Although

all attributes in the NBC are assumed to be nominal or discrete which have fi-

nite number of values (records) the variables may take continues values in large

data sets. One approach to handle continues values is to make discretization,

namely, crisp partitioning the domain of each attribute but this may lead to loss

of information. Thus, in order to overcome such handicaps, fuzzy partitioning

is done instead of discretization [29]. Moreover, fuzzy membership functions are

constructed without consulting an expert or without using subjective prior knowl-

edge. It is expected that this approach will increase the accuracy of clustering



CHAPTER 4. PROPOSED METHOD 39

or classification. By using the constructed membership functions, a conditional

membership function

µ(cj|x)

is proposed, which is used in the proposed classifier. This expression means that

given an example x to be classified, the membership function of each class is

evaluated with respect to the cluster chosen for x. The logic behind this idea is

to apply Bayes theorem for classification. Thus, posterior information is obtained

by this expression.

To sum up, unsupervised fuzzy C-Means clustering is applied with a learned

Mahalanobis distance and then using those cluster centers that are obtained by

the FCM algorithm, a new FBC is proposed. In this method one can see that

the same principles as in Bayes theorem are applied with conditional member-

ship functions, given the class label information. Here, we take the membership

function of ith cluster which gives the maximum degree for X and then compute

the membership degree of each cluster center. Finally, a new example is classified

according to the maximum membership degree of each class.

In the proposed method, classification is made according to maximum global

preference. What if one faces the situation in which membership degrees of several

classes with respect to the chosen cluster membership function has the same

maximum value. In 2009, L. Peng et al., stated that distance and data mass are

two important concepts that should be considered for classification. They studied

data gravitation based classification using Newton’s gravitation law. In fact, the

logic behind their classification method is very similar to our method. However,

our method is based on fuzzy clustering algorithm and pairwise constraints which

are based on similarities. On the other hand, in their study, similarity between

data is defined as distance and data mass. It is stated that distance is the first

concept that should be considered for classification but when the distances are

equal then the concept of ’data mass’ is considered in order to determine the class

of a new example. The same approach may be used when two or more classes

have the same maximum degree. In this case the data mass or density will help

to determine the class of a new example.
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Application

In this section, we have applied the algorithm given in Table 4.2 on two different

data sets and compared them for different cases of d with different must-link and

cannot-link sets. The applications to data clustering are analyzed. Moreover, the

proposed method is performed on these data sets and the results are given. In

section 5.1, all examples in the Fisher Iris data set are used for both training set

and testing set. In section 5.2, accuracies in different classification methods are

given.

The first data set is the Fisher Iris data set which is the best known data

set in the literature. It contains 3 classes with 150 instances (50 in each one

of three classes). Information of each attributes are given in Figure 5.1. In the

training set 120 instances are included and the remaining 30 examples are used

for testing the proposed Fuzzy Bayes classification. The second data set which

we have worked with is the Seed data set contains 3 classes with 210 instances.

In this experiment, 168 instances are used for training set and 42 instances are

used for testing set. These two databases can be obtained from UCI Machine

Learning Repository.

40
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Min Median Mean Max Min Median Mean Max Min Median Mean Max
a1 4 5 5, 006 5,8 4,9 5, 9 5, 936 7 4,9 6, 5 6, 588 7,9
a2 2,3 3, 4 3, 418 4,4 2 2, 8 2, 77 3,4 2,2 3 2, 974 3,8
a3 1 1, 5 1, 464 1,9 3 4, 35 4, 26 5,10 4,5 5, 55 5, 552 6,9
a4 0,1 0, 2 0, 244 0,6 1 1, 3 1, 326 1,8 1,4 2 2, 026 2,5

Table 5.1: Descriptive Statistics of Iris Data Set

5.1 Training Performance for Fisher Iris Data

Set

The proposed classifier is firstly applied on the Fisher Iris data set with different

values of d used in learning a Mahalanobis distance. In addition, it is also applied

on the same data set with the Euclidean distance for comparison. Fisher’s Iris

data set consists of 150 instances with four attributes and having three classes.

In the following, descriptive statistics of all attributes for each classes are sum-

marized. When we apply FCM clustering algorithm with learned Mahalanobis

distance we get the following matrix that shows cluster centers for constructed

optimal number of clusters. As a first experiment we have chosen the cluster

number as 3. In this experiment there are a couple of cases for d. Although we

obtain minimum value for objective function used in FCM when d = 1 we have

applied the classification procedure also for d = 2 and for d = 3 to ensure that

classification accuracy is better when d = 1. It is also important to note that

minimization of the objective function is not only sufficient for the proposed clas-

sification. Since classification is based on cluster centers, it is very crucial to get

a meaningful matrix that shows cluster centers. Therefore, when d = 2,m = 2.3

and k = 3 the following matrix is obtained from the algorithm given in Table 4.4

v =


6.499376 2.963389 5.359669 1.9399501

6.074130 2.845930 4.502108 1.4529828

5.043911 3.398109 1.566182 0.2811095


Using this matrix, the membership functions of each attributes with respect to

each cluster are constructed, as shown in the Figures 5.1, 5.2, 5.3, and 5.4:
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Figure 5.1:

Figure 5.2:

Figure 5.3:
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Figure 5.4:

Figures 5.1, 5.2, 5.3, and 5.4 show the membership functions of each attribute

with respect to each cluster. In addition to those membership functions, weights

of attributes, which are shown in figure 5.5 are calculated as w1 = 27
290
, w2 =

10
290
, w3 = 141

290
and w4 = 112

290
.
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Figure 5.5: Weights

Note that the accuracy in clustering of the proposed method is better than

for the Euclidean distance. Besides, the performance in classification is the same

for both NBC and the proposed method (for d = 1&d = 3).

An interesting point in Table 5.2 is that increasing the number of pairs in the

must-link and cannot-link sets does not provide the expected improvement in the

performance of the algorithm.

Method Dimensionality(d) Accuracy in clustering Accuracy in classification
Learned Mahalanobis when

(must-link set S=A=20) 1 0,960 0,960
2 0,986 0,953
3 0,900 0,953

Learned Mahalanobis when
(must-link set S=A=121) 1 0,880 0,946

2 0,933 0,953
3 0,933 0,960

Euclidean distance 0,980 0,960

Table 5.2:
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Database #Data #Tr #Ts #Attributes #Classes
Iris 150 120 30 4 3

Seed 210 168 42 7 3

Table 5.3:

5.2 Generalization Performance

We have applied the proposed approach to two real datasets obtained from repos-

itory of Machine Learning dataset, namely, Fisher Iris dataset and Seeds database

which consist of only numerical attributes. A brief description of the data sets

is given in Table 5.3, where #Data denotes the number of examples in the data

set, #Tr denotes the number of training instances, #Ts denotes the number of

testing instances.

The proposed classifier is compared with the NBC classifier. In addition, to

see the effect of distance learning the same method is applied to the Euclidean

distance. Accuracy rate of classification is computed as:

number of correctly classified instances

number of classified instances
100.

The results in Table 5.4 show that for the Iris testing data set, the proposed

method with learned Mahalanobis distance outperforms the same method with

Euclidean distance. However, in that case performances of NBC and our clas-

sifier seem to be the same. When we look at the Seeds data set, we see that

generalization performance of the proposed method is better compared to NBC.
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Data set Accuracy rate (%)

Iris

d=1 43.33
d=2 100
d=3 93.3
Euclidean 80
NBC 100

Seeds

d=1 90.48
d=2 92.86
d=3 90.48
d=4 90.48
d=5 90.48
d=6 92.86
Euclidean 66.66
NBC 90.48

Table 5.4:
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Conclusion and Further Studies

In this study a new classification method which is called Fuzzy Bayesian Classifier

is proposed. The proposed method is applied to Fisher’s Iris data and Seed

data with the Euclidean and learned Mahalanobis distances. These data sets are

chosen since classes for these data sets are known. The FCM clustering algorithm

is applied in order to achieve an optimal fuzzy partition. Based on this partition

fuzzy membership functions for each attribute is constructed, which are then used

in classification. Since in the proposed FBC there are several parameters to be

considered, such as number of clusters and the reduction parameter d, several

cases were examined. The results show that changing distance from Euclidean

distance to Mahalanobis distance increases the classification success rate. It is

also seen that, for generalization, the effect of distance becomes more important.

See Table 5.4. As a consequence, the results for the considered data sets show

that the new FBC is an effective and efficient method for classification. The

performance of the proposed FBC needs to be investigated further with respect

to different parameters such as dimension size and number of classes. We note

here that a well designed simulation study will be needed in order to analyze

the performance of the proposed method. A further direction for research is to

extend our implementation for both linguistic and numerical variables.
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of Cindi, and Güler Kayaalp. She completed her primary and high school educa-

tion in Izmir. She began her B.S degree in 2005 in İzmir University of Economics.
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