
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cost-Based Filtering Techniques for Stochastic Inventory
Control Under Service Level Constraints

Citation for published version:
Tarim, SA, Hnich, B, Rossi, R & Prestwich, S 2009, 'Cost-Based Filtering Techniques for Stochastic
Inventory Control Under Service Level Constraints', Constraints, vol. 14, no. 2, pp. 137-176.
https://doi.org/10.1007/s10601-007-9039-3

Digital Object Identifier (DOI):
10.1007/s10601-007-9039-3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Constraints

Publisher Rights Statement:
© Tarim, S. A., Hnich, B., Rossi, R., & Prestwich, S. (2009). Cost-Based Filtering Techniques for Stochastic
Inventory Control Under Service Level Constraints. Constraints, 14(2), 137-176. 10.1007/s10601-007-9039-3

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 14. Eyl. 2023

https://doi.org/10.1007/s10601-007-9039-3
https://doi.org/10.1007/s10601-007-9039-3
https://www.research.ed.ac.uk/en/publications/a562b994-33a9-454a-ab43-8d4bd350d65e


global manuscript No.
(will be inserted by the editor)

Cost-based Filtering Techniques for Stochastic

Inventory Control under Service Level

Constraints

S. Armagan Tarim1, Brahim Hnich2, Roberto Rossi3,4, Steven
Prestwich3

1 Department of Management, Hacettepe University, Ankara, Turkey, e-mail:
armagan.tarim@hacettepe.edu.tr

2 Faculty of Computer Science, Izmir University of Economics, Izmir, Turkey,
e-mail: brahim.hnich@ieu.edu.tr

3 Cork Constraint Computation Centre, University College, Cork, Ireland, e-mail:
{rrossi,s.prestwich}@4c.ucc.ie

4 Centre for Telecommunication Value-Chain Driven Research⋆⋆, Ireland, e-mail:
rrossi@4c.ucc.ie

Received: April 2007 / Revised version: December 2007

Abstract This paper 1 considers a single product and a single stock-
ing location production/inventory control problem given a non-stationary
stochastic demand. Under a widely-used control policy for this type of inven-
tory system, the objective is to find the optimal number of replenishments,
their timings and their respective order-up-to-levels that meet customer de-
mands to a required service level. We extend a known CP approach for this
problem using three cost-based filtering methods. Our approach can solve
to optimality instances of realistic size much more efficiently than previous
approaches, often with no search effort at all.

⋆⋆ This work was supported by Science Foundation Ireland under Grant No.
03/CE3/I405 as part of the Centre for Telecommunications Value-Chain-Driven
Research (CTVR) and Grant No. 00/PI.1/C075.

Send offprint requests to: Roberto Rossi

Correspondence to: Roberto Rossi, Cork Constraint Computation Centre, Univer-
sity College, 14 Washington St. West, Cork, Ireland., Tel. +353 (0)85 122 3582,
Fax. +353 (0)21 425 5424.

1 This paper is an extended version of [20].



2 S. A. Tarim et al.

1 Introduction

Inventory theory provides methods for managing and controlling invento-
ries under different constraints and environments. An interesting class of
production/inventory control problems is the one that considers the single-
location, single-product case under non-stationary stochastic demand. Such
a problem has been widely studied because of its key role in practice.

We consider the following inputs: a planning horizon of N periods and a
demand dt for each period t ∈ {1, . . . , N}, which is a random variable with
probability density function gt(dt). In the following sections we will assume
without loss of generality that these variables are normally distributed. We
assume that the demand occurs instantaneously at the beginning of each
time period. The demand we consider is non-stationary, that is it can vary
from period to period, and we also assume that demands in different periods
are independent. A fixed delivery cost a is considered for each order and
also a linear holding cost h is considered for each unit of product carried
in stock from one period to the next. Demands occurring when the system
is out of stock are assumed to be back-ordered and satisfied as soon as
the next replenishment order arrives. We assume that it is not possible to
sell back excess items to the vendor at the end of a period. Our aim is to
find a replenishment plan that minimizes the expected total cost, which is
composed of ordering costs and holding costs, over the N -period planning
horizon, satisfying the service level constraints. As a service level constraint
we require that, with a probability of at least a given value α, at the end of
each period the net inventory will be non-negative.

We decided to ignore in this model the linear production cost p, incurred
for each unit produced. The logic behind this simplification of the problem
is as follows. In the deterministic production planning problem, since all the
demand has necessarily to be met, any optimal solution is independent of
the given production cost. The production cost is therefore a constant of the
problem. This is also true for the stochastic production planning problem
under infinite horizon, provided that demands occurring when the system
is out of stock are back-ordered and satisfied as soon as the next replen-
ishment order arrives. Again the justification is that when time tends to
infinity, under a demand back-ordering assumption, all the realized demand
will be necessarily satisfied and the production cost will become a constant
of the problem. When the planning horizon is finite, as in our case, the pro-
duction cost may have an impact on the structure of an optimal solution,
as in an optimal solution we will tend to clear up stocks when we approach
the end of the planning horizon. This may therefore affect the length of
some replenishment cycles at the end of the planning horizon. In fact we
may have a shorter final cycle in order to keep less buffer stocks at the very
last period, especially if the production cost is high. On the other hand the
proposed model has to be considered within the more general picture of
inventory control. Typically a finite planning horizon assumption is made
because forecasts cannot look too far ahead in time. This does not mean



Cost-based Filtering Techniques for Stochastic Inventory Control 3

that production will stop at the end of the planning horizon: rather, a new
optimization will often occur at that point, which considers new forecast in-
formation that has become available. This process is common in inventory
control and it is known as a rolling horizon [18] approach. It is obvious that,
under a rolling horizon approach and a demand back-ordering assumption,
again in the long run we will tend to satisfy all the realized demand and
the production cost will again become a constant of the problem as in the
infinite horizon case. Moreover it should be noted that in this case consid-
ering a production cost p may even lead to suboptimal solutions, in fact
we may schedule more replenishment cycles than strictly needed in order to
keep unsold stocks low at the end of the given finite horizon. But since the
production does not stop at the end of the finite horizon this will give no
real cost benefit and will instead increase the total fixed delivery cost in the
long run. For this reason we ignore such a cost component as Bookbinder
and Tan do in their heuristic approach [4]. On the other hand extending the
results in this paper to consider a production cost p is easy, and in Appendix
7.1 we will describe how this can be done.

Different inventory con-

S 
n

Q 
n~ di+di+1+...+dj

~ ~ ~

b(i,j)

ji

R 
n-1

R 
n

Fig. 1 (Rn,Sn) policy. Rn denotes the set of pe-
riods covered by the nth replenishment cycle; Sn

is the order-up-to-level for this cycle; Q̃n is the
expected order quantity; d̃i + d̃i+1 + . . . + d̃j is
the expected demand; b(i, j) is the buffer stock
required to guarantee the required service level α

trol policies can be adopted
for the described problem.
A policy states the rules to
decide when orders have to
be placed and how to com-
pute the replenishment lot-
size for each order. For a
discussion of inventory con-
trol policies see [18].

One of the possible poli-
cies that can be adopted is
the replenishment cycle pol-
icy, (R, S).

Under the non-stationary
demand assumption this pol-
icy takes the form (Rn, Sn)

where Rn denotes the length of the nth replenishment cycle and Sn the
order-up-to-level for replenishment (Fig. 1). In this policy a wait-and-see
strategy is adopted, under which the actual order quantity Qn for replen-
ishment cycle n is determined only after the demand in former periods has
been realized. The order quantity Qn is computed as the amount of stock re-
quired to raise the closing inventory level of replenishment cycle n−1 up to
level Sn. In order to provide a solution for our problem under the (Rn, Sn)
policy we must populate both the sets Rn and Sn for n = {1, . . . , N}.

There is a large literature on deterministic production planning. This
problem has been mentioned by Garey and Johnson [11]. In [8] Florian et.
al. gave an overview for the complexity of this problem. In particular they
established NP-hardness for this problem under production cost (composed



4 S. A. Tarim et al.

of a fixed cost and a variable unit cost), zero-holding cost and arbitrary
production capacity constraint. They also extended this result by consid-
ering other possible cost functions and capacity constraints. Polynomial
algorithms are discussed in the same paper for a few specific cases. Among
these they cited Wagner and Whitin’s [25] work, where the infinite capacity
deterministic production planning problem is solved in polynomial time.

In contrast the respective stochastic formulation for this problem has
been solved to optimality only recently, due to the complexity involved in
the modeling of uncertainty and of the policy-of-response. Early works in
this area adopted heuristic strategies such as those proposed by Silver [17],
Askin [2] and Bookbinder & Tan [4]. Under some mild assumptions the
first complete solution method for this problem was introduced by Tarim
& Kingsman [21], who proposed a deterministic equivalent Mixed Integer
Programming (MIP) formulation for computing (Rn, Sn) policy parame-
ters. Empirical results showed that such a model is unable to solve large
instances, but Tarim & Smith [24] introduced a more compact and effi-
cient Constraint Programming (CP) formulation of the same problem that
showed a significant computational improvement over the MIP formulation.
A stochastic constraint programming [23] approach for computing (Rn, Sn)
policy parameters is proposed in [14]. In this work the authors drop the
mild assumptions originally introduced by Tarim & Kingsman and com-
pute optimal (Rn, Sn) policy parameters. Of course there is a price to pay
for dropping Tarim & Kingsman’s assumptions, in fact this latter approach
is less efficient than the one in [24].

This paper extends Tarim & Smith’s work, which builds on Tarim &
Kingsman’s assumptions. We retain their model and we augment such a
model with three cost-based filtering methods to enhance domain pruning.
One of these techniques, based on a relaxation proposed by Tarim [19] and
solved by means of dynamic programming, has been already presented in
[20]. In this work we provide two additional cost-based filtering techniques
and we extend the discussion on Tarim’s relaxation and on the implemen-
tation of the respective cost-based filtering method.

Cost-based filtering is an elegant way of combining techniques from CP
and Operations Research (OR) [7,9]. OR-based optimization techniques are
used to remove values from variable domains that cannot lead to better so-
lutions. This type of domain filtering can be combined with the usual CP-
based filtering methods and branching heuristics, yielding powerful hybrid
search algorithms. Cost-based filtering is a novel technique that has been
the subject of significant recent research, but to the best of our knowledge
it has not previously been applied to stochastic inventory control. In the
following sections we will show that it can bring a significant improvement
when combined with the state-of-the-art CP model for stochastic inventory
control. It should be noted that while the technique based on Tarim’s relax-
ation can easily be recognized as a classic cost-based filtering method, the
two additional techniques here presented are not based on bounds obtained
through a relaxation. Instead, as we will see, they exploit reasoning on the



Cost-based Filtering Techniques for Stochastic Inventory Control 5

problem cost structure to prune values in the domains of decision variables
that cannot lead to optimal solutions. Our experimental results show the
efficiency obtained by the combined used of these three filtering techniques
during the search for an optimal solution.

The paper is organized as follows. Section 2 describes the CP model and
the pre-processing techniques introduced by Tarim & Smith. Section 3 firstly
extends one of Tarim and Smith’s pre-processing techniques to cost-based
filtering method, allowing it to be applied at every search tree node. Sec-
ondly it proposes a general approach for applying any sound pre-processing
technique at every search tree node in a cost-based filtering fashion. Section
4 describes a relaxation that can be efficiently solved by means of a shortest
path algorithm, and produces tight lower bounds for the original problem
which is used to perform further cost-based filtering. Section 5 evaluates
our methods. Section 6 draws conclusions and discusses future extensions.

2 A CP model

In this section we review the CP formulation for the (Rn, Sn) policy pro-
posed by Tarim & Smith [24]. First we provide some formal background
related to stochastic programming.

Stochastic programming [3] is a well known modeling technique that
deals with problems where uncertainty comes into play. Problems of op-
timization under uncertainty are characterized by the necessity of mak-
ing decisions without knowing what their full effect will be. Such prob-
lems appear in many area of application and present many interesting con-
ceptual and computational challenges. Stochastic programming needs to
represent uncertain elements of the problem. Typically random variables
are employed to model this uncertainty to which probability theory can
be applied. For this purpose such uncertain elements must have a known
probability distribution. The typical requirement in stochastic programs
is to maintain certain constraints, called chance constraints [6], satisfied
at a prescribed level of probability. The objective is typically related to
the minimization/maximization of some expectation on the problem costs.
There are several different approaches to tackle stochastic programs. A first
method dealing with stochastic parameters in stochastic programming is the
so-called expected value model [3], which optimizes the expected objective
function subject to some expected constraints. Another method, chance-
constrained programming, was pioneered by Charnes and Cooper [6] as a
means of handling uncertainty by specifying a confidence level at which
it is desired that the stochastic constraint holds. Chance-constrained pro-
gramming models can be converted into deterministic equivalents for some
special cases, and then solved by some solution methods of deterministic
mathematical programming. A typical example for this technique is given
by the Newsvendor problem [18]. However it is almost impossible to do this
for complex chance-constrained programming models. A third approach em-
ploys scenarios, which are particular representations of how the future might



6 S. A. Tarim et al.

unfold. Each scenario is assigned a probability value, that is its likelihood.
An appropriate probabilistic model or simulation is used to generate a batch
of such scenarios. The challenge then, is how to make good use of these sce-
narios in coming up with an effective decision.

The stochastic programming formulation for the general multi-period
production/inventory problem with stochastic demand can be expressed as
finding the timing of the stock reviews and the size of the respective non-
negative replenishment orders with the objective of minimizing the expected
total cost E{TC} over a finite planning horizon of N periods. The model
is given below,

min E{TC} =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + h · max(It, 0))

g1(d1)g2(d2) . . . gN(dN )d(d1)d(d2) . . . d(dN )

(1)

subject to, for t = 1 . . .N

δt =

{
1, if Qt > 0
0, otherwise

(2)

It = I0 +

t∑

i=1

(Qi − di) (3)

Pr{It ≥ 0} ≥ α (4)

It ∈ Z, Qt ≥ 0, δt ∈ {0, 1}. (5)

Each decision variable It represents the inventory level at the end of period
t. The binary decision variables δt state whether a replenishment is fixed for
period t (δt = 1) or not (δt = 0). If an order is placed in period t, constraint
(2), decision variable Qt denotes the size of the respective non-negative
replenishment order. Chance constraint (4) enforces the required service
level, that is the probability α that the net inventory will not be negative
at the end of each time period. The objective function (1) minimizes the
expected total cost over the given planning horizon.

In [21] the authors assume that negative orders are not allowed, so that
if the actual stock exceeds the order-up-to-level for that period, this excess
stock is carried forward and not returned to the supply source. However,
such occurrences are regarded as rare events and accordingly the cost of
carrying the excess stock and its effect on the service level of subsequent
periods is ignored. Under these assumptions the chance-constrained problem
can be expressed by means of a deterministic equivalent model where buffer
stocks for each possible replenishment cycle are computed independently.

We now recall some basic notions about constraint programming. A Con-
straint Satisfaction Problem (CSP) [1,5] is a triple 〈V, C, D〉, where V is a
set of decision variables each with a discrete domain of values D(Vk), and
C is a set of constraints stating allowed combinations of values for subsets
of variables in V . Finding a solution to a CSP means assigning values to



Cost-based Filtering Techniques for Stochastic Inventory Control 7

variables from the domains without violating any constraint in C. We may
also be interested in finding a feasible solution that minimizes (maximizes)
the value of a given objective function over a subset of the variables. Con-
straint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation
algorithms. Such propagation algorithms in general exploit some structure
of the problem to prune decision variable domains in more efficient ways.

The following CP formulation of the deterministic equivalent model for
the (Rn, Sn) policy is proposed in [24]:

min E{TC} =
N∑

t=1

(
aδt + hĨt

)
(6)

subject to, for t = 1 . . .N

Ĩt + d̃t − Ĩt−1 ≥ 0 (7)

Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (8)

Ĩt ≥ b

(
max

j∈{1,...,t}
j · δj, t

)
(9)

Ĩt ∈ Z
+ ∪ {0}, δt ∈ {0, 1}, (10)

where b(i, j) is defined by

b(i, j) = G−1
di+di+1+...+dj

(α) −

j∑

k=i

d̃k.

Constraint (9), originally proposed by Tarim and Smith, can be imple-
mented by means of the following set of constraints, for t = 1 . . .N

Yt ≥ j · δj j = 1, . . . , t (11)

element (Yt, b(·, t), Ht) (12)

Ĩt ≥ Ht (13)

Ĩt, Ht ∈ Z
+ ∪ {0}, δt ∈ {0, 1}, Yt ∈ {1, . . . , N}. (14)

The element(X, list[], Y ) constraint [12] enforces a relation such that vari-
able Y represents the value of element at position X in the given list.
Gdi+di+1+...+dj

is the cumulative probability distribution function of di +
di+1 + . . . + dj . It is assumed that G is strictly increasing, hence G−1 is
uniquely defined.

Each decision variable Ĩt represents the expected inventory level at the
end of period t. Each d̃t represents the expected value of the demand in
a given period t according to its probability density function gt(dt). The
binary decision variables δt state whether a replenishment is fixed for period
t (δt = 1) or not (δt = 0). The objective function (6) minimizes the expected
total cost over the given planning horizon. The two terms that contribute



8 S. A. Tarim et al.

to the expected total cost are ordering costs and inventory holding costs.
Constraint (7) enforces a no-buy-back condition, which means that received
goods cannot be returned to the supplier. As a consequence of this the
expected inventory level at the end of period t must be no less than the
expected inventory level at the end of period t − 1 minus the expected
demand in period t. Constraint (8) expresses the replenishment condition.
We have a replenishment if the expected inventory level at the end of period
t is greater than the expected inventory level at the end of period t−1 minus
the expected demand in period t. This means that we received some extra
goods as a consequence of an order. Constraints (9) enforce the required
service level α. This is done by specifying the minimum buffer stock required
for each period t in order to assure that, at the end of each and every time
period, the probability that the net inventory will not be negative is at
least α. These buffer stocks, which are stored in matrix b(·, ·), are pre-
computed following the approach suggested in [21]. In this approach the
authors transformed a chance-constrained model, that is a model where
constraints on some random variables have to be maintained at prescribed
levels of probability, in a completely deterministic one. For further details
about chance-constrained programming see [6].

2.1 Domain pre-processing

In [24] the authors showed that a CP formulation for computing optimal
(Rn, Sn) policies provides a more natural way of modeling the problem. In
contrast to the equivalent MIP formulation the CP model requires fewer
constraints and provides a neater formulation. However, the CP model has
two major drawbacks. Firstly, in order to improve the search process and
quickly prove optimality, tight bounds on the objective function are needed.
Secondly, even when it is possible to compute a priori the maximum values
that such variables can be assigned to, these values (and therefore the do-
main sizes of the Ĩt variables) are large. The domain size value is equal to
the amount of stock required to satisfy subsequent demands till the end of
the planning horizon, meeting the required service level when only a single
replenishment is scheduled at the beginning of the planning horizon.

To address the domain size issue, Tarim & Smith proposed two pre-
processing methods in order to reduce the size of the domains before start-
ing the search process, by exploiting properties of the given model and
of the (Rn, Sn) policy. Method I computes a cost-based upper bound for
the length of each possible replenishment cycle T (i, j), starting in period
i, for all i, j ∈ {1, . . . , N}, i ≤ j. Note that T (i, j) denotes the time span
between two consecutive replenishment periods i and j +1. Method I there-
fore identifies sub-optimal replenishment cycle lengths allowing a proactive
off-line pruning, which eliminates all the expected inventory levels that refer
to longer sub-optimal replenishment cycles. Method II employs a dynamic
programming approach, by considering each period in an iterative fashion



Cost-based Filtering Techniques for Stochastic Inventory Control 9

and by taking into account in each step two possible courses of action: ei-
ther an order with an expected size greater than zero is placed, or no order
(equivalently an order with a null expected size) is placed in the considered
period within our planning horizon. The effects of these possible actions in
each step are reflected in the decision variable domains by removing values
that are not produced by any course of action.

3 From pre-processing to cost-based filtering

In the previous section we described a CP formulation for the (Rn,Sn) pol-
icy. In [24] the authors discussed the advantages of such a formulation when
it is compared to the MIP formulation proposed in [21]. CP not only per-
forms faster than MIP and provides a neater formulation, it also allows us
to build dedicated filtering algorithms for pruning infeasible and/or subop-
timal values for the domains of decision variables during the search.

In Section 3.1 we extend the first of the two pre-processing methods
proposed in [24] in order to exploit partial assignments of decision variables
in the model to prune suboptimal values from the domains of the remaining
decision variables still unassigned at any point of the search process.

In Section 3.2, we describe a generic approach to applying pre-processing
techniques not only in a proactive way, before the search process starts,
but also during the search, by exploiting partial information which derives
from the current decision variable assignments. We emphasize that this
approach may be used in conjunction with any sound pre-processing method
developed for our inventory/production problem and it is not limited to the
two pre-processing methods proposed in [24].

A running example is given to show that the two methods proposed are
incomparable in term of domain reduction achieved.

3.1 Tighter upper bounds for optimal replenishment cycle lengths

We now present a filtering method that is a natural extension of pre-
processing method I in [24]. This method prunes variable domains, when a
partial solution is given, by enforcing tighter upper bounds for optimal re-
plenishment cycle lengths than those proposed by Tarim and Smith. When
no partial solution is provided this filtering method realizes the same domain
reduction performed by the respective pre-processing method.

Firstly let R(i, j) = b(i, j) +
∑j

t=i d̃t be the required minimum opening
inventory level in period i, i ∈ {1, . . . , N}, to meet demand until period j+1.
The cycle cost c(i, j), when a variable holding cost ht (t ∈ {1, . . . , N}) is
considered, can be expressed as

c(i, j) = a +

j∑

t=i

htb(i, j) +

j−1∑

t=i

ht

j∑

k=t+1

d̃k. (15)



10 S. A. Tarim et al.

The cost (15) of a replenishment cycle is the sum of two components. A
fixed ordering cost a, that is charged at the beginning of the cycle when
an order is placed, and a variable holding cost ht charged at the end of
each time period within the replenishment cycle and proportional to the
amount of stocks held in inventory. In [24], for each period i ∈ {1, . . . , N}
over the planning horizon N , an upper bound for the length of an optimal
replenishment cycle T (i, p)∗ that starts in such a period is proposed. The
authors compute a priori this bound for every period i and derive from it
a superset of all candidate opening-inventory-levels for any period in the
planning horizon. Let us refer to this bound as B (Fig. 2 - a), and let
j = i+B. Then the last period p of an optimal replenishment cycle T (i, p)∗

satisfies i ≤ p ≤ j. j = i + B can be computed as the minimum j satisfying

i j

(a)

p

B+1

i jk

(b)

p

B�+1

B+1

di ¹ 0 dk +1 = 1

Fig. 2 Bound tightening when a partial solution is given: (a) since it is not
optimal to cover more than B + 1 periods with a single replenishment in i, the
optimal policy lies in the gray area; (b) the bound B can be tightened to B′ when
an order is scheduled in period k + 1, i ≤ k < j

the following conditions described in [24], which formally identify bound B

c(i, k) + c(k + 1, j) > c(i, j) ∨ b(i, k) > R(k + 1, j) (16)

for all k ∈ {i, . . . , j − 1}, and

c(i, k) + c(k + 1, j + 1) ≤ c(i, j + 1) ∧ b(i, k) ≤ R(k + 1, j + 1) (17)

for some k ∈ {i, . . . , j}, given that ∀p ∈ {j + 2, . . . , N} such a k satisfies

−

p∑

t=j+2

(k + 1 − i)d̃t + (p − k)b(k + 1, p) − (j − k + 1)b(k + 1, j + 1) ≤

(p − i + 1)b(i, p) − (j − i + 2)b(i, j + 1).

(18)

A proof for these conditions is given in Appendix 7.2.
When a partial solution S is given, it is possible to tighten the bound B

by using the following observations:



Cost-based Filtering Techniques for Stochastic Inventory Control 11

– if δi is assigned to 0 then no replenishment cycle starts in period i.
– if δi is not assigned to 0 and ∃k ∈ {i, . . . , i + B − 1} such that δk+1 = 1,

then B can be tightened to the smallest k − i value B′ (Fig. 2 - b)

In order to compute the tighter bound B′ for a given period i ∈ {1, . . . , N}
when a partial solution S is given we introduce the following Lemma.

Lemma 1 If there exists some k ∈ S such that δk+1 = 1 and i ≤ k < j,
then B can be tightened to B′ = j′ − i where

j′ = min
(
{k| δk+1 = 1, k ∈ {i, . . . , j − 1}}

⋃
{j}

)
.

Proof Trivially the replenishment scheduled in period k + 1 rules out the
chance of covering periods i, . . . , j where j > k with a single cycle. ⊓⊔

By means of the described tighter bound B′ we can now obtain smaller
supersets of all candidate opening-inventory-levels than those described in
[24]. For convenience in what follows we will refer to the expected closing-
inventory-levels, that is opening-inventory-level minus expected demand in
the period considered.

A first reduction in the size of the super-sets is due to the fact that if δi

is assigned to zero, no replenishment cycle starts in period i. Therefore no
value that is a candidate expected closing-inventory-level for any replenish-
ment cycle starting in period i is feasible with respect to the given partial
solution. Otherwise candidate values can be computed as described in the
following:

Lemma 2 When δi is not assigned to 0, a sufficient but not necessary
condition that identifies candidate expected closing-inventory-level values in
Dom(Ĩm), m ∈ T (i, j′) for a replenishment cycle starting in period i is
defined as follows (see Fig. 3):

Dom(Ĩm) ⊇

{
τ

∣∣∣∣∣ τ = R(i, l) −

m∑

t=i

d̃t, l ∈ {m, . . . , j′}

}
. (19)

Proof As shown in [24], equation (19) considers in Dom(Ĩm) for each m ∈
T (i, j′) every value that is feasible if there is a replenishment cycle starting
in period i. In fact if p denotes the final period of the optimum length
replenishment cycle for period i, δk = 0, k = {i + 1, . . . , p}, the optimum
expected closing inventory level for period m, where i ≤ m ≤ p, is R(i, p)−∑m

t=i d̃t. The domain of possible values is therefore obtained by letting p
range from m to j. Tightening j to j′ is correct because, when a partial
solution is given, this ignores values related to every infeasible replenishment
cycles T (i, r), where j′ < r ≤ j and δj′+1 = 1, if any exists. ⊓⊔

The former condition is only sufficient because there may exist other
candidate values that should be in Dom(Ĩm) as we did not take into account
negative order quantity scenarios. Such situations arise when for some m ∈



12 S. A. Tarim et al.

i j�

B�+1

di ¹ 0

m

Fig. 3 Subset of candidate optimal expected closing-inventory-levels for period
m, m ∈ {i, . . . , j′}. These values can be computed as stated in Lemma 2. The
whole set of candidate levels shown in the picture may be computed by ranging
m from i to j′

(c)

(b)

di ¹ 0 dm+1 ¹ 0

i wmi j�m

(a)

di ¹ 0

dm+1 ¹ 0

i vm

dm+2,...,v ¹ 1

Fig. 4 (a) Negative order quantity scenario. Additional values, computed by
Lemma 3, to be considered in the subset of candidate optimal expected closing-
inventory-levels for each period p when (b) an order with expected size greater
than zero is scheduled in period m + 1, p ∈ {m + 1, . . . , h′}, (c) an order with
expected size zero is scheduled in period m +1, p ∈ {m+ 1, . . . , w}. In both cases
δm+1 6= 0 since it must be possible to schedule an order in period m + 1

T (i, j′), c(i, m) + c(m + 1, j′) ≤ c(i, j′) and b(i, m) > R(m + 1, j′) (Fig. 4
- a). In this case, since the replenishment policy expects a negative order
and is infeasible, an optimal policy can be either the one that schedules
a new order in period m + 1 with an expected lot-size greater than zero
(Fig. 4 - b) or an expected lot-size of zero (Fig. 4 - c). Lemma 3 and 4



Cost-based Filtering Techniques for Stochastic Inventory Control 13

characterize which additional values have to be considered when a negative
order quantity scenario arises.

Lemma 3 If δm+1 = 0, Eq. (19) is a necessary and sufficient condition
that identifies candidate expected closing-inventory-level values in Dom(Ĩm),
m ∈ T (i, j′) for a replenishment cycle starting in period i.

Proof In [24] it is stated that, if i is a replenishment period and we want
to cover subsequent periods up to m, in a feasible policy a replenishment
should then be scheduled in m + 1. Since δm+1 = 0, it is not feasible to
cover periods from i to m with a single order in i because to do so we would
need an additional order in period m + 1 that is ruled out by the partial
assignment. ⊓⊔

Lemma 4 If δm+1 is not assigned to zero, every further candidate expected
closing-inventory-level value for a replenishment cycle starting in period i
can be identified by considering two possible courses of action:

– a new order is scheduled for period m+1 and its expected size is greater
than zero, (Fig. 4 - b). In this case, if δk 6= 1 for k = {m+2, . . . , v}, we
also consider the following candidate expected closing-inventory levels

Dom(Ĩn) ⊇

{
τ

∣∣∣∣∣ τ = R(m+1,v) −

n∑

t=m+1

d̃t

}
, (20)

for n = {m+1, . . . , v}, where v = min
{
l
∣∣∣b(m + 1, l) +

∑l
t=m+1 d̃t ≥ b(i, m)

}
.

– a new order is scheduled for period m + 1 and its expected size is zero,
(Fig. 4 - c). In this case we also consider the following candidate expected
closing-inventory levels

Dom(Ĩn) ⊇

{
τ

∣∣∣∣∣ τ = b(i,m) −

n∑

t=m+1

d̃t

}
, (21)

for n ∈ {m + 1, . . . , w}, where

w = max

{
l

∣∣∣∣∣∃q ∈ {m + 1, . . . , l}, b(q, l) +

l∑

t=m+1

d̃t ≤ b(i, m)

}
.

Proof As shown in [24], equation (20) adds to Dom(Ĩn) every further fea-
sible values by considering the option of placing an order whose expected
lot-size is bigger than zero. In fact if we assume that the high levels of
opening inventory carried from period m satisfy the service-level constraint
for the following v − 1 consecutive periods, then the remaining inventory
is not enough to satisfy this constraint for period v. To comply with the
service level constraint in period v, the order quantity must be at least
b(m+1, v)+

∑v
t=m+1 d̃t−b(i, m). Hence this replenishment covers the peri-

ods until the end of v, where v = min{l|b(m + 1, l)+
∑l

t=m+1 d̃t ≥ b(i, m)}.



14 S. A. Tarim et al.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d̃i 73 0 128 116 92 180 28 164 28 161 37 57 181 62
i 15 16 17 18 19 20 21 22 23 24

d̃i 34 161 2 10 40 192 17 190 163 32

Table 1 Demand forecasts

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
δi 1 0 1 1 0 1 0 1 0 1 1 0 1 1

Ĩi 40 40 70 173 81 128 100 119 91 88 94 37 99 73
i 15 16 17 18 19 20 21 22 23 24
δi 0 1 1 0 0 1 0 1 1 0

Ĩi 39 88 86 76 36 123 106 104 123 91

Table 2 Optimal solution

If an order has been scheduled for a period t ∈ {m + 2, . . . , v}, then by def-
inition the remaining inventory at the end of period m is enough to satisfy
demands in periods {m + 1, . . . , t}, therefore the optimal expected order
quantity for period m + 1 is zero.

Equation (21) adds to Dom(Ĩn) every further feasible values by con-
sidering the option of placing an order whose expected lot-size is zero. In
this case, since the replenishment expects a zero order quantity, the ex-
cess stock may affect subsequent periods regardless of the orders placed.
Therefore we look forward in the planning horizon up to the point where no
following replenishment cycle may be affected by the excess stock carried
on from the current one. Hence, the farthest period that may be affected is
w = max{l|∃q ∈ {m + 1, . . . , l}, b(q, l) +

∑l
t=m+1 d̃t ≤ b(i, m)}. ⊓⊔

Theorem 1 When a partial solution is given, by ranging i from 1 to N ,
equations (19, 20, 21) identify the feasible subset of values within the current
Dom(Ĩk), for k ∈ {1, . . . , N}.

Proof Directly follows from Lemmas 1, 2, 3 and 4. ⊓⊔

3.1.1 Example We now present a running example where the planning
horizon is N = 24 periods and the initial stock level is equal to zero. The
demand is normally distributed in each period t ∈ {1, ..., N} with a constant
coefficient of variation σt/d̃t = 1/3, where σt is the standard deviation of
the demand in period t. The demand forecasts (mean value for each period)
are listed in Table 1. The other parameters for the problem are: a = 200,
h = 1, α = 0.95. The optimal solution for the CP model when former in-
puts are considered is shown in Table 2. The (Rn, Sn) policy parameters,
that is replenishment cycle lengths and order-up-to-levels, for this instance
can be easily computed from the solution of the CP model. We applied
the described filtering method without considering a given partial solution,
the domain reduction achieved is therefore equivalent to the one performed
by pre-processing method I introduced in [24]. This way we computed the
reduced domains Dom(It) for the decision variables It, t ∈ {1, ..., N}. These



Cost-based Filtering Techniques for Stochastic Inventory Control 15

i Dom(Ĩi) i Dom(Ĩi)
1 {40} 13 {99, 167}
2 {0, 40, 198} 14 {34, 37, 73, 105}
3 {70, 211} 15 {19, 39}
4 {64, 95, 173} 16 {88, 90, 100, 143}
5 {50, 81} 17 {1, 16, 73, 86, 88, 98, 141, 350}
6 {99, 128} 18 {5, 6, 63, 76, 78, 88, 131, 340}
7 {15, 71, 100} 19 {22, 23, 36, 38, 91, 300}
8 {90, 119} 20 {105, 108, 123}
9 {15, 62, 91} 21 {9, 88, 106}
10 {88, 128} 22 {104}
11 {20, 51, 91, 94} 23 {89, 123}
12 {31, 37} 24 {18, 57, 91}

Table 3 Reduced domains after applying our filtering method when no partial
solution is given. The reduction achieved is equivalent to the one provided by
pre-processing method I in [24]. Underlined figures are closing inventory levels of
the optimal policy

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
δi 1 0 1 − 0 1 0 1 0 − − 0 1 −
i 15 16 17 18 19 20 21 22 23 24
δi 0 1 1 0 0 1 0 1 − 0

Table 4 Partial solution. A ”–” means that the variable has not been assigned
yet

reduced domains are shown in Table 3. We now consider the partial solution
shown in Table 4. Table 5 shows the reduced domains obtained when we
enforce tighter upper bounds for optimal replenishment cycle lengths con-
sidering the partial solution in Table 4. From Theorem 1 it directly follows
that the filtering is performed by removing from decision variables domains
(Table 3) values that do not appear in Table 5, which contains the computed
reduced domains with respect to the partial solution given.

We shall now see in details how feasible expected closing-inventory-levels
in the reduced domains (Table 5) are computed for the first 5 periods. In
the given partial solution we place an order in period 1 but not in period 2.
An order is placed in period 3 therefore a replenishment cycle over periods
{1, 2} is uniquely defined. Bound B′ for period 1 is 2 periods. The demand
in the first period is 73 while in the second is 0. The buffer stock required
at the end of period 1 is 70 · 1.645 · 0.3 ≃ 40. By iterating Lemma 2 over
periods {1, 2} we obtain an expected closing-inventory-level of 40 for period
1 and again of 40 for period 2. Negative order quantity scenarios do not arise
since δ2 = 0. We do not iterate Lemma 2 for period 2, since δ2 = 0 and no
replenishment cycle may start in this period. In period 3 a replenishment is
scheduled. The replenishment decision in period 4 is still unassigned while
in period 5 no replenishment is scheduled. We apply Lemma 2 to period 3.
The bound B′ is 2 periods. Therefore either we may cover only the current
period with a replenishment, which yields a closing inventory level of 70,
or we may cover both the periods with a single replenishment, in which



16 S. A. Tarim et al.

i Dom(Ĩi) i Dom(Ĩi)
1 {40} 13 {99, 167}
2 {40} 14 {34, 37, 73, 105}
3 {70, 211} 15 {39}
4 {64, 95, 173} 16 {88}
5 {81} 17 {1, 16, 73, 86}
6 {99, 128} 18 {6, 63, 76}
7 {100} 19 {23, 36}
8 {90, 119} 20 {105, 123}
9 {91} 21 {106}
10 {88, 128} 22 {104}
11 {20, 51, 91, 94} 23 {89, 123}
12 {37} 24 {91}

Table 5 Enforcing tighter upper bounds for optimal replenishment cycle lengths
- Partial solution in Table 4, underlined figures are closing inventory levels of the
optimal policy

case the required expected closing-inventory-level is 211 in period 3 and
95 in period 4. Negative order quantity scenarios do not arise. In period
4 the bound B′ is again 2. Therefore we may cover only one period with
an expected closing-inventory-level of 64, or we may cover two periods by
keeping respectively an expected closing-inventory-level of 173 at the end of
period 4 and of 81 at the end of period 5. Negative order quantity scenario
again do not arise. δ5 is assigned to 0 therefore no replenishment cycle starts
in this period.

We now consider a set of periods where negative order quantity scenarios
arise. We refer to periods {10, 11, 12}. In period 10, B′ is 2 periods. Therefore
the two candidate expected closing inventory levels computed by Lemma 2
are {88, 128}. 88 is the expected closing-inventory-level required if only one
period is covered by the replenishment scheduled in period 10, 128 is the
level required to cover period 10 and 11 with a single replenishment. In this
case the respective expected closing-inventory-level at the end of period 11
is 91. If an order is placed in period 10 and also in period 11 the overall
cost is higher than that incurred by covering both the periods with a single
replenishment. On the other hand the order-up-to-level for period 11 in this
case is lower than the expected closing-inventory-level in period 10. This
generates a negative order quantity scenario. As stated in Lemma 4, either
we cover period 11 only by scheduling an order with expected size zero. In
this case the candidate level 51 = 88 − 37 must be considered for period
11. Otherwise we try to cover more periods with the candidate level 94.
By doing so we will cover subsequent periods till 12, therefore we add the
candidate level 37 = 94 − 57 to period 12. The other value in the table for
period 11 is 20 that refers instead to the case in which we order in this
period and we cover only 1 period with the order. This value is computed
by applying Lemma 2 to this period. Since δ12 = 0 no replenishment cycle
may start in this period.



Cost-based Filtering Techniques for Stochastic Inventory Control 17

3.2 Merging adjacent non-replenishment periods

One of the limits of the domain reduction methods proposed in [24] is that
they can only be applied before the search process starts. Therefore they do
not take into account information regarding partial assignments for decision
variables that may become available during the search process. In this sec-
tion we aim to overcome this limitation with a general approach that may
be applied to any pre-processing method.

We consider a given partial solution in which some decision variables δi

are set to zero. The key idea is to transform the original problem instance
into a smaller one by merging adjacent non-replenishment periods into a
single new period with new expected demand and variance values. Since
the demand in each period is assumed to be independent from the previous
and the following demands, these new characteristics for the demand distri-
bution in the new merged time span can be easily computed by exploiting
properties of the chosen probability distribution. Once we have the smaller
instance fully defined, we can apply any sound pre-processing methods, for
instance one of those presented in [24], and then we can reflect the pruning
achieved in the smaller instance back onto the original one. It should be
noted that the following reasoning can be applied to any reduction method
for the presented CP model, and it is not limited to those presented in [24].
We propose a three-step procedure to apply any pre-processing method not
only at the root node, but at every node of the search tree.

3.2.1 Step 1 By considering a partial solution S for the original problem
instance P , we construct a reduced problem instance R. R will be described
by a list of M ≤ N expected demand values and standard deviations and it
will be built as follows. If δk = 0 for all k ∈ {i + 1, . . . , j} and δi = 1 or δi

is unassigned, then instead of periods {i, . . . , j} we introduce a new period
k∗ that represents such a span with an expected demand of

d̃k∗ =

j∑

t=i

d̃t

and a standard deviation of

σk∗ =

√√√√
j∑

t=i

σ2
t .

These two expressions are well known properties of the normal distribution.
The holding cost for period k∗ can be expressed as h · (j − i + 1)Ik∗ +∑j

l=i+1(l − i)d̃l, and since the second term is constant the new holding
cost coefficient will be hk∗ = h · (j − i + 1). For any other period in P we
introduce a duplicate period in R with the same expected demand, variance
and holding cost. To avoid confusion, we will refer to the decision variables
denoting the closing inventory level at period i in problem R as Ĩ ′i, to the



18 S. A. Tarim et al.

binary variables as δ′i, for all i ∈ {1, . . . , M} and to the demands as d̃′i, for
all i ∈ {1, . . . , M}.

3.2.2 Step 2 In this step we apply a sound pre-processing method to the
reduced problem instance R defined in the previous step.

3.2.3 Step 3 In this step we reflect the pruning done in the reduced in-
stance back to the original instance. For each period p ∈ {1, . . . , M} of R
that is the result of merging adjacent periods {i, . . . , j}, i < j of P , we
can update the domains of Ĩt for all i ≤ t ≤ j by enforcing the following
constraints:

Ĩt =

{
Ĩ ′p if t = j,

Ĩ ′p + d̃j + d̃j−1 + . . . + d̃t−1 if i ≤ t < j.
(22)

For any other period p ∈ R that does not represent merged periods and its
corresponding period t in P , we enforce that

Ĩt = Ĩ ′p. (23)

These three steps compose the core of our algorithm. The following
Theorem shows that such a filtering algorithm is sound.

Theorem 2 We are given a problem instance P and a partial solution S
for it, where ∃δi, i ∈ {1, . . . , N} such that δi = 0. By applying a sound pre-
processing method (Step 2) to the reduced problem instance R, obtained as
described in Step 1, and by computing feasible values for decision variables
Ĩt in the original problem P, as stated in Step 3, no value that is part of
any optimal solution S∗ with respect to the given partial assignments in S
is pruned in the domain of Ĩt, t ∈ {1, . . . , N}.

Proof We will now show that, under the given partial solution S, the re-
duced problem instance R is equivalent to the original problem P and that
the reduction in the number of decision variables and constraints is a di-
rect consequence of the linear dependencies induced by the current partial
assignment for δt variables. This will establish the fact that any sound pre-
processing method applied to R will produce a sound domain reduction in
P when reflected by means of the proposed mapping that is built on these
linear dependencies.

Let us consider the model above for our problem P that is defined by
Eqs. 6, 7, 8, 9 and 10.

Consider P and a partial solution where ∃k ∈ {1, ..., N} s.t. δk is set to
0. Let us consider the implications of this assignment in our model P . This
assignment affects the inventory conservation constraints 7 and obviously
the replenishment decisions 8, the constraints that enforce buffer stocks 9
and the objective function 6.



Cost-based Filtering Techniques for Stochastic Inventory Control 19

Effects on the replenishment decision and on the inventory
conservation constraints. Since δk = 0, constraint 7 for t = k can be
tightened because of Eq. 8 as follows:

Ĩk + d̃k − Ĩk−1 = 0, (24)

then, by using Ĩk−1 + d̃k−1 − Ĩk−2 ≥ 0 (that is constraint 7 for t = k − 1)
and Eq. 24, we have

Ĩk + d̃k + d̃k−1 − Ĩk−2 ≥ 0. (25)

Notice that constraint 8 for t = k is now redundant, since we assume that
δk = 0. Furthermore by following a reasoning similar to the one used to
derive Eq. 25, Eq. 8 for t = k−1 can be replaced by the following constraint

Ĩk + d̃k + d̃k−1 − Ĩk−2 > 0 → δk−1 = 1. (26)

Effects on the constraints that enforce buffer stocks. Let us con-
sider now the implications of constraint 24 on the buffer stock levels. When
t = k − 1 in constraint 9 we can write

Ĩk + d̃k ≥ b

(
max

j∈{1,...,k−1}
j · δj, k − 1

)
. (27)

Also notice that for t = k

Ĩk ≥ b

(
max

j∈{1,...,k}
j · δj , k

)
(28)

and since δk = 0, Eq. 28 can be rewritten as

Ĩk ≥ b

(
max

j∈{1,...,k−1}
j · δj , k

)
. (29)

Since the buffer stock level b(i, j) is an increasing function of the number of
periods as shown in [24], it is easy to see that

Ĩk ≥ b

(
max

j∈{1,...,k−1}
j · δj, k

)
≥ b

(
max

j∈{1,...,k−1}
j · δj , k − 1

)
, (30)

it follows that Eq. 27 (that is constraint 9 for t = k−1) becomes redundant.
Effects on the objective function. We now consider the implications

of constraint 24 on the objective function. Since δk = 0 the fixed ordering
cost component for period k is zero. By applying constraint 24 we obtain
the following new objective function

min E{TC} =

N∑

t=1,t6=k

aδt +

N∑

t=1,t6=k−1

hĨt + h(Ĩk + d̃k). (31)

We can see that we no longer have a holding cost component for period k−1,
while the holding cost for period k is now doubled, since we can ignore the



20 S. A. Tarim et al.

constant term h · d̃k.

Every implication of Eq. 24 in the whole model has been considered, there-
fore we can rewrite

hd̃k + min E{TC} =

N∑

t=1,t6=k

aδt +

N∑

t=1,t6=k−1

hĨt + hĨk (32)

subject to,

Ĩt + d̃t − Ĩt−1 ≥ 0 t = 1, . . . , N ; t 6= k − 1; t 6= k
(33)

Ĩk + d̃k + d̃k−1 − Ĩk−2 ≥ 0 (34)

Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 t = 1, . . . , N ; t 6= k − 1; t 6= k
(35)

Ĩk + d̃k + d̃k−1 − Ĩk−2 > 0 ⇒ δk−1 = 1 (36)

Ĩt ≥ b

(
max

j∈{1..t}
j · δj , t

)
t = 1, . . . , N ; t 6= k − 1 (37)

Ĩt ∈ Z
+ ∪ {0} t = 1, . . . , N ; t 6= k − 1 (38)

δt ∈ {0, 1} t = 1, . . . , N ; t 6= k. (39)

To summarize, we showed that constraint 7 for t = k − 1 and t = k
can be expressed by Eq. 25, and similarly constraint 8 for t = k − 1 and
t = k can be expressed by Eq. 26. Both these new constraints (25,26) are
independent of Ĩk−1. Constraint 9 for t = k − 1 becomes redundant. The
new objective function (Eq. 31) reflects the consequences of constraint 24
and is independent of decision variable Ĩk−1. Therefore the whole model is
now independent of decision variable Ĩk−1, whose value is a function of Ĩk

(Eq. 24).
Since the last model is independent of Ĩk−1 and δk, we now reduce it

to an (N − 1)-period model R through a change of variables, by merging
periods k−1 and k and realizing the whole demand d̃′k∗ = d̃k + d̃k−1 in the
new period k∗, where k∗ covers the span {k− 1, k}. In such a new model R
the demand d̃′t in the other periods t ∈ {1, ..., k∗ − 1, k∗ + 1, ..., N − 1} is
mapped as follows:

d̃′t =

{
d̃t, t ∈ {1, ..., k − 2}

d̃t+1, t ∈ {k, ..., N − 1}.

Since the demand in periods k and k − 1 of P is assumed to be normally
distributed, the variance for the demand in the new period k∗ of R is

σ′
k∗ =

√
σ2

k + σ2
k−1.



Cost-based Filtering Techniques for Stochastic Inventory Control 21

Ĩ ′k∗ in R, that is the closing inventory levels in the new model, can be
related to the respective closing inventory levels of periods k and k − 1 in
P using Ĩk = Ĩ ′k∗ and Ĩk−1 = Ĩ ′k∗ + d̃k, which follow from Eq. 24 and the
definition of k∗. The other closing inventory levels are mapped as follows:

Ĩ ′t =

{
Ĩt, t ∈ {1, ..., k − 2}

Ĩt+1, t ∈ {k, ..., N − 1}.

Notice that we only assumed δk = 0, so N − 1 binary decision variables are
still unassigned. Therefore we have δ′k∗ = δk−1 (Eq. 26) and the following
mapping for the remaining variables:

δ′t =

{
δt, t ∈ {1, ..., k − 2}
δt+1, t ∈ {k, ..., N − 1},

where δ′t are the binary decision variables in R. Eq. 31 states that in order
to get a model equivalent to the initial one, we must apply a holding cost
of 2h for the new period k∗ in the objective function.

The last model presented can be therefore rewritten in terms of the new
decision variables defined by this mapping. The resulting problem instance
is R

E{TC} = hd̃k + min

N−1∑

t=1

aδ′t +

N−1∑

t=1

hĨ ′t + hĨ ′k∗ (40)

subject to

Ĩ ′t + d̃′t − Ĩ ′t−1 ≥ 0 t = 1, . . . , N − 1 (41)

Ĩ ′t + d̃′t − Ĩ ′t−1 > 0 ⇒ δ′t = 1 t = 1, . . . , N − 1 (42)

Ĩ ′t ≥ b

(
max

j∈{1..t}
j · δ′j , t

)
t = 1, . . . , N − 1 (43)

Ĩ ′t ∈ Z
+ ∪ {0}, δ′t ∈ {0, 1} t = 1, . . . , N − 1. (44)

It is trivial to recursively extend this reasoning to the case of consecutive
periods with δk set to zero. This process necessarily ends when we reach an
i < k where δi = 1 or δi ∈ {0, 1}. Furthermore δ1 = 1, since without loss of
generality we assume an initial null inventory and an initial demand greater
than zero, therefore we always fix a replenishment in the first period. ⊓⊔

3.2.4 Example We now refer to the same instance analyzed for the exam-
ple in Section 3.1. When the partial solution given in Table 4 is considered,
a reduced problem instance can be built as described in Step 1. This in-
stance is shown in Table 6. We applied pre-processing method I in [24] to
this instance as stated in Step 2. Note that this is equivalent to applying
our cost-based filtering method presented in Section 3.1 when in the given
partial solution no decision variable has been assigned to a value. The re-
duced domains are shown in Table 7. From the reduced domains in Table
7, by applying Step 3, we can compute the reduced domain for the original



22 S. A. Tarim et al.

t 1 2 3 4 5 6 7 8 9
i, . . . , j 1, 2 3 4, 5 6, 7 8, 9 10 11, 12 13 14, 15

d̃t 73 128 208 208 192 88 94 181 96
σt 24.3 42.6 49.3 60.6 55.4 29.3 22.5 60.3 23.5
ht 2 1 2 2 2 1 2 1 2

t 10 11 12 13 14
i, . . . , j 16 17, 18, 19 20, 21 22 23, 24

d̃t 88 52 209 190 195
σt 29.3 13.7 64.2 63.3 55.3
ht 1 3 2 1 2

Table 6 Reduced problem instance built as described in Step 1. For every period
t in the new instance R, i, . . . , j denotes the span covered in the original problem
P

i Dom(Ĩ′
i) i Dom(Ĩ′

i)
1 : {1, 2} {40} 8 : {13} {99}
2 : {3} {70} 9 : {14, 15} {39}
3 : {4, 5} {81} 10 : {16} {88, 143}
4 : {6, 7} {100} 11 : {17, 18, 19} {23, 36, 91}
5 : {8, 9} {91} 12 : {20, 21} {106}
6 : {10} {88} 13 : {22} {104}
7 : {11, 12} {37} 14 : {23, 24} {91}

Table 7 Effect of pre-processing method I in [24] on the smaller instance with
merged periods, underlined figures are closing inventory levels of the optimal pol-
icy

i Dom(Ĩi) i Dom(Ĩi)
1 {40} 13 {99}
2 {40} 14 {73}
3 {70} 15 {39}
4 {173} 16 {88, 143}
5 {81} 17 {73, 86, 141}
6 {128} 18 {63, 76, 131}
7 {100} 19 {23, 36, 91}
8 {119} 20 {123}
9 {91} 21 {106}
10 {88} 22 {104}
11 {94} 23 {123}
12 {37} 24 {91}

Table 8 Reduced domains of the original instance obtained through the mapping
proposed, underlined figures are closing inventory levels of the optimal policy

problem instance. These domains are shown in Table 8. The two presented
methods are incomparable, in fact this method prunes more values in period
6 while the former one prunes more values in period 16.

4 Cost-based filtering by relaxation

The CP model as described so far suffers from a lack of tight bounds on
the objective function. In this section we recall a relaxation for our model
originally proposed by Tarim in [19]. By means of this relaxation we will



Cost-based Filtering Techniques for Stochastic Inventory Control 23

introduce a novel approach to compute a locally optimal solution or a valid
lower bound at each node of the search tree.

It should be noted that the relaxation as presented in [19] does not take
into account a given partial solution if this is available. As we will show this
extension is not trivial, especially if we aim to take into account a partial
assignment involving both δt and Ĩt decision variables.

Given a problem instance, Tarim’s approach adopts a greedy algorithm
to solve a relaxed problem instance. This way a replenishment plan (assign-
ment for the δt and It variables) is generated. Once this replenishment plan
is available, it is possible to characterize if it is also feasible with respect
to the original problem. If so, the respective computed cost is optimal for
the original problem. Otherwise, if the replenishment plan is infeasible with
respect to the original problem, the computed cost is a valid lower bound
for the optimal solution cost of the original problem.

4.1 Tarim’s relaxation

We shall now describe Tarim’s relaxation in details. The core observation
consists in the fact that the CP model proposed in Section 2 can be re-
duced to a shortest path problem if we relax inventory conservation
constraints (7,8) for replenishment periods only. That is for each possible
pair of replenishment cycles 〈T (i, k − 1), T (k, j)〉 where i, j, k ∈ {1, . . . , N}
and i < k ≤ j, we do not consider the relationship between the opening
inventory level of T (k, j) and the closing inventory level of T (i, k− 1). This
corresponds to allowing negative replenishments (Fig. 4 - a), or the ability to
sell stock back to the supplier. Since the inventory conservation constraint
is now relaxed between replenishment cycles, each replenishment cycle can
be now treated independently and its cost can be computed a priori. In
fact, given a replenishment cycle T (i, j), we recall that b(i, j), as defined
above, denotes the minimum buffer stock level required to satisfy a given
service level constraint during the replenishment cycle T (i, j). It directly
follows that Ĩj = b(i, j). Furthermore for each period t ∈ {i, . . . , j − 1} the

expected closing-inventory-level is Ĩt = b(i, j) +
∑j

k=t+1 dk. Since all the Ĩt

for t ∈ {i, . . . , j} are known it is easy to compute the expected total cost for
T (i, j), which is by definition the sum of the ordering cost and of the holding

cost components, a+h
∑j

t=i Ĩt. We now have a set S of N(N +1)/2 possible
different replenishment cycles and the respective costs. Our new problem is
to find an optimal set S∗ ⊂ S of consecutive disjoint replenishment cycles
that covers our planning horizon at the minimum cost.

It should be noted that, from the characterization of the optimal policy
for the deterministic inventory/production problem given by Wagner and
Whitin [25], the optimal solution of this relaxation is always feasible for the
original problem if buffer stocks are all zero and therefore we are solving a
deterministic problem. In fact we recall that, as stated in [25] in the search
for the optimal policy for the deterministic production/inventory problem



24 S. A. Tarim et al.

it is sufficient to consider programs in which at period t one does not both
place an order and bring in inventory (i.e. zero-inventory ordering property).
It directly follows that every relaxed inventory conservation constraint is
trivially satisfied under a deterministic setting, as in an optimal solution
the closing inventory level at the end of each replenishment cycle must be
zero.

4.2 Tarim’s relaxation as a shortest path problem

We shall now show that the optimal solution to this relaxation is given
by the shortest path in a graph from a given initial node to a final node
where each arc represents a replenishment cycle cost. If N is the number
of periods in the planning horizon of the original problem, we introduce
N + 1 nodes. Since we assume, without loss of generality, that an order is
always placed at period 1, we take node 1, which represents the beginning
of the planning horizon, as the initial node. Node N + 1 represents the end
of the planning horizon. For each possible replenishment cycle T (i, j − 1)
such that i, j ∈ {1, . . . , N + 1} and i < j, we introduce an arc (i, j) with
associated cost c(i, j − 1). Since we are dealing with a one-way temporal
feasibility problem [25], when i ≥ j, we introduce no arc. The connection
matrix for such a graph, of size N × (N +1), can be built as shown in Table
9. By construction the cost of the shortest path from node 1 to node N + 1

1 2 . . . j . . . N + 1

1 − c(1, 1) . . . c(1, j − 1) . . . c(1, N)
... − −

. . .
...

. . .
...

i − − − c(i, j − 1) . . . c(i, N)
... − − − −

. . .
...

N − − − − − c(N, N)

Table 9 Shortest Path Problem Connection matrix

in the given graph is a valid lower bound for the original problem, as it is a
solution of the relaxed problem.

4.2.1 Solution mapping. It is easy to map the optimal solution for the
relaxed problem, that is the set of arcs participating to the shortest path,
to a solution for the original problem by noting that each arc (i, j) represents
a replenishment cycle T (i, j − 1). By the definition of replenishment cycle
T (i, j − 1), δi = 1 and δt = 0, for t = i + 1, . . . , j − 1. The set of arcs in the
optimal path uniquely identifies a set of disjoint replenishment cycles, that
is a replenishment plan (assignment for δt decision variables). Furthermore
for each period t ∈ {i, . . . , j − 1} in cycle T (i, j− 1) we already showed that



Cost-based Filtering Techniques for Stochastic Inventory Control 25

all the expected closing-inventory-levels Ĩt, t ∈ {i, . . . , j − 1}, are known.
This produces a complete assignment for decision variables in our model.
The feasibility of such an assignment with respect to the original problem
can be checked by verifying that it satisfies every relaxed constraint, that
is no negative expected order quantity is scheduled.

4.2.2 Shortest path algorithm. To find a shortest path in the given graph
we use a modified Dijkstra’s algorithm that finds a shortest path in O(n2)
time, where n is the number of nodes in the graph. Details on efficient
implementations of Dijkstra’s algorithm can be found in [16]. Usually Di-
jkstra’s algorithm [16] does not apply any specific rule for labeling when
ties are encountered in sub-path lengths. This non-deterministic labeling
may produce a loss of optimal solutions if decision variable domains are
pre-processed as described in [24]. In fact pre-processing Method I in [24]
relies upon an upper-bound for optimal replenishment cycle length. When
a replenishment period i ∈ {1, ..., N} is considered, it looks for the lowest
j ∈ {i, . . . , N} after which it is no longer optimal to schedule the next re-
plenishment. This means that, if more policies that share the same expected
cost exist, only the one that has shorter, and obviously more, replenishment
cycles will be preserved by Method I. Therefore, when the algorithm is im-
plemented in this filtering approach, we need to introduce a specific rule for
node selection in order to make sure that, when more optimal policies exist,
our modified algorithm will always find the one that has the highest possi-
ble number of replenishment cycles (i.e. the shortest path with the highest
possible number of arcs). Since there is a complete order among nodes, we
can easily implement this rule in the labeling action by always choosing as
ancestor the node that minimizes the distance from the source and that has
the highest index. The pseudo-code for the proposed modified Dijkstra’s
algorithm can be found in Appendix 7.3.

4.3 Cost-based filtering

So far we described a known possible way to relax the CP model proposed
in Section 2. We also proposed a novel Dijkstra’s algorithm implementa-
tion that makes the relaxation in [19] compatible with the pre-processing
methods in [24]. The relaxation described can be seen as a state space relax-
ation, where we define a new problem with a number of states polynomially
bounded in the original problem input. A lower bound for the optimal solu-
tion cost is then obtained by solving a Shortest Path Problem in the state
space graph. We will now show a novel approach to exploit this lower bound
in an optimization oriented global constraint. A detailed discussion on state
space relaxation and optimization oriented global constraints can be found
in [10].

4.3.1 Partial assignments for δk decision variables



26 S. A. Tarim et al.

4.3.2 δk = 0: Let us consider the graph built as described in Tarim’s relax-
ation. If in a given partial solution a decision variable δk, k ∈ {1, . . . , N} has
been already set to 0, then we can remove from the graph every inbound arc
to node k and every outbound arc from node k. This prevents node k from
being part of the shortest path, and hence prevents period k from being
a replenishment period. By applying Dijkstra’s algorithm to this modified
graph the cost of the shortest path will provide a valid lower bound for the
cost of an optimal solution incorporating the decision δk = 0. Furthermore,
as seen above, Dijkstra’s algorithm will also provide an assignment for de-
cision variables. If this assignment is feasible for the original problem, then
it is optimal with the respect to the decision δk = 0.

4.3.3 δk = 1: On the other hand, if δk = 1 then we split the planning hori-
zon into two at period k, thus obtaining two new subproblems {i, . . . , k−1}
and {k, . . . , j}. We can then separately solve these two subproblems by ap-
plying Tarim’s relaxation to each of them. Note that the action of splitting
the time span is itself a relaxation; in fact it means overriding constraints
(7,8) for t = k. It follows that the overall cost obtained by summing the
cost of the solution found for each relaxed subproblem is again a valid lower
bound for an optimal solution of the original problem that incorporates the
decision δk = 1. Furthermore both the subproblems identified, {i, . . . , k−1}
and {k, . . . , j}, when relaxed and solved as explained above, will not only
provide a cost component, but also a partial assignment for the original
problem — that is an assignment for δt and Ĩt variables, respectively for
t ∈ {i, . . . , k − 1} and t ∈ {k, . . . , j} — as seen above. A complete assign-
ment, feasible or infeasible, for the original problem can be obtained by
merging these two partial assignments, that is by considering the complete
assignment over {i, . . . , j} defined by the solutions of the two subproblems,
that respectively assign values to decision variables in {i, . . . , k − 1} and in
{k, . . . , j}. In the following paragraph we characterize when this assignment
is feasible for the original problem.

Let A denote the subproblem {i, . . . , k − 1} and B the subproblem
{k, . . . , j}. We now focus on subproblem A but the reasoning can be re-
peated for subproblem B. We apply Tarim’s relaxation to subproblem A,
possibly taking into account decisions δt = 0, for t = {i, . . . , k − 1}, and we
solve it by means of dynamic programming. The solution for this relaxed
subproblem provides a cost cA and an assignment for decision variables δt

and Ĩt, for t = {i, . . . , k − 1}. For each period t = {i, . . . , k − 1} it is easy
to verify if the solution found satisfies every relaxed inventory conservation
constraint between replenishment cycles. In fact we just need to check that
a negative order quantities is never scheduled. If every relaxed constraint
is satisfied, the computed cost cA and the decision variable assignment are
optimal with respect to subproblem A, otherwise the computed cost cA

provides a lower bound for the cost of an optimal policy with respect to
subproblem A.



Cost-based Filtering Techniques for Stochastic Inventory Control 27

Trivially if the assignment found for subproblem A (B) does not satisfy
some relaxed constraints, it follows that the overall cost cA + cB is a lower
bound for the cost of the optimal solution for the original problem over
{i, . . . , j} with respect to the decision δk = 1.

Let us suppose instead that the assignments found for subproblems A
and B satisfy every relaxed constraint. The costs cA and cB are therefore
optimal with respect to subproblems A and B. We now want to characterize
when the complete assignment defined by the assignment for decision vari-
ables in {i, . . . , k − 1} (solution of subproblem A) and the assignment for
decision variables in {k, . . . , j} (solution of subproblem B) is feasible and
optimal with respect to the original problem over {i, . . . , j} when δk = 1.

4.3.4 Feasible complete assignment, δk = 1: Let Rk = Ĩk + d̃k denote
the required minimum opening inventory level in period k according to
the solution found for subproblem B. When the assignments for the two
subproblems are both feasible with respect to the original model, that is
they do not schedule negative order quantities, and the condition

Ĩk−1 ≤ Rk (45)

is satisfied (Fig. 5), the overall assignment over {i, . . . , j} defined by the

Ik

Rk

~

k-1i k j

i jk

dk=1

k-1

subproblem A, E{TC} = cA subproblem B, E{TC} = cB

merged solution A|B, E{TC} = cA+cB

Fig. 5 Condition 45 is met between the solution of subproblem A and that of
subproblem B. The overall solution defined by the assignment for decision vari-
ables in {i, . . . , k− 1} (solution of subproblem A) and the assignment for decision
variables in {k, . . . , j} (solution of subproblem B) is feasible and optimal with
respect to the original problem over {i, . . . , j}

assignment for decision variables in {i, . . . , k − 1} (solution of subproblem
A) and the assignment for decision variables in {k, . . . , j} (solution of sub-
problem B) is feasible and optimal for the original problem over {i, . . . , j}
when δk = 1. It directly follows that the overall cost cA + cB, obtained
by summing the cost of each subproblem solution, is also optimal for the
original problem over {i, . . . , j} when δk = 1.



28 S. A. Tarim et al.

4.3.5 Infeasible complete assignment, δk = 1: Otherwise, when condition
(45) is not met (Fig. 6), the cost cA + cB is a lower bound for the optimal
solution cost of the original problem over {i, . . . , j} when δk = 1.

subproblem A, E{TC} = cA

Ik

Rk

~

k-1i k j

i jk

dk=1

k-1

subproblem B, E{TC} = cB

merged solution A|B, E{TC} = cA+cB

Fig. 6 Condition 45 is not met between the solution of subproblem A and that
of subproblem B. The overall solution defined by the assignment for decision
variables in {i, . . . , k − 1} (solution of subproblem A) and the assignment for
decision variables in {k, . . . , j} (solution of subproblem B) is not feasible with
respect to the original problem over {i, . . . , j}. The computed cost cA + cB is a
lower bound for the optimal solution cost of the original problem over {i, . . . , j}

We have shown how to act when each of the possible cases, δk = 1 and
δk = 0, is encountered. It is now possible at any point of the search in the
decision tree to apply this relaxation and compute a valid lower bound or
a solution that is optimal with respect to the given partial assignment.

4.3.6 Partial assignments for Ĩk decision variables It is also possible to
extend this cost-based filtering method by considering not only the δk vari-
able assignments, but also the Ĩk variable assignments. In fact, when the
cost of a given replenishment cycle T (i, j − 1) (arc (i, j) in the matrix) is
computed, it is also possible to consider the current assignments for the
closing inventory levels Ĩk in the periods of this cycle. Since all the closing
inventory levels of the periods within a replenishment cycle are linearly de-
pendent (δk = 0 → Ĩk + d̃k − Ĩk−1=0), given an assignment for a decision
variable Ĩk we can easily compute all the other closing inventory levels in
the cycle by using Ĩk − d̃k − Ĩk−1 = 0, which is the inventory conservation
constraint when no order is placed in period k. When the closing inventory
levels in a replenishment cycle T (i, j − 1) are known it is easy to compute
the overall cost associated to this cycle as seen above. We can therefore
associate to arc (i, j) the highest cost that is produced by a current assign-
ment for the closing inventory levels Ĩk, k ∈ {i, . . . , j − 1}. If no variable
has been assigned yet, we simply use the minimum possible cost c(i, j − 1)
which we defined above.



Cost-based Filtering Techniques for Stochastic Inventory Control 29

5 Experimental results

This section is organized as follows. Firstly we will consider a particularly
hard instance built by adding random elements on a seasonal demand. We
will use this instance to gauge the effectiveness of each filtering method
we proposed. Furthermore we will also analyze how the proposed meth-
ods perform when they are combined together. Secondly we will compare
our method with the state-of-the-art results presented in [24]. Thirdly we
will present extensive tests to show the effectiveness of our domain filter-
ing methods with respect to a pure CP approach enhanced with the pre-
processing methods presented by Tarim and Smith.

All experiments presented here were performed on an Intel(R) Cen-
trino(TM) CPU 1.50GHz with 500Mb RAM. The solver used for our test
is Choco [13], an open-source solver developed in Java.

The heuristic used for the selection of the variable is the usual min-
domain/max-degree heuristic. Decision variables have different priorities in
the heuristic: the δk have higher priority than the Ĩk. The value selection
heuristic chooses values in increasing order of size.

In what follows we will refer to the filtering methods presented as follows:
Method I (Section 3.1), Method II (Section 3.2), Method III (Section 4).
Since Method II can be in principle applied in conjunction with any sound
domain reduction method, in all the experiments here presented the domain
reduction applied with Method II is pre-processing method II presented
in Tarim and Smith [24]. We only apply one pre-processing method since
experimentally no improvement was noticed in term of explored nodes and
running time when both the methods were used in conjunction as shown in
[24].

5.1 Effectiveness of filtering methods

A single problem is considered and the period demands are listed in Figure
7. In each test we assume an initial null inventory level and a normally

75

5

100

3

75

50

25

7
0

7

25

50

75

18

100
93

75

50

5 7
0

7

25

50
45

93
100

93

45
50

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

period

e
x
p

e
c
te

d
 d

e
m

a
n

d

Fig. 7 Expected demand values

distributed demand for every period with a coefficient of variation σt/d̃t =



30 S. A. Tarim et al.

No Filt. Method I Method II Method III Combined
α a Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

0
.9

5 40 127 1.85 96 1.64 96 1.43 120 1.30 70 1.12
80 2994 30 1449 16 2586 23 82 1.02 63 0.97
160 – – – – – – 133 1.81 108 1.65
320 – – – – – – 4 0.09 4 0.09

0
.9

9 40 261 3.27 198 4.24 202 2.52 253 2.84 165 2.57
80 1234 11 611 7.54 1138 10.7 317 2.66 221 2.61
160 – – – – – – 168 2.15 84 1.31
320 – – – – – – 1 0.09 1 0.10

Table 10 Filtering methods compared in terms of explored nodes (“Nod”) and
run time in seconds (“Sec”). Symbol “–” means that an optimal solution has not
be found within the given limit of 60 secs

1/3 for each t ∈ {1, . . . , N}, where N is the length of the planning horizon
considered. The ordering cost ranges in the following set {40, 80, 160, 320}.
The holding cost is 1. Our tests consider two different service levels α = 0.95
(zα=0.95 = 1.645) and α = 0.99 (zα=0.99 = 2.326). In Table 10 we compare
the effectiveness of each filtering method, when used to augment the CP
model enhanced by the pre-processing methods in [24]. The performances
achieved by the CP approach enhanced with the pre-processing methods are
shown in column “No Filt.”. The performances achieved when the filtering
methods are all added to the model are shown in column “Combined”.
In the presented table we can see that Method I and Method II do not
perform well when they are used alone. This is again due to the lack of
good bounds during the search process. Method III instead is very effective
even when it is used alone and especially for high ordering costs, when
the contribution of the filtering due to the computed bounds is critical.
Nevertheless when the three methods are combined for all the eight instances
presented performances are improved both in terms of running time and
explored nodes.

5.2 Comparison with state-of-the-art results

In this section we compare results obtained with our approach with the
state-of-the-art results presented in [24].

A single problem is considered and the period demands are generated
from seasonal data with no trend: d̃t = 50[1+ sin(πt/6)]. In addition to the
“no trend” case (P1) we also consider three others:

(P2) positive trend case, d̃t = 50[1 + sin(πt/6)] + t
(P3) negative trend case, d̃t = 50[1 + sin(πt/6)] + (52 − t)
(P4) life-cycle trend case, d̃t = 50[1 + sin(πt/6)] + min(t, 52 − t)

In each test we assume a coefficient of variation σt/d̃t = 1/3 for each t ∈
{1, . . . , N}, where N is the length of the considered planning horizon. As
in Tarim and Smith tests are performed using two different ordering cost



Cost-based Filtering Techniques for Stochastic Inventory Control 31

a = 400 a = 800
Filt. Tarim & Smith Filt. Tarim & Smith

Horizon Nod Sec Nod Sec Nod Sec Nod Sec

P1

50 1 0.30 – – 3 0.10 – –
48 1 0.09 – – 3 0.10 30795352 10100
46 1 0.09 43721791 12200 3 0.09 8763280 2840
44 1 0.09 36976882 9700 3 0.01 6896956 2110

P2

44 1 0.09 – – 4 0.10 – –
42 1 0.09 – – 4 0.10 60884565 15600
40 1 0.29 – – 4 0.17 22281926 5590
38 1 0.09 35848309 6820 4 0.10 7978185 1880

P3

42 1 0.09 – – 3 0.10 – –
40 1 0.09 – – 3 0.10 55138095 13300
38 1 0.09 61438266 11300 3 0.10 19600638 4510
36 1 0.09 24256921 4150 3 0.10 6501541 1510

P4

44 1 0.09 – – 4 0.09 – –
42 1 0.10 – – 4 0.11 39668737 10700
40 1 0.09 – – 4 0.10 18004555 4690
38 1 0.09 32076069 6680 4 0.09 6093007 1520

Table 11 Comparison with the state-of-the-art results in [24] (“Tarim & Smith”).
“Filt.” indicates that Tarim & Smith’s model is augmented with our filtering
methods. Symbol “–” means that an optimal solution has not been found within
the given limit of 5 hours

values a ∈ {400, 900}. The holding cost used in these tests is h = 1 per unit
per period. Our tests consider a service levels α = 0.95 (zα=0.95 = 1.645).

In Table 11 we can observe the improvement of several orders of mag-
nitude brought by our domain filtering techniques. Experiments in [24] em-
ployed OPL Studio 3.7 (ILOG Solver 6.0, ILOG Cplex 9.0) used with its
default settings. Note that the hardware used for these experiments is com-
parable to the one used for ours.

5.3 More extensive tests

In this section we show the effectiveness of our approach by comparing
the computational performance of the state-of-the-art CP model with that
obtained by our approach.

We refer again to (P1), (P2), (P3) and (P4) as defined above. We per-
formed tests using four different ordering cost values a ∈ {40, 80, 160, 320}
and two different σt/d̃t ∈ {1/3, 1/6}. The planning horizon length takes
even values in the range [24, 50] when the ordering cost is 40 or 80 and
[14, 24] when the ordering cost is 160 or 320. The holding cost used in these
tests is h = 1 per unit per period. Our tests also consider two different
service levels α = 0.95 (zα=0.95 = 1.645) and α = 0.99 (zα=0.99 = 2.326).

In our test results a time of 0 means that the Dijkstra algorithm proved
optimality at the root node. A header “Filt.” means that we are applying
our cost-based filtering methods, and “No Filt.” means that we solve the
instance using only the CP model and the pre-processing methods. Tables
12, 13, 14 and 15 compare the performance of the state-of-the-art CP model,
implemented in Choco, with that of our new methods.



3
2

S
.
A

.
T
a
rim

et
a
l.

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 28 0.9 106 2.9 38 0.8 249 6.4 34 0.7 574 16 10 0.1 192 6.4
42 28 0.6 95 2.8 38 0.8 233 5.9 34 0.7 582 14 10 0.1 196 5.4
44 29 0.6 133 4.9 47 1.1 266 8.3 35 0.7 884 25 11 0.2 285 9.0
46 30 0.6 192 7.8 64 1.6 484 18 45 1.0 3495 120 13 0.2 813 30
48 43 0.9 444 19 72 2.1 1024 41 53 1.1 5182 190 13 0.2 1208 47
50 43 1.0 444 20 72 2.2 1024 44 53 1.2 4850 200 13 0.2 1208 51

80

40 43 0.8 1742 78 13 0.2 557 15 16 0.2 9316 300 16 0.3 11276 440
42 43 0.9 1703 60 13 0.2 530 13 17 0.3 17973 530 17 0.3 22291 690
44 48 1.1 4810 210 14 0.2 980 25 19 0.4 38751 1400 20 0.4 50805 1600
46 49 1.3 6063 340 16 0.3 2122 78 20 0.3 103401 4300 20 0.4 111295 4100
48 67 2.0 20670 1400 17 0.3 5284 210 21 0.4 237112 12000 21 0.5 321998 15000
50 67 2.2 18938 1300 17 0.4 5284 230 21 0.4 251265 13000 21 0.5 358174 17000

160

14 1 0.0 141 3.0 23 0.1 156 2.5 1 0.0 112 2.6 1 0.0 116 2.4
16 1 0.0 277 9.0 35 0.2 182 5.1 1 0.0 238 6.7 1 0.0 235 6.8
18 1 0.0 673 18 41 0.4 393 10 1 0.0 799 23 1 0.0 603 15
20 1 0.0 3008 81 51 0.6 1359 21 1 0.0 2887 86 1 0.0 2820 75
22 1 0.0 10620 260 57 0.6 7280 70 1 0.0 14125 380 1 0.0 10739 270
24 1 0.0 61100 1500 153 1.8 31615 310 1 0.0 70996 1800 1 0.0 59650 1500

320

14 1 0.0 149 4.0 1 0.0 181 4.1 1 0.0 109 3.0 1 0.0 128 3.0
16 1 0.0 335 11 1 0.0 361 12 1 0.0 246 8.7 1 0.0 284 9.3
18 1 0.0 813 27 1 0.0 831 27 1 0.0 764 26 1 0.0 700 24
20 1 0.0 2602 93 1 0.0 2415 81 1 0.0 2114 78 1 0.0 2291 82
22 1 0.0 7434 260 1 0.0 7416 260 1 0.0 7006 260 1 0.0 6608 230
24 1 0.0 49663 1600 1 0.0 49299 1500 1 0.0 39723 1400 1 0.0 43520 1500

Table 12 Test set P1



C
o
st-b

a
sed

F
ilterin

g
T
ech

n
iq

u
es

fo
r

S
to

ch
a
stic

In
v
en

to
ry

C
o
n
tro

l
3
3

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 4 0.1 7 0.1 7 0.1 8 0.1 12 0.2 23 0.4 4 0.1 12 0.2
42 4 0.0 7 0.1 7 0.2 8 0.1 12 0.2 23 0.4 4 0.1 10 0.1
44 4 0.1 7 0.1 7 0.2 8 0.1 12 0.2 23 0.5 4 0.1 10 0.2
46 4 0.1 7 0.1 7 0.3 8 0.2 12 0.2 23 0.5 4 0.1 10 0.2
48 4 0.1 7 0.2 7 0.2 8 0.2 12 0.3 23 0.5 4 0.1 10 0.2
50 4 0.1 7 0.2 7 0.2 8 0.2 12 0.3 23 0.6 4 0.1 10 0.2

80

40 18 0.3 4592 14 15 0.3 275 8.3 37 0.7 2565 63 32 0.7 1711 44
42 18 0.4 4866 13 15 0.4 283 6.7 37 0.8 3027 67 32 0.7 2043 47
44 18 0.4 5091 15 15 0.4 280 7.9 40 0.9 6024 160 37 0.9 4299 120
46 23 0.5 5291 45 17 0.5 545 16 47 1.3 14058 410 39 1.1 10311 290
48 23 0.6 5544 51 17 0.5 545 17 47 1.4 14058 440 39 1.2 10311 310
50 23 0.6 5850 51 17 0.5 545 18 47 1.5 14079 470 39 1.3 10347 330

160

14 1 0.0 166 3.6 19 0.1 84 1.0 1 0.0 148 2.9 1 0.0 171 3.4
16 30 0.2 154 4.3 19 0.1 65 1.2 1 0.0 329 8.6 1 0.0 383 10
18 58 0.4 485 11 34 0.3 174 2.9 1 0.0 948 23 1 0.0 1056 27
20 37 0.3 2041 35 37 0.4 707 7.9 1 0.0 4228 110 1 0.0 4730 120
22 48 0.4 9534 120 32 0.3 2954 28 1 0.0 20438 500 1 0.0 23675 530
24 65 0.7 30502 360 41 0.4 7787 87 1 0.0 71514 1800 1 0.0 83001 1900

320

14 1 0.0 238 5.6 1 0.0 278 6.4 1 0.0 166 3.7 1 0.0 191 4.5
16 1 0.0 505 17 1 0.0 423 13 1 0.0 387 11 1 0.0 452 14
18 1 0.0 1447 49 1 0.0 1208 40 1 0.0 1100 34 1 0.0 1268 40
20 1 0.0 4792 156 1 0.0 4219 150 1 0.0 3992 130 1 0.0 4476 150
22 1 0.0 20999 660 1 0.0 20417 610 1 0.0 15983 520 1 0.0 18663 600
24 1 0.0 102158 3200 1 0.0 90398 2600 1 0.0 75546 2500 1 0.0 88602 2800

Table 13 Test set P2



3
4

S
.
A

.
T
a
rim

et
a
l.

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 2 0.0 5 0.0 2 0.0 4 0.0 6 0.1 9 0.2 2 0.0 5 0.0
42 2 0.0 5 0.0 2 0.0 4 0.0 6 0.1 9 0.2 2 0.0 5 0.0
44 3 0.0 7 0.1 3 0.0 6 0.1 7 0.1 14 0.3 3 0.0 7 0.1
46 4 0.1 15 0.3 6 0.1 13 0.3 11 0.2 40 1.1 4 0.1 14 0.3
48 4 0.1 15 0.3 6 0.1 13 0.3 14 0.3 56 1.8 4 0.1 25 0.6
50 4 0.1 15 0.3 6 0.2 13 0.3 14 0.4 56 1.9 4 0.1 25 0.5

80

40 22 0.4 349 10 6 0.1 55 1.2 19 0.3 722 19 9 0.2 310 8.7
42 22 0.4 354 8.6 6 0.1 53 1.2 22 0.4 1436 35 9 0.2 315 7.5
44 24 0.6 571 17 7 0.1 88 2.4 27 0.6 3461 110 13 0.3 1053 31
46 29 0.8 2787 90 9 0.2 258 8.1 36 0.9 10612 360 16 0.4 2881 94
48 38 1.1 6803 240 9 0.2 385 12 47 1.3 28334 1100 22 0.6 7790 280
50 38 1.1 6575 240 9 0.2 385 13 47 1.6 26280 1100 22 0.6 7371 280

160

14 7 0.0 23 0.2 8 0.0 16 0.1 15 0.1 53 0.6 9 0.0 29 0.3
16 7 0.0 19 0.2 8 0.0 18 0.2 15 0.1 52 0.8 9 0.0 26 0.4
18 9 0.1 42 0.5 10 0.0 30 0.3 21 0.1 149 2.2 12 0.1 87 1.2
20 11 0.1 137 1.3 11 0.1 70 0.7 25 0.2 512 6.1 16 0.2 310 3.5
22 21 0.2 376 4.0 21 0.2 221 2.3 31 0.4 1848 17 17 0.2 938 9.4
24 32 0.4 995 11 30 0.4 543 6.3 43 0.5 4784 54 23 0.2 2471 30

320

14 1 0.0 253 4.2 1 0.0 232 3.8 1 0.0 310 4.4 1 0.0 217 3.4
16 1 0.0 518 10 1 0.0 518 10 1 0.0 707 13 1 0.0 465 8.5
18 1 0.0 1475 35 1 0.0 1170 26 1 0.0 1995 43 1 0.0 1416 33
20 1 0.0 5342 140 1 0.0 4059 95 1 0.0 6678 160 1 0.0 5232 140
22 1 0.0 21298 550 1 0.0 18065 440 1 0.0 25522 640 1 0.0 21756 560
24 1 0.0 86072 2300 1 0.0 70969 1800 1 0.0 101937 2800 1 0.0 91358 2400

Table 14 Test set P3



C
o
st-b

a
sed

F
ilterin

g
T
ech

n
iq

u
es

fo
r

S
to

ch
a
stic

In
v
en

to
ry

C
o
n
tro

l
3
5

σt/dt = 1/3 σt/dt = 1/6
α = 0.95 α = 0.99 α = 0.95 α = 0.99

Filt. No Filt. Filt. No Filt. Filt. No Filt. Filt. No Filt.
a N Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec Nod Sec

40

40 5 0.1 21 0.3 10 0.2 24 0.5 25 0.5 89 1.8 5 0.1 33 0.5
42 5 0.1 18 0.3 10 0.2 21 0.4 25 0.5 91 2.0 5 0.1 31 0.5
44 6 0.1 32 0.7 11 0.2 37 0.9 28 0.6 152 3.6 6 0.1 51 1.0
46 7 0.1 83 2.0 16 0.4 93 2.4 42 1.0 474 12 7 0.1 126 2.8
48 7 0.1 83 2.2 16 0.4 93 2.6 50 1.2 735 20 7 0.2 188 4.5
50 7 0.1 83 2.3 16 0.4 93 2.8 50 1.4 735 22 7 0.2 188 4.9

80

40 39 0.7 1372 39 16 0.4 433 12 40 0.7 5098 130 33 0.7 2133 54
42 39 0.8 1673 39 16 0.4 438 10 46 1.0 11452 270 33 0.8 2513 58
44 43 1.0 2907 74 17 0.5 716 22 56 1.4 27184 780 46 1.3 8776 240
46 51 1.3 13306 380 21 0.6 2178 73 75 1.9 77332 2600 55 1.6 22582 690
48 69 1.8 32709 1000 21 0.6 3223 120 100 2.8 202963 7500 73 2.2 60115 2000
50 69 1.9 31547 1100 21 0.7 3223 130 100 2.9 191836 7600 73 2.4 58171 2100

160

14 1 0.0 166 3.6 19 0.1 84 1.5 1 0.0 148 3.0 1 0.0 171 3.4
16 30 0.2 154 4.3 19 0.1 65 1.6 1 0.0 329 8.7 1 0.0 383 10
18 58 0.4 485 11 34 0.3 174 4.0 1 0.0 948 24 1 0.0 1056 27
20 37 0.3 2041 34 37 0.4 707 11 1 0.0 4228 110 1 0.0 4730 120
22 48 0.4 9534 120 32 0.3 2954 40 1 0.0 20438 510 1 0.0 23675 540
24 65 0.7 30502 360 41 0.4 7787 130 1 0.0 71514 1800 1 0.0 83001 1900

320

14 1 0.0 238 5.5 1 0.0 278 8.7 1 0.0 166 3.7 1 0.0 191 4.5
16 1 0.0 505 17 1 0.0 423 17 1 0.0 387 11 1 0.0 452 13
18 1 0.0 1447 48 1 0.0 1208 57 1 0.0 1100 33 1 0.0 1268 40
20 1 0.0 4792 160 1 0.0 4219 200 1 0.0 3992 130 1 0.0 4476 150
22 1 0.0 20999 660 1 0.0 20417 860 1 0.0 15983 520 1 0.0 18663 600
24 1 0.0 102158 3200 1 0.0 90398 3700 1 0.0 75546 2700 1 0.0 88602 2800

Table 15 Test set P4



36 S. A. Tarim et al.

When a=320, and often when a=160, the Dijkstra algorithm proves op-
timality at the root node so the other reduction methods are not exploited
during search. This is a direct consequence of the fact that under high order-
ing cost values it is extremely rare that a solution for the relaxed problem
violates some inventory conservation constraint. In fact since placing an or-
der is expensive the optimal solution will try to cover several periods with
a single order. Such an order requires a high order-up-to-level that typically
exceeds the expected closing-inventory-level of the previous replenishment
cycle. Therefore the solution of the relaxed problem solved by means of dy-
namic programming is usually feasible with respect to the original problem.

When a ∈ {40, 80} Dijkstra is often unable to prove optimality at the
root node, since the solution of the relaxed problem can easily violate in-
ventory conservation constraints in the original problem under low ordering
costs. This is due to the fact that the order-up-to-level for a replenishment
cycle may easily be lower than the buffer stock levels held at the end of the
former cycle. The main contribution brought by our relaxation in this situa-
tion consists in computing lower bounds during the search. Therefore in this
case the domain reduction achieved with the other two filtering methods de-
veloped is critical in reducing the number of feasible values in the domain of
expected closing-inventory-level decision variables. As shown in the experi-
ments our approach can easily solve instances with up to 50 periods, both in
terms of explored nodes and run time, for every combination of parameters
we considered. In contrast, for the CP model both the run times and the
number of explored nodes grow exponentially with the number of periods,
and the problem becomes intractable for instances of significant size. In all
cases our method explores fewer nodes than the pure CP approach, ranging
from an improvement of one to several orders of magnitude. Apart from a
few trivial instances on which both methods take a fraction of a second, this
improvement is reflected in the run times.

6 Conclusions

It was previously shown [24] that CP is more natural than mathematical
programming for expressing constraints for lot-sizing under the (Rn, Sn)
policy, and leads to more efficient solution methods. This paper further
improves the efficiency of the CP-based approach by exploiting three forms
of cost-based filtering. The wide test bed considered shows the effectiveness
of our approach under many different parameter configurations and demand
trends. The improvement reaches several orders of magnitude in almost
every instance we analyzed. We are now able to solve to optimality problems
of a realistic size, in times of less than a second and often without search,
since the bounds produced by our DP relaxation proved to be very tight in
a large amount of instances. In future work we aim to extend our model to
new features such as lead-time for orders and capacity constraints for the
inventory.



Cost-based Filtering Techniques for Stochastic Inventory Control 37

7 Appendix

7.1 Considering a unit production cost p

The stochastic programming formulation given can be extended to consider
a unit production cost p as follows

min E{TC} =

∫

d1

∫

d2

. . .

∫

dN

N∑

t=1

(aδt + h · max(It, 0) + p · Qt)

g1(d1)g2(d2) . . . gN (dN )d(d1)d(d2) . . . d(dN )

(46)

subject to Constraint (2), (3), (4) and (5), for t = 1, . . . , N . The given
objective function (46) can be rewritten as

E{TC} = p · K + min

∫

d1

∫

d2

. . .

∫

dN

p · IN +

N∑

t=1

(aδt + h · max(It, 0))

g1(d1)g2(d2) . . . gN(dN )d(d1)d(d2) . . . d(dN )

(47)

where K =
∫

d1

∫
d2

. . .
∫

dN

∑N
t=1 dt g1(d1)g2(d2) . . . gN (dN )d(d1)d(d2) . . . d(dN ).

For further details on this transformation the reader may refer to [22,15],
where a similar transformation is described in details for the stochastic in-
ventory control problem under a penalty cost scheme. Intuitively, objective
function (47) shows that the effect of the unit production cost p can be
decomposed in a constant factor p · K and in a variable factor p · IN that
depends on the very last closing-inventory-level planned. The deterministic
equivalent CP approach is

E{TC} = p

N∑

t=1

d̃t + min

[
p · ĨN +

N∑

t=1

(
aδt + hĨt

)]
(48)

subject to Constraint (7), (8), (9) and (10), for t = 1 . . . N . It directly follows
that the variable effect of the unit production cost p is reflected only on the
cost of the very last replenishment cycle scheduled. The cost-based filtering
method presented in Section 3.2 is independent of the considerations pre-
sented here. It remains sound under a unit production cost if the associated
pre-processing method can consider this cost. The pre-processing methods
in [24] and the cost-based filtering method in Section 3.1 can be extended
to consider a unit production cost p by replacing the definition given in Eq.
(15) for the cost c(i, j) of a replenishment cycle T (i, j) as follows:

ĉ(i, j) =

{
c(i, j) if j 6= N
p · b(i, j) + c(i, j) if j = N.

(49)

The cost-based filtering in Section 4 in a similar manner applies to the
case where a unit production cost p is considered if, when the connection
matrix for the graph constructed is built, c(i, j) is replaced by ĉ(i, j) as just
described.



38 S. A. Tarim et al.

7.2 Proof: Replenishment cycle length bound

By using the definition of c(i, j) we can rewrite Eq. 17 as

a + h(k − i + 1)b(i, k) + h

k∑

t=1

(t − i)d̃t + a + h(j − k + 1)b(k + 1, j + 1)+

h

j+1∑

t=k+1

(t − k − 1)d̃t ≤ a + h(j − i + 2)b(i, j + 1) + h

j+1∑

t=i

(t − i)d̃t

(50)

which can be simplified to

a

h
−

j+1∑

t=k+1

(k + 1 − i)d̃t ≤ (j − k + 1) [b(i, j + 1) − b(k + 1, j + 1)] +

(k − i + 1) [b(i, j + 1) − b(i, k)] .

(51)

We now want to prove that if p > j + 1, then ∃k + 1 ∈ {i + 1, j} s.t.
c(i, k) + c(k + 1, p) ≤ c(i, p) ∧ b(i, k) ≤ R(k + 1, p). We can rewrite this
condition as we did before and therefore obtain an expression similar to Eq.
51, that is

a

h
−

p∑

t=k+1

(k+1−i)d̃t ≤ (p−k) [b(i, p) − b(k + 1, p)]+(k−i+1) [b(i, p) − b(i, k)] .

(52)
We now subtract both the left and the right term of Eq. 51 from Eq. 52.
Thus we get

−

p∑

t=j+2

(k + 1 − i)d̃t + (j − k + 1) [b(i, j + 1) − b(k + 1, j + 1)] +

(k − i + 1) [b(i, j + 1) − b(i, k)] ≤ (p − j − 1) [b(i, p) − b(k + 1, p)] +

(j − k + 1) [b(i, p) − b(k + 1, p)] + (k − i + 1) [b(i, p) − b(i, k)] ,

(53)

by omitting the term −
∑p

t=j+2(k + 1 − i)d̃t to save space and rearranging
the other terms we obtain

(j − k + 1) [b(k + 1, p) − b(k + 1, j + 1)] ≤

(j − i + 2) [b(i, p) − b(i, j + 1)] + (p − j − 1) [b(i, p) − b(k + 1, p)] ,
(54)

we change name to the coefficients

A · b(k + 1, p) − A · b(k + 1, j + 1) ≤

B · b(i, p) − B · b(i, j + 1) + C · b(i, p) − C · b(k + 1, p)
(55)

and finally

(A+C) ·b(k+1, p)−A ·b(k+1, j+1) ≤ (B+C) ·b(i, p)−B ·b(i, j+1), (56)



Cost-based Filtering Techniques for Stochastic Inventory Control 39

where A + C = p − k and B + C = p − i + 1. Reinserting the omitted
term we obtain Eq. 18. Since b(i, k) ≤ R(k + 1, j + 1), it also follows that
b(i, k) ≤ R(k + 1, p). Therefore, under the given conditions, it is never
optimal to cover the span {i, . . . , p}, p > j by using a single replenishment
cycle T (i, p). Hence the optimum period k + 1 for the next replenishment
after the one scheduled in period i lies in the span {i + 1, . . . , j + 1} and it
cannot be after j + 1. ⊓⊔

7.3 Modified Dijkstra’s Shortest Path Algorithm

We will use a modified implementation of Dijkstra’s Shortest Path Algo-
rithm in order to enhance performances and make our relaxation compat-
ible with Method I in [24]. Dijkstra’s strategy relies on the following well
known Shortest Path Theorem, which holds for any directed acyclic graph

Theorem 3 (Shortest Path Theorem) If P is the shortest path from
node u to node v and if P passes through node z, then P is made up by the
shortest path Q1 from u to z and by the shortest path Q2 from z to v.

Since we are solving a problem that implies a one-way temporal feasibility,
as Wagner and Whitin notice in [25], half of our connection matrix will be
set to ∞. Therefore any instance of size N can be solved in N(N + 1)/2
steps taking this fact into account during the computation as we will see.

Let G be a directed acyclic graph 〈V, A〉, where V is a set of N numbered
vertices {v1, ..., vN} and A is a set of arcs among these nodes. Let W be
a square matrix representing the cost related to each arc that appears in
A. Let v1 be the source we are computing shortest paths from. Let d[vi] be
a label for any vertex vi ∈ V , and a[vi] the index of the ancestor of node
vi ∈ V in the shortest path. At the end of the computation d[vi] represents
the shortest distance from the source v1 to the vertex vi. It is also possible
to find every vertex in the shortest path from vi to v1 following in a re-
cursive fashion the chain of indexes that starts with a[vi]. In particular we
will be interested in the shortest path from vN to v1, which is the one that
covers our planning horizon. The complete code is shown in Algorithm 1.
In order to reduce steps to N(N + 1)/2 we introduced j > i as a precon-
dition for the execution of Procedure Relax(vi,vj ,W ). Notice also that in
order to make the algorithm compatible with filtering methods in [24] some
checks on vertex indexes have been introduced. In particular in Procedure
Relax(vi,vj ,W ) when two or more paths exist with the same distance from
v1 we always choose the ancestor vi that has the highest index i. The rea-
son we do this is related to the way pre-processing Method I in [24] filters
values in decision variables domain. In fact, when a replenishment period i,
i ∈ {1, ..., N} is considered, such a method looks for the lowest j s.t. j ≥ i
after which it is not longer optimal to schedule the next replenishment.
This means that, if more policies that share the same expected cost exist,
only the one that has shorter, and obviously more, replenishment cycles



40 S. A. Tarim et al.

will be preserved by Method I, while values that are feasible with respect
to other policies equally costly may be pruned. So we introduced the de-
scribed checks on vertex indexes in order to make sure that, when more
optimal policies exist, our modified algorithm will always find the one that
has the highest possible number of replenishment cycles (i.e. the shortest
path with the highest possible number of arcs).

Acknowledgements This work was supported by Science Foundation Ireland
under Grant No. 03/CE3/I405 as part of the Centre for Telecommunications
Value-Chain-Driven Research (CTVR) and Grant No. 00/PI.1/C075.

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press,
New York, NY, USA, 2003.

2. R. G. Askin. A procedure for production lot sizing with probabilistic dynamic
demand. AIIE Transactions, 13:132–137, 1981.

3. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer Verlag, New York, 1997.

4. J. H. Bookbinder and J. Y. Tan. Strategies for the probabilistic lot-sizing
problem with service-level constraints. Management Science, 34:1096–1108,
1988.

5. S. C. Brailsford, C. N. Potts, and B. M. Smith. Constraint satisfaction prob-
lems: Algorithms and applications. European Journal of Operational Research,
119:557–581, 1999.

6. A. Charnes and W. W. Cooper. Chance-constrainted programming. Manage-
ment Science, 6(1):73–79, 1959.

7. T. Fahle and M. Sellmann. Cost-based filtering for the constrained knapsack
problem. Annals of Operations Research, 115:73–93, 2002.

8. M. Florian, J. K. Lenstra, and A. H. G. Rinooy Kan. Deterministic production
planning: Algorithms and complexity. Management Science, 26(7):669–679,
1980.

9. F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In Pro-
ceedings of the 5th International Conference on the Principles and Practice
of Constraint Programming, pages 189–203. Springer Verlag, 1999. Lecture
Notes in Computer Science No. 1713.

10. F. Focacci and M. Milano. Connections and integrations of dynamic pro-
gramming and constraint programming. In Proceedings of the International
Workshop on Integration of AI and OR techniques in Constraint Programming
for Combinatorial Optimization Problems CP-AI-OR 2001, 2001.

11. M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

12. P. Van Hentenryck and J. P. Carillon. Generality vs. specificity: an experience
with ai and or techniques. In Proceedings of the National Conference on
Artificial Intelligence (AAAI-88), 1988.

13. F. Laburthe and the OCRE project team. Choco: Implementing a cp kernel.
Technical report, Bouygues e-Lab, France, 1994.



Cost-based Filtering Techniques for Stochastic Inventory Control 41

14. R. Rossi, S. A. Tarim, B. Hnich, and S. Prestwich. A Global Chance-
Constraint for Stochastic Inventory Systems under Service Level Constraints.
Constraints. Forthcoming.

15. R. Rossi, S. A. Tarim, B. Hnich, and S. Prestwich. Replenishment planning for
stochastic inventory systems with shortage cost. In Proceedings of the Interna-
tional Conference on Integration of AI and OR techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems CP-AI-OR 2007, pages
229–243. Springer Verlag, 2007. Lecture Notes in Computer Science No. 4510.

16. R. Sedgewick. Algorithms (2nd ed.). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1988.

17. E. A. Silver. Inventory control under a probabilistic time-varying demand
pattern. AIIE Transactions, 10:371–379, 1978.

18. E. A. Silver, D. F. Pyke, and R. Peterson. Inventory Management and Pro-
duction Planning and Scheduling. John-Wiley and Sons, New York, 1998.

19. S. A. Tarim. Dynamic Lotsizing Models for Stochastic Demand in Single and
Multi-Echelon Inventory Systems. PhD thesis, Lancaster University, 1996.
Unpublished.

20. S. A. Tarim, B. Hnich, R. Rossi, and S. Prestwich. Cost-based filtering
for stochastic inventory control. In Recent Advances in Constraints Joint
ERCIM/CoLogNET International Workshop on Constraint Solving and Con-
straint Logic Programming, CSCLP 2006, pages 169–183. Springer Verlag,
2007. Lecture Notes in Artificial Intelligence No. 4651.

21. S. A. Tarim and B. G. Kingsman. The stochastic dynamic produc-
tion/inventory lot-sizing problem with service-level constraints. International
Journal of Production Economics, 88:105–119, 2004.

22. S. A. Tarim and B. G. Kingsman. Modelling and Computing (Rn,Sn) Policies
for Inventory Systems with Non-Stationary Stochastic Demand. European
Journal of Operational Research, 174:581–599, 2006.

23. S. A. Tarim, S. Manandhar, and T. Walsh. Stochastic constraint program-
ming: A scenario-based approach. Constraints, 11(1):53–80, 2006.

24. S. A. Tarim and B. Smith. Constraint Programming for Computing Non-
Stationary (R,S) Inventory Policies. European Journal of Operational Re-
search. Forthcoming.

25. H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size
model. Management Science, 5:89–96, 1958.



42 S. A. Tarim et al.

Algorithm 1: Modified Shortest Path Algorithm

input : G, W , v1

output: d, a

begin
Initialize(G, v1)
Let d[vi] be the shortest path from vi to v1

Insert all vertices in G in a priority queue Q

while Q is not empty do
extract vi s.t. d[vi] is minimum
for each vertex vj adjacent to vi s.t. j > i do

Relax(vi, vj , W )

end

Procedure Initialize(G,v1)

begin

for each vertex vi in G do
set d[vi] to W (v1, vi)
set a[vi] to 1

set d[v1] to 0
end

Procedure Relax(vi,vj,W)

begin

if d[vj ] > d[vi] + W (vi, vj) then
set d[vj ] equal to d[vi] + W (vi, vj)
set a[vj ] equal to i

else

if d[vj ] == d[vi] + W (vi, vj) AND i > a[vj ] then
set a[vj ] equal to i

end


