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ABSTRACT

THE SIGNATURE OF COHERENT SYSTEMS AND
ITS APPLICATION TO CONSECUTIVE
k-WITHIN-m-OUT-OF-n SYSTEMS

CİHANGİR KAN

M.S. in Applied Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Assoc. Prof. Dr. Serkan Eryılmaz

June 2009

The signature of a coherent system has been found to be a useful tool in various

applications including the evaluation of reliability characteristics of systems, and

the comparison of the performance of complex systems. As a generalization of

k-out-of-n:F and consecutive k-out-of-n:F systems, the consecutive k-within-m-

out-of-n:F system consists of n linearly ordered components such that the system

fails iff there are m consecutive components which include among them at least k

failed components. In this study, the reliability properties of consecutive k-within-

m-out-of-n:F systems with exchangeable components are studied. Bounds and

approximations for the survival function are provided. Monte Carlo estimator of

system signature is obtained and used to approximate the survival function. The

results are illustrated and numerics are provided for exchangeable multivariate

Pareto distribution.

Keywords: Exchangeable lifetimes; Mean time to failure; Monte Carlo simulation;

Moving order statistics; Multivariate Pareto distribution; System signature.



ÖZ

UYUMLU SİSTEMLERİN İMZASI VE ARDIL n’DEN m
İÇİNDE k’LI SİSTEMLERE UYGULAMASI

CİHANGİR KAN

Uygulamalı İstatistik, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Yöneticisi: Doç. Dr. Serkan Eryılmaz

Haziran 2009

Uyumlu sistemlerin imzası; sistemlerin güvenilirlik karakteristiklerinin ince-

lenmesi, rekabet eden sistemlerin performanslarının karşılaştırılması gibi birçok

alanda kullanılabilen önemli bir kavram olmuştur. n’den k’lı:F ve ardıl n’den

k’lı:F sistemlerin genellemesi olan ve ardıl n’den m içinde k’lı:F sistem olarak

adlandırılan sistem n bileşenden oluşmakta ve ardışık m bileşenden en az k

tanesinin bozulması durumunda bozulmaktadır. Bu çalışmada; simetrik bağımlı

bileşenlerden oluşan ardıl n’den m içinde k’lı:F sistemlerin güvenilirlik özellikleri

çalışılmaktadır. İlgili sistemin güvenilirlik fonksiyonu için sınırlar ve yaklaşımlar

bulunmuştur. Sistem imzasının Monte Carlo tahmin edicisi elde edilmiş ve bu

tahmin edici güvenilirlik fonksiyonunun yaklaşık değerini elde etmek için kul-

lanılmıştır. Elde edilen sonuçlar çok değişkenli Pareto dağılımı ile örneklenmiştir.

Anahtar Kelimeler : Simetrik bağımlı yaşam zamanları; Monte Carlo

simülasyonu; Hareketli sıra istatistikleri; Çok değişkenli Pareto dağılımı; Sistem

imzası.
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for giving me life in the first place, for educating me, and for their unconditional

support. I hope that my thesis will always be useful and serve the mankind at

its best.

v



To my family

vi



Contents

1 Introduction 1

2 The signature of coherent systems 6

2.1 Signature of consecutive k-out-of-n systems . . . . . . . . . . . . . 9

3 Reliability of consecutive k–within-m-out-of-n:F systems 11

3.1 Notations and preliminaries . . . . . . . . . . . . . . . . . . . . . 12

3.2 Bounds and approximations for the survival function . . . . . . . 14

3.3 Simulation based on Samaniego’s signature . . . . . . . . . . . . . 16

3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Summary and Conclusions 23

5 Appendix 24

vii



Chapter 1

Introduction

The reliability is defined as the probability that a system will perform satis-

factorily for at least a given period of time when used under stated conditions.

Also reliability known as the ability to perform a required function under given

conditions for a given time or time interval, often expressed as a probability. We

can define reliability in terms of device, such as performance of a component or

a system which consists of components.

Reliability evaluation has a vital importance at all stages of processing and

controlling engineering systems. For evaluating the system’s reliability, one

should specify the structure of the system that defines the rule(s) of the op-

eration and relations between the system components. Early works on system

reliability have focused on binary system modeling.

In a binary system modeling, the system and its components may either work

or fail. Thus the state of each component or system is a discrete random variable

with two possible outcomes. In nonseries systems, it is not necessary that all

components must operate for functioning of systems. So the relationship between

components and systems are investigated by coherent systems.

1
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If Xi denotes the state of the ith component in the system. Then

Xi =

{
1 if ith component functions,

0 if ith component fails,
(1.1)

for i = 1, 2, ..., n, where n is the number of components in the system. Similarly,

φ, which shows the state of system, can be defined as

φ(X1, X2, ..., Xn) =

{
1 if system functions,

0 if system fails.
(1.2)

The function φ( ~X), which is called the structure function of system, shows the

state of system as a function of states of components. The component i is said

to be irrelevant if and only if

φ(1i, ~X) = φ(0i, ~X) for all (.i, ~X) = (X1, X2, ..., Xi−1, ., Xi+1, ..., Xn).

If there exists at least one ~X satisfying φ(1i, ~X) = 1 and φ(0i, ~X) = 0 it can

be said that component is relevant. In words if the state of system can not be

affected by the state of ith component then ith component is irrelevant to the

system. Below we provide the definitions of coherent system and its dual. For a

detailed description and properties of coherent systems we refer to Barlow and

Proschan (1975) as well as Kuo and Zuo (2003).

Definition. A system of components is coherent if

i. its structure function is increasing,

ii. each component is relevant.
(1.3)

According to this definition, the following conditions must be satisfied.

1. φ(0) = 0 which means system is failed when all components are failed.

2. φ(1) = 1 which means system is operating when all components operate.

3. x < y ⇒ φ(x) ≤ φ(y) which means improvement of any component does

not decrease the performance of the system.
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4. For every component i, there exists a component state vector such that the

state of component i dictates the state of the system.

Reliability of a coherent system consisting of n components can be defined as

R = P (φ( ~X) = 1).

Similarly the reliability of the ith component of this system is defined as

P (Xi = 1) = pi for i = 1, 2, ..., n.

Definition. Given structure function φ, its dual φD is given by

φD( ~X) = 1− φ(1− ~X),

where (1− ~X) = (1−X1, 1−X2, ..., 1−Xn).

In the literature, various reliability models have been defined and studied un-

der different assumptions on components. Undoubtedly, the simplest reliability

structures are series and parallel models. A series system with n components op-

erates if all components operate. A parallel system of n components operates if at

least one component is in a working state. A k-out-of-n:F system, which consists

of n components, fails iff at least k of n components fail. On the other hand,

k-out-of-n:G system, which consists of n components, functions iff at least k of n

components operate. A linear consecutive k-out-of-n:F system as a generalization

of series and parallel systems, consists of n linearly ordered components such that

the system fails iff at least k consecutive components fail. A linear consecutive

k-out-of-n:F system usually has much higher reliability then the series systems

and is less expensive then the parallel systems. As a dual of consecutive k-out-

of-n:F system, a consecutive k-out-of-n:G system with n components operates iff

at least k consecutive components operate. Consecutive type systems have been

used to model telecommunication and oil pipeline systems, and vacuum systems

in accelerators. Recent discussions on consecutive k-out-of-n systems appear in

the works of Yun et al. (2007), Xiao et al.(2007), Eryılmaz (2007), Navarro and
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Eryılmaz (2007), Eryılmaz (2008), Eryılmaz(2009). An excellent review of such

systems and their generalizations is presented in Kuo and Zuo (2003).

In Table 1 we present the structure functions and reliabilities of varios coherent

structures consisting of n components.

System Structure Function Reliability

Series φ( ~X) =
n∏
i=1

Xi = min(X1, X2, ..., Xn) P (
n∑
i=1

Xi = n)

Parallel φ( ~X) =
n∐
i=1

Xi = max(X1, X2, ..., Xn) P (
n∑
i=1

Xi ≥ 1)

k-out-of-n:F φ( ~X) =


1,

n∑
i=1

Xi > n− k

0,
n∑
i=1

Xi ≤ n− k
P (

n∑
i=1

Xi > n− k)

k-out-of-n:G φ( ~X) =


1,

n∑
i=1

Xi ≥ k

0,
n∑
i=1

Xi < k
P (

n∑
i=1

Xi ≥ k)

Consecutive

k-out-of-n:F

φ( ~X) =
n−k+1∏
i=1

(1−
i+k−1∏
j=i

(1−Xj)) P (L0
n < k)

Consecutive

k-out-of-n:G

φ( ~X) = 1−
n−k+1∏
i=1

(1−
i+k−1∏
j=i

Xj) P (L1
n ≥ k)

Table 1. Structure functions and reliabilites of various coherent structures

In Table 1, L1
n and L0

n denote the lengths of longest success and failure runs

in ~X, respectively.

For example; let the states of n = 10 components be ~X = (0111010011).

Then we have L1
10 = 3 and L0

10 = 2. For a detailed description of the longest run

random variables we refer to Balakrishnan and Koutras (2002) as well as Fu and

Lou (2003).

As a generalization of k-out-of-n:F and consecutive k-out-of-n:F systems,

the consecutive k-within-m-out-of-n:F system consisting of n linearly ordered

components such that the system fails if and only if there are m consecutive
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components which include among them at least k failed components. For an

illustration, let the states of n = 10 components be ~X = (1100101100). Then the

system is in a failure state if m = 4 and k = 3 while it is in a functioning state

when m = 5 and k = 4. This system was first introduced by Griffith (1986). This

model includes consecutive k-out-of-n:F and k-out-of-n:F systems when m = k

and m = n, respectively.

In this study, we investigate the reliability properties of consecutive k-within-

m-out-of-n:F systems with exchangeable components. We obtain bounds and

approximations for the survival function of this system. The performance of the

bounds and approximations is evaluated using Monte Carlo estimator of system

signature.



Chapter 2

The signature of coherent

systems

One of the most important lifetime characteristic of a coherent system is the

survival function defined by

R(t) = P (T > t),

where T denotes the lifetime of a coherent system.

The evaluation of the function R(t) is of special importance not only for

computing the survival probabilities but also for evaluating the other reliability

characteristics such as hazard rate, and mean residual lifetime.

Let Ti denote the lifetime of the ith component in a coherent system with the

structure function φ and lifetime T. Then

T = φ(T1, T2, ..., Tn).

Define

Xi(t) =

{
1 if Ti > t

0 if Ti ≤ t
, i = 1, 2, ..., n

6
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It is clear that the binary stochastic process Xi(t) represents the state of the ith

component at time t. The survival function R(t) can be investigated by the help

of Xi(t)s. For example, the survival function of a k-out-of-n:F system can be

written as

R(t) = P (
n∑
i=1

Xi(t) > n− k).

Similarly, the survival function of a consecutive k-out-of-n:F system can be ex-

pressed as

R(t) = P (L0
n(t) < k),

where L0
n(t) denotes the longest run of 0s(failures) in X1(t), X2(t), ..., Xn(t)(see,

e.g. Eryılmaz (2009)).

A general representation for the survival function of coherent systems can be

given in terms of signature. Let T be the lifetime of a coherent system consist-

ing of independent and identical components with the lifetimes T1, T2, ..., Tn and

common c.d.f. F (t) = P (Ti ≤ t), i = 1, 2, ..., n. The signature of this system is

defined as the probability vector (p1, p2, ..., pn), with

pi = P (T = Ti:n) for i = 1, ..., n, (2.1)

where T1:n ≤ T2:n ≤ ... ≤ Tn:n are the order statistics associated with T1, T2, ..., Tn.

Equivalently, we have

pi =
# of orderings for which the ith failure causes system failure

n!
(2.2)

for i = 1, ..., n.

A component state vector ~X is a path vector if φ( ~X) = 1. Let ri(n) be the

number of path sets of the system containing exactly i working components.

Define

ai(n) =

(
n

i

)−1

ri(n), i = 1, 2, ..., n, (2.3)

through the system of equations

ai(n) =
n∑

j=n−i+1

pj(n), i = 1, 2, ..., n, (2.4)
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or equivalently,

pi(n) = an−i+1(n)− an−i(n), i = 1, 2, ..., n. (2.5)

That is, the signature of a system can be obtained by computing ri(n). The

problem of finding ri(n) is combinatorial one. Specifically, determination of the

total number of binary sequences satisfying certain conditions which depend on

the structure of a system.

Example 2.1. Let us find the signature of the following consecutive 2-out-of-3:G

system

We can define the system lifetime T as follows

T = max(min(T1, T2),min(T2, T3)).

There are 3! orderings of the component lifetimes which are given as follows.

Ordering T

T1 < T2 < T3 T2:3

T1 < T3 < T2 T2:3

T2 < T1 < T3 T1:3

T2 < T3 < T1 T1:3

T3 < T1 < T2 T2:3

T3 < T2 < T1 T2:3

Then we have

p1 = P (T2 < T1 < T3︸ ︷︷ ︸
T=T1:3

) + P (T2 < T3 < T1︸ ︷︷ ︸
T=T1:3

) =
2

6

p2 = 1− p1 =
4

6
p3 = 0
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so the signature is p = (1
3
, 2

3
, 0).

According to the following theorem the survival function of any coherent sys-

tem can be written as a linear combination of the survival functions of order

statistics, or equivalently survival functions of i-out-of-n:F systems.

Theorem 2.1 ([13]) Let T1, T2, ..., Tn be the i.i.d. component lifetimes of a co-

herent system of order n, and let T be the system lifetime. Then

P (T > t) =
n∑
i=1

pi

i−1∑
j=0

(
n

j

)
(F (t))j(F̄ (t))n−j =

n∑
i=1

piP (Ti:n > t). (2.6)

Navarro and Rychlik (2007) proved that the representation (2.6) also holds

in the case whenever the lifetimes T1, T2, ..., Tn have an absolutely continuous

exchangeable joint distribution, i.e. the joint distribution (survival function) of

T1, T2, ..., Tn is invariant under permutation of the variables.

2.1 Signature of consecutive k-out-of-n systems

A linear consecutive k-out-of-n:F system as a generalization of series and parallel

systems, consists of n linearly ordered components such that the system fails iff at

least k consecutive components fail. A typical path of consecutive k-out-of-n : F

systems including i working components is given by

1 . . .︸︷︷︸
y1

10 . . .︸︷︷︸
x1

01 . . .︸︷︷︸
y2

10 . . .︸︷︷︸
x2

0 . . . . . . . . . 0 . . .︸︷︷︸
xr

01 . . .︸︷︷︸
yr+1

1,

where 0 < xj < k, j = 1, . . . , r and y1 ≥ 0, y2 > 0, . . . , yr > 0, yr+1 ≥ 0. Thus

the number of path sets of the system containing exactly i working components

is given by

ri(n) =
n∑
r=0

N(i, r, k, n),

where N(i, r, k, n) denotes the number of simultaneous integer solutions for the

systems

x1 + x2 + · · ·+ xr = n− i
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such that 0 < xj < k, j = 1, . . . , r and

y1 + y2 + · · ·+ yr+1 = i

such that y1 ≥ 0, y2 > 0, . . . , yr > 0, yr+1 ≥ 0.

After some combinatorial calculations N(i, r, k, n) is obtained as

N(i, r, k, n) =

(
i+ 1

r

) r∑
j=0

(−1)j
(
r

j

)(
n− i− (k − 1)j − 1

r − 1

)
In Table 2 we provide signatures of consecutive k-out-of-n:F systems for some

choices of k and n.
n k p

4 2 (0, 1
2
, 1

2
, 0)

5 2 (0, 4
10
, 5

10
, 1

10
, 0)

5 3 (0, 0, 3
10
, 5

10
, 2

10
)

6 2 (0, 5
15
, 7

15
, 3

15
, 0, 0)

6 3 (0, 0, 2
10
, 4

10
, 4

10
, 0)

Table 2. Signatures of consecutive k-out-of-n:F systems for some choices of k

and n.
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Reliability of consecutive

k–within-m-out-of-n:F systems

As we stated before, a consecutive k-within-m-out-of-n:F system consisting n

linearly ordered components such that the system fails if and only if there are m

consecutive components which include among them at least k failed components.

The names k-within-consecutive-m-out-of-n:F and consecutive k-out-of-m-from-

n:F have also been used for this system in the literature.

As we mentioned before there are many application areas of these systems such

as quality control systems, and radar detection. Various bounds and approxima-

tions for the reliability of consecutive k-within-m-out-of-n:F system consisting

of independent components have been proposed in the literature. For example,

Sfakianakis et al. (1992) provided lower and upper bounds for the reliability

of such systems which consist of independent identical components. Iyer (1992)

studied the distribution of the lifetime of this system with independent exponen-

tially distributed component lifetimes. Papastavridis and Koutras (1993) pre-

sented upper and lower bounds for the reliability of a linear and circular systems

consisting of independent nonidentical components. Habib and Szantai (2000)

improved the bounds obtained by Sfakianakis et al. (1992) by applying higher

11
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order Boole-Bonferroni bounds. Recently, Habib et al. (2007) presented an algo-

rithm to compute the reliability of multi-state consecutive k-within-m-out-of-n:G

system which is the generalization of consecutive k-within-m-out-of-n:G system

to the multi-state case.

Dependence among component lifetimes emerges from the common random

production and operating environments. Analysis of systems that consist of de-

pendent components might be difficult especially whenever the system has a

complex structure. We study the reliability properties of consecutive k-within-

m-out-of-n:F system which consists of exchangeable components. Systems with

exchangeable components have been widely studied in the literature. See e.g.

Shanthikumar (1985), Papastavridis (1989), Navarro et al. (2005), Bassan and

Spizzichino (2005), Navarro and Rychlik (2007), Navarro (2008).

We first provide some notations and properties that will be used throught this

chapter. In section 3.2 we provide bounds and approximations for the survival

function of consecutive k-within-m-out-of-n:F system consisting of exchangeable

components. Then we develop a method based on Samaniego’s signature for

simulating the reliability characteristics of the corresponding system. Finally

we provide numerical illustrations whenever the lifetimes of components have

exchangeable Pareto distribution.

3.1 Notations and preliminaries

• T (j)
k:m kth smallest among Tj, Tj+1, ..., Tj+m−1, k ≤ m, 1 ≤ j ≤ n−m+ 1;

• Yi(t) =

{
1 if Ti ≤ t

0 if Ti > t

• Aj the event of
{
T

(j)
k:m > t

}
;

• Tk,m:n the lifetime of consecutive k-within-m-out-of-n:F system, 1 ≤ k ≤
m ≤ n;
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• Rk,m:n(t) = P {Tk,m:n > t} the survival function of consecutive k-within-m-

out-of-n:F system

The main goal of this thesis is to study the reliability properties of consec-

utive k-within-m-out-of-n:F system with exchangeable lifetimes. A sequence of

lifetimes T1, T2, ..., Tn is exchangeable if for each n,

P {T1 ≤ t1, ..., Tn ≤ tn} = P
{
Tπ(1) ≤ t1, ..., Tπ(n) ≤ tn

}
,

for any permutation π = (π(1), ..., π(n)) of {1, 2, ..., n}, i.e. the joint distribu-

tion (survival function) of T1, T2, ..., Tn is symmetric in t1, t2, ..., tn. The results

obtained in this study readily hold for a system with i.i.d. lifetimes since a se-

quence of independent, identically distributed (i.i.d.) lifetimes is exchangeable.

Consecutive k-within-m-out-of-n:F system can be represented as a series sys-

tem of n−m+ 1 dependent k-out-of-m:F systems. That is,

Tk,m:n = min(T
(1)
k:m, T

(2)
k:m, ..., T

(n−m+1)
k:m ), (3.1)

where T
(j)
k:m shows the lifetime of k-out-of-m:F system of components with the

lifetimes Tj, Tj+1, ..., Tj+m−1, 1 ≤ j ≤ n−m+ 1. It is clear that the random vari-

ables T
(1)
k:m, T

(2)
k:m, ..., T

(n−m+1)
k:m have the common terms and this makes the problem

of finding the exact reliability difficult especially whenever T1, T2, ..., Tn are depen-

dent which is the case in this study. The random variables T
(j)
k:m, 1 ≤ j ≤ n−m+1

are known as moving order statistics in the literature. Although the theory of

usual order statistics has been well developed in the literature not much work

has been done for moving order statistics. We may refer to David and Nagaraja

(2003, p.140) for limited results on moving order statistics.

Using (3.1), the survival function of consecutive k-within-m-out-of-n:F system

can be written as

Rk,m:n(t) = P {Tk,m:n > t} = P
{
T

(1)
k:m > t, T

(2)
k:m > t, ..., T

(n−m+1)
k:m > t

}
.

Consider the random variable S
(j)
m (t) =

j+m−1∑
i=j

Yi(t) which denotes the total
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number of failed components among Tj, Tj+1, ..., Tj+m−1 at time t. By the ex-

changeability we have

P
{
S

(j)
m (t) = s

}
= P

{
S

(1)
m (t) = s

}
=
(
m
s

)m−s∑
i=0

(−1)i
(
m−s
i

)
P {T1 ≤ t, ..., Ts+i ≤ t}

=
(
m
s

) s∑
i=0

(−1)i
(
s
i

)
P {T1 > t, ..., Tm−s+i > t}

(3.2)

The latter equations can be obtained using Theorem 2.1 of George and Bow-

man (1995). For simplicity hereafter we will use the following notation.

f(a, b) =
a∑
i=0

(−1)i
(
a

i

)
P {T1 ≤ t, ..., Tb+i ≤ t} ,

and

g(a, b) =
a∑
i=0

(−1)i
(
a

i

)
P {T1 > t, ..., Tb+i > t} .

With the notation given above, equation (3.2) can be rewritten as

P
{
S(j)
m (t) = s

}
=

(
m

s

)
f(m− s, s) =

(
m

s

)
g(s,m− s).

3.2 Bounds and approximations for the survival

function

In this section, we evaluate the probability

Rk,m:n(t) = P

{
n−m+1⋂
i=1

Ai

}
, (3.3)

using various inequalities. We first obtain a lower bound using the second order

Bonferroni inequality which is also known as Hunter-Worsley inequality (Hunter

(1976), Worsley (1982)). This variant of Bonferroni inequality has been found to

be very quick and useful for the reliability evaluation of consecutive k-within-m-

out-of-n:F system consisting of i.i.d. components (Habib and Szantai, 2000).The

proofs of the following Theorems are presented in Appendix.
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Theorem 3.1 Let (T1, T2, ..., Tn) be an exchangeable random vector representing

the lifetimes. Then for 1 ≤ k ≤ m ≤ n,

Rk,m:n(t) ≥ 1− (n−m+ 1)P
{
T

(1)
k:m ≤ t

}
+ (n−m)P

{
T

(1)
k:m ≤ t, T

(2)
k:m ≤ t

}
,

where

P
{
T

(1)
k:m ≤ t

}
=

m∑
s=k

(
m

s

)
f(m− s, s) =

m∑
s=k

(
m

s

)
g(s, m− s),

and

P
{
T

(1)
k:m ≤ t, T

(2)
k:m ≤ t

}
=

(
m− 1

k − 1

)
f(m−k, k+1)+

m−1∑
l=k

(
m− 1

l

)
f(m−l−1, l),

(3.4)

or in terms of the joint survival function

P
{
T

(1)
k:m ≤ t, T

(2)
k:m ≤ t

}
=
(
m−1
m−k

)
[g(k − 1, m− k)− 2g(k − 1, m− k + 1)

+ g(k − 1, m− k + 2)]

+
m−1∑
l=k

(
m−1
l

)
g(l,m− l − 1).

(3.5)

The probability given in (3.4) ((3.5)) can be easily calculated if the joint

distribution (survival) function of lifetimes of the components is given.

An approximation formula for the survival function can also be obtained using

the following product-type approximation formula (see, e.g. Costigan (1996)).

Rk,m:n(t) = P

{
n−m+1⋂
i=1

Ai

}
'

n−m+1∏
i=2

P {Ai−1Ai}

n−m∏
i=2

P {Ai}
=

[P {A1A2}]n−m

[P {A1}]n−m−1 , (3.6)

where the last equation follows from exchangeability. The probabilities in (3.6)

can be easily evaluated using the equations given in Theorem 3.1. For example,

P {A1A2} = P
{
T

(1)
k:m > t, T

(2)
k:m > t

}
= 1− P

{
T

(1)
k:m ≤ t

}
− P

{
T

(2)
k:m ≤ t

}
+ P

{
T

(1)
k:m ≤ t, T

(2)
k:m ≤ t

}
(3.7)
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It should be noted that the probability given by (3.7) with m = n − 1 is

actually the exact survival function of consecutive k-within-(n − 1)-out-of-n:F

system. The following Theorem provides an upper bound for the reliability of

consecutive k-within-m-out-of-n system consisting of exchangeable components.

Theorem 3.2 Let (T1, T2, ..., Tn) be an exchangeable random vector. Then for

1 ≤ k ≤ m ≤ n,

Rk,m:n(t) ≤
k−1∑

j1,j2,...,jr=0

(
m

j1

)
...

(
m

jr

)
f

(
r.m−

r∑
i=1

ji,

r∑
i=1

ji

)

=
k−1∑

j1,j2,...,jr=0

(
m

j1

)
...

(
m

jr

)
g

(
r∑
i=1

ji, r.m−
r∑
i=1

ji

)
,

where r =
[
n
m

]
.

3.3 Simulation based on Samaniego’s signature

The system with exchangeable components has the same signature vector with

the system with i.i.d. components. This is crucial for the development of our sim-

ulation. Simulation of the lifetime of consecutive k-within-m-out-of-n:F system

without using this fact needs to generate random vectors from the distribution

F (t1, t2, ..., tn) = P {T1 ≤ t1, ..., Tn ≤ tn}. This is not an easy task. Therefore we

first obtain the Monte Carlo estimates of the signature of consecutive k-within-m-

out-of-n:F system consisting of i.i.d. components and then use these estimates to

estimate the survival function of consecutive k-within-m-out-of-n:F system con-

sisting of exchangeable components. That is, the estimator of survival function

is given by

R̂k,m:n(t) =
n∑
i=1

p̂iP {Ti:n > t} , (3.8)
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where p̂i is the Monte Carlo estimate of the ith element of the signature vector

and

P {Ti:n > t} = 1−
n∑
j=i

(−1)j−i
(
j − 1

i− 1

)(
n

j

)
P {Tj:j ≤ t}

= 1−
n∑

j=n−i+1

(−1)j−n+i−1

(
j − 1

n− i

)(
n

j

)
P {T1:j ≤ t} ,

where T1:j = min(T1, ..., Tj) and Tj:j = max(T1, ..., Tj). We readily have

P {T1:j ≤ t} = 1− P {T1 > t, ..., Tj > t} , P {Tj:j ≤ t} = P {T1 ≤ t, ..., Tj ≤ t} .

In Table 3 we present the order statistic representation of the lifetime of

consecutive 2-within-3-out-of-4:F system by writing out all possible permutations

of T1, T2, T3, T4. From Table 3 we compute

p1 = P {T2,3:4 = T1:4} = 0,

p2 = P {T2,3:4 = T2:4} = 20/24,

p3 = P {T2,3:4 = T3:4} = 4/24,

p4 = P {T2,3:4 = T4:4} = 0.

In the Table 4, we present the Monte Carlo estimate p̂ = (p̂1, p̂2, ..., p̂n) for

various values of n,m, and k.
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Ordering T2,3:4 Ordering T2,3:4

T1 < T2 < T3 < T4 T2:4 T3 < T1 < T4 < T2 T2:4

T1 < T2 < T4 < T3 T2:4 T3 < T1 < T2 < T4 T2:4

T1 < T3 < T4 < T2 T2:4 T3 < T2 < T1 < T4 T2:4

T1 < T3 < T2 < T4 T2:4 T3 < T2 < T4 < T1 T2:4

T1 < T4 < T3 < T2 T3:4 T3 < T4 < T2 < T1 T2:4

T1 < T4 < T2 < T3 T3:4 T3 < T4 < T1 < T2 T2:4

T2 < T1 < T3 < T4 T2:4 T4 < T1 < T3 < T2 T3:4

T2 < T1 < T4 < T3 T2:4 T4 < T1 < T2 < T3 T3:4

T2 < T3 < T4 < T1 T2:4 T4 < T2 < T1 < T3 T2:4

T2 < T3 < T1 < T4 T2:4 T4 < T2 < T3 < T1 T2:4

T2 < T4 < T1 < T3 T2:4 T4 < T3 < T1 < T2 T2:4

T2 < T4 < T3 < T1 T2:4 T4 < T3 < T2 < T1 T2:4

Table 3. Order statistic representation of consecutive 2-within-3-out-of-4:F

system.

n m k p̂

4 3 2 (0, 0.8320, 0.1700, 0)

10 3 2 (0, 0.3855, 0.4611, 0.1646, 0.0049, 0, 0, 0, 0, 0)

10 7 2 (0, 0.8683, 0.1323, 0, 0, 0, 0, 0, 0, 0)

10 7 5 (0, 0, 0, 0, 0.2594, 0.4464, 0.2523, 0.0350, 0, 0)

15 7 5 (0, 0, 0, 0, 0.0481, 0.1447, 0.2498, 0.2901,

0.2264, 0.0345, 0, 0, 0, 0, 0)

15 10 4 (0, 0, 0, 0.4610, 0.4055, 0.1206, 0.0102, 0, 0, 0,

0, 0, 0, 0, 0)

20 10 7 (0, 0, 0, 0, 0, 0, 0.0133, 0.0547, 0.1336, 0.2139,

0.2612, 0.2189, 0.1068, 0, 0, 0, 0, 0, 0, 0)

20 10 9 (0, 0, 0, 0, 0, 0, 0, 0, 0.0011, 0.0043, 0.0150, 0.0456,

0.0965, 0.1670, 0.2359, 0.2488, 0.1720, 0, 0, 0)

Table 4. Monte Carlo estimates of system signature for some choices of n,m,

and k.
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Via the same simulation method we can also approximate the other reliability

characteristics of consecutive k-within-m-out-of-n:F system. For example mean

time to failure (MTTF) of the system can be estimated from

Ê (Tk,m:n) =
n∑
i=1

p̂iE(Ti:n).

3.4 Numerical results

In this section we present some numerical results when (T1, T2, ..., Tn) has a mul-

tivariate Pareto distribution whose survival function is

F̄a(t1, ..., tn) =

(
n∑
i=1

ti − n+ 1

)−a
, a > 0, ti > 1, i = 1, ..., n.

It is easy to see that (T1, ..., Tn) is exchangeable, and

P {T1:j ≤ t} = 1− P {T1 > t, ..., Tj > t} ,
= 1− F̄a(t, ..., t),
= 1− (j(t− 1) + 1)−a .

Thus

P {Ti:n > t} = 1−
n∑

j=n−i+1

(−1)j−n+i−1

(
j − 1

n− i

)(
n

j

)(
1− (j(t− 1) + 1)−a

)
.

On the other hand, if a > 1, then E(T1:j) = 1
j(a−1)

, and hence

E (Ti:n) =
n∑

j=n−i+1

(−1)j−n+i−1

(
j − 1

n− i

)(
n

j

)
1

j(a− 1)
.

We were able to compute the precise value of p for small values of n generating

all the permutations of numbers from 1 up to n. The precise value of p for n = 5,

m = 3, k = 2 is found to be p = (0, 84
120
, 36

120
, 0, 0). This allows computation of the

exact value of the survival function for n = 5 as provided in Table 5. This table

also includes the bounds and approximations for the survival function. From

Table 5 it can be observed that the approximation based on simulation is rather
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effective, which suggests (3.8) could be used as a reference value for larger n where

the computation of the exact value is not possible.

The simulation results along with the bounds and approximations for the

survival function are presented in Tables 6,7,8 and 9 for n = 15, m = 12, k = 8;

n = 15, m = 10, k = 8; n = 30, m = 10, k = 8, and n = 30, m = 10, k = 6

respectively. In these tables, R̃k,m:n(t) denotes the approximation computed from

(3.6) and R̂k,m:n(t) shows the simulated reliability given in (3.8). LB and UB

denote the lower and upper bounds given in Theorem 3.1 and Theorem 3.2,

respectively. We also compute (LB + UB) /2 as an alternative approximation.

The performance of the approximation computed from (3.6) is relatively effective

if m is close enough to n or/and k is close enough to m. That is, the closer

m to n or/and the closer k to m the better approximation. The approximation

computed from (LB + UB) /2 seems stronger for larger n when m and k are

fixed. We also observe that for fixed a, the bounds and approximations perform

better for smaller values of t (or equivalently for highly reliable structures).

a t Rk,m:n(t) R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.8760 0.8735 0.8771 0.8725 0.9329 0.9027

1.3 0.5861 0.5786 0.5871 0.5711 0.7187 0.6449

1.5 0.4138 0.4061 0.4132 0.3945 0.5547 0.4746

1.7 0.3099 0.3031 0.3102 0.2903 0.4404 0.3653

1.9 0.2426 0.2369 0.2424 0.2242 0.3593 0.2917

2.0 1.1 0.8205 0.8170 0.8192 0.8150 0.8999 0.8574

1.3 0.4644 0.4571 0.4638 0.4450 0.6179 0.5314

1.5 0.2873 0.2813 0.2874 0.2656 0.4300 0.3478

1.7 0.1935 0.1892 0.1930 0.1737 0.3127 0.2432

1.9 0.1388 0.1356 0.1389 0.1217 0.2366 0.1791

Table 5. Bounds, approximations, and exact value for the survival function

when n = 5, m = 3, k = 2.
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a t R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.9927 0.9858 0.9927 0.9960 0.9944

1.3 0.8340 0.8473 0.8332 0.8772 0.8552

1.5 0.6441 0.6524 0.6422 0.7066 0.6744

1.7 0.5032 0.5205 0.5007 0.5675 0.5341

1.9 0.4034 0.4122 0.4006 0.4635 0.4321

2.0 1.1 0.9852 0.9900 0.9852 0.9917 0.9885

1.3 0.7358 0.7493 0.7342 0.7973 0.7657

1.5 0.4979 0.5052 0.4946 0.5709 0.5327

1.7 0.3481 0.3562 0.3444 0.4134 0.3789

1.9 0.2544 0.2592 0.2508 0.3091 0.2800

Table 6. Bounds and approximations for the survival function when n = 15,

m = 12, k = 8.

a t R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.9973 0.9869 0.9973 0.9990 0.9982

1.3 0.8964 0.9055 0.8955 0.9430 0.9192

1.5 0.7366 0.7386 0.7326 0.8247 0.7787

1.7 0.6000 0.6200 0.5932 0.7043 0.6487

1.9 0.4951 0.5120 0.4867 0.6015 0.5441

2.0 1.1 0.9942 0.9841 0.9942 0.9979 0.9960

1.3 0.8260 0.8371 0.8235 0.8989 0.8612

1.5 0.6090 0.6374 0.6009 0.7237 0.6623

1.7 0.4501 0.4698 0.4387 0.5690 0.5038

1.9 0.3416 0.3571 0.3291 0.4508 0.3900

Table 7. Bounds and approximations for the survival function when n = 15,

m = 10, k = 8.
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a t R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.9920 0.9925 0.9920 0.9973 0.9947

1.3 0.7700 0.8169 0.7528 0.8841 0.8184

1.5 0.5249 0.6394 0.4563 0.7095 0.5829

1.7 0.3710 0.4873 0.2599 0.5664 0.4131

1.9 0.2760 0.3967 0.1420 0.4601 0.3010

2.0 1.1 0.9832 0.9898 0.9831 0.9941 0.9886

1.3 0.6409 0.7281 0.5974 0.8045 0.7009

1.5 0.3629 0.4782 0.2328 0.5702 0.4015

1.7 0.2228 0.3334 0.0478 0.4083 0.2280

1.9 0.1485 0.2434 0.0000 0.3024 0.1512

Table 8. Bounds and approximations for the survival function when n = 30,

m = 10, k = 8.

a t R̃k,m:n(t) R̂k,m:n(t) LB UB LB+UB
2

1.5 1.1 0.9214 0.9619 0.9192 0.9677 0.9434

1.3 0.4587 0.5997 0.3555 0.6793 0.5174

1.5 0.2463 0.3965 0.0596 0.4655 0.2666

1.7 0.1540 0.2789 0.0000 0.3384 0.1692

1.9 0.1066 0.2107 0.0000 0.2589 0.1295

2.0 1.1 0.8609 0.9084 0.8539 0.9402 0.8970

1.3 0.2981 0.4506 0.1088 0.5374 0.3231

1.5 0.1257 0.2422 0.0000 0.3100 0.1550

1.7 0.0666 0.1513 0.0000 0.1976 0.0988

1.9 0.0407 0.1035 0.0000 0.1360 0.0680

Table 9. Bounds and approximations for the survival function when n = 30,

m = 10, k = 6.
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Summary and Conclusions

In the main part of this thesis, we studied the reliability of consecutive k-

within-m-out-of-n:F system consisting of exchangeable components. Bounds and

approximations based on the probabilities associated with moving order statistics

were provided for the survival function of this system. The formulas have been

represented both in terms of the joint c.d.f. and the joint survival function of

T1, T2, ..., Tn so that the computations can be easily performed if either the joint

c.d.f. or joint survival is known.

A simulation study based on Samaniego’s signature was also performed to

estimate the system reliability. The proposed method does not need to generate

random vectors from the joint distribution of T1, T2, ..., Tn, a difficult task in

Monte Carlo simulation. By this method we can also estimate the other reliability

characteristics of systems consisting of exchangeable components.

The performance of the approximations is satisfactory under particular selec-

tions of k, m, and n. The results obtained are readily applicable for consecutive

k-out-of-n:F (m = k) and k-out-of-n:F (m = n) systems which consist of ex-

changeable components. With a slight modification similar results can also be

obtained for consecutive k-within-m-out-of-n:G systems.

23
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Appendix

Proof of Theorem 3.1: According to the Hunter-Worsley variant of Bonferroni

inequality we have

P

{
n⋃
i=1

Ci

}
≤

n∑
i=1

P {Ci} −
n−1∑
i=1

P {CiCi+1} .

Using this inequality for (3.3) one obtains

Rk,m:n(t) ≥ 1−
n−m+1∑
i=1

P
{
T

(i)
k:m ≤ t

}
+

n−m∑
i=1

P
{
T

(i)
k:m ≤ t, T

(i+1)
k:m ≤ t

}
.

By the exchangeability we have

Rk,m:n(t) ≥ 1−(n−m+1)P
{
T

(1)
k:m ≤ t

}
+(n−m)P

{
T

(1)
k:m ≤ t, T

(2)
k:m ≤ t

}
. (5.1)

The probabilities in (5.1) can be computed using the following equations.

P
{
T

(1)
k:m ≤ t

}
= P

{
m∑
i=1

Yi(t) ≥ k

}

=
m∑
s=k

(
m

s

)
f(m− s, s) =

m∑
s=k

(
m

s

)
g(s,m− s), (5.2)

24
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and

P
{
T

(1)
k:m ≤ t, T

(2)
k:m ≤ t

}
= P

{
m∑
i=1

Yi(t) ≥ k,

m+1∑
i=2

Yi(t) ≥ k

}

= P

{
Y1(t) +

m∑
i=2

Yi(t) ≥ k,

m∑
i=2

Yi(t) + Ym+1(t) ≥ k

}

=
∑
l

P

{
Y1(t) ≥ k − l, Ym+1(t) ≥ k − l,

m∑
i=2

Yi(t) = l

}
. (5.3)

Consider the probability in (5.3). It is clear that

P

{
Y1(t) ≥ k − l, Ym+1(t) ≥ k − l,

m∑
i=2

Yi(t) = l

}

=



P

{
m∑
i=2

Yi(t) = l

}
if k ≤ l

P

{
Y1(t) = 1, Ym+1(t) = 1,

m∑
i=2

Yi(t) = l

}
if k = l + 1

0 if k > l + 1.

Thus

P
{
T

(1)
k:m ≤ t, T

(2)
k:m ≤ t

}
= P

{
Y1(t) = 1, Ym+1(t) = 1, S

(2)
m−1(t) = k − 1

}
(5.4)

+
m−1∑
l=k

P
{
S

(2)
m−1(t) = l

}

=

(
m− 1

k − 1

)m−k∑
i=0

(−1)i
(
m− k
i

)
P {T1 ≤ t, ..., Tk+i+1 ≤ t} (5.5)

+
m−1∑
l=k

(
m− 1

l

)m−l−1∑
i=0

(−1)i
(
m− l − 1

i

)
P {T1 ≤ t, ..., Tl+i ≤ t} .

Therefore the proof of (3.4) is completed.
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For the proof of (3.5) we need to write (5.4) in terms of joint survival function

(or g(a, b)). It is clear that

P
{
Y1(t) = 1, Ym+1(t) = 1, S

(2)
m−1(t) = k − 1

}
(5.6)

= P {Ek,m} − P {Ek,m ∩ {T1 > t}}

−P {Ek,m ∩ {Tm+1 > t}}+ P {Ek,m ∩ {T1 > t} ∩ {Tm+1 > t}} ,

where Ek,m denotes the event of {m− k of T2, T3, ..., Tm are greater than t} .
Thus we have

P {Ek,m} =

(
m− 1

m− k

) k−1∑
i=0

(−1)i
(
k − 1

i

)
P {T1 > t, ..., Tm−k+i > t} (5.7)

=

(
m− 1

m− k

)
g(k − 1,m− k),

P {Ek,m ∩ {T1 > t}} = P {Ek,m ∩ {Tm+1 > t}} (5.8)

=

(
m− 1

m− k

) k−1∑
i=0

(−1)i
(
k − 1

i

)
P {T1 > t, ..., Tm−k+i+1 > t}

=

(
m− 1

m− k

)
g(k − 1,m− k + 1),

and

P {Ek,m ∩ {T1 > t} ∩ {Tm+1 > t}} (5.9)

=

(
m− 1

m− k

) k−1∑
i=0

(−1)i
(
k − 1

i

)
P {T1 > t, ..., Tm−k+i+2 > t}

=

(
m− 1

m− k

)
g(k − 1,m− k + 2).

Using (5.7)-(5.9) in (5.6) and considering (5.6) in (5.4), the proof of (3.5) is

completed.

Proof of Theorem 3.2: It is clear that

Rk,m:n(t) = P
{
T

(1)
k:m > t, T

(2)
k:m > t, ..., T

(n−m+1)
k:m > t

}
≤ P

{
T

(1)
k:m > t, T

(m+1)
k:m > t, ..., T

(s)
k:m > t

}
,
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where s =
([

n
m

]
− 1
)
·m + 1. Since the order statistics T

(1)
k:m, T

(m+1)
k:m , ..., T

(s)
k:m are

nonoverlapping (they do not have the common terms) we have

P
{
T

(1)
k:m > t, T

(m+1)
k:m > t, ..., T

(s)
k:m > t

}
= P

{
m∑
i=1

Yi(t) < k,

2m∑
i=m+1

Yi(t) < k, ...,

s+m−1∑
i=s

Yi(t) < k

}

=
k−1∑

j1,j2,...,jr=0

P

{
m∑
i=1

Yi(t) = j1,

2m∑
i=m+1

Yi(t) = j2, ...,

s+m−1∑
i=s

Yi(t) = jr

}

=
k−1∑

j1,j2,...,jr=0

(
m

j1

)
...

(
m

jr

)
P {T1 ≤ t, ..., Tj1+...+jr ≤ t,

Tj1+...+jr+1 > t, ..., Ts+m−1 > t} .

The proof is completed noting that

P {T1 ≤ t, ..., Tj1+...+jr ≤ t, Tj1+...+jr+1 > t, ..., Ts+m−1 > t}

=

s+m−1−(j1+...+jr)∑
i=0

(−1)i
(
s+m− 1− (j1 + ...+ jr)

i

)
P {T1 ≤ t, ..., Tj1+...+jr+i ≤ t}

=

j1+...+jr∑
i=0

(−1)i
(
j1 + ...+ jr

i

)
P
{
T1 > t, ..., Ts+m−1−(j1+...+jr)+i > t

}
.



Bibliography

[1] Balakrishnan, N. and Koutras, M. (2002). Runs and Scans with applications,

Wiley Series in Probability and Statistics.

[2] Bassan, B. and Spizzichino, F. (2005). ”Relations among univariate aging,

bivariate aging and dependence for exchangeable lifetimes”, Journal of Mul-

tivariate Analysis, 93, 313-339.

[3] Costigan, T.M. (1996). ”Combination setwise-Bonferroni-type bounds”,

Naval Research Logistics, 43, 59-77.

[4] David, H.A. and Nagaraja, H.N. (2003). Order Statistics, Wiley Series in

Probability and Statistics.

[5] Derman, C., Lieberman, G.J. and Ross, S.M. (1982). ”On the consecutive

k -out-of-n:F system”, IEEE Trans. Reliability, 31, 57-63.

[6] Eryılmaz, S. (2007). ”On the lifetime distribution of consecutive k -out-of-n:F

system”, IEEE Trans. Reliability, 56, 35-39.

[7] Eryılmaz, S. (2008). ”Lifetime of combined k -out-of-n, and consecutive k c-

out-of-n systems”, IEEE Trans. Reliability, 57, 331-335.

[8] Eryılmaz, S. (2009). ”Reliability properties of consecutive k -out-of-n systems

of arbitrarily dependent components”, Reliability Engineering and System

Safety, 94, 350-356.

[9] Fu, J.C. and Lou, W.Y.W. (2003). Distribution theory of runs and patterns

and its applications, World Scientific Publishing.

28



BIBLIOGRAPHY 29

[10] George, E.O. and Bowman, D. (1995). ”A full likelihood procedure for

analysing exchangeable binary data”, Biometrics, 51, 512-523.

[11] Griffith, W.S. (1986). ”On consecutive k-out-of-n failure systems and their

generalizations”, Reliability and Quality Control, 157–165.

[12] Habib, A. and Szantai, T. (2000). ”New bounds on the reliability of the

consecutive k-out-of-r-from-n:F system”, Reliability Engineering and System

Safety, 68, 97-104.

[13] Habib, A., Al-Seedy, R.O. and Radwan, T. (2007). ”Reliability evaluation of

multi-state consecutive k-out-of-r-from-n:G system”, Applied Mathematical

Modeling, 31, 2412-2423.

[14] Hunter, D. (1976). ”An upper bound for the probability of a union”, Journal

of Applied Probability, 13, 597-603.

[15] Iyer, S. (1992). ”Distribution of the lifetime of consecutive k-within-m-out-

of-n:F systems”, IEEE Trans. Reliability, 41, 448-450.

[16] Kochar, S., Mukerjee, H. and Samaniego, F. (1999). ”The ”signature” of a

coherent system and its application to comparison among systems”, Naval

Res. Logist., 46, 507-523.

[17] Kuo, W. and Zuo, M.J. (2003). Optimal Reliability Modeling, Principles and

Applications. New Jersey:John Wiley & Sons, Inc.

[18] Navarro, J., Ruiz, J.M. and Sandoval, C.J. (2005). ”A note on compar-

isons among coherent systems with dependent components using signatures”,

Statistics & Probability Letters, 72, 179-185.

[19] Navarro, J. and Rychlik, T. (2007). ”Reliability and expectation bounds for

coherent systems with exchangeable components”, Journal of Multivariate

Analysis, 98, 102-113.

[20] Navarro J. and Eryılmaz, S. (2007). ”Mean residual lifetimes of consecutive

k -out-of-n systems”, Journal of Applied Probability, 44, 82-98.



BIBLIOGRAPHY 30

[21] Navarro, J. (2008). ”Likelihood ratio ordering of order statistics, mixtures,

and systems”, Journal of Statistical Planning and Inference, 138, 1242-1257.

[22] Navarro, J., Samaniego, F.J., Balakrishnan, N. and Bhattacharya, D. (2008).

”On the application and extension of system signatures in engineering reli-

ability”, Naval Research Logistics, 55, 313-327.

[23] Papastavridis, S.G. (1989). ”Lifetime distribution of circular consecutive k -

out-of-n:F systems with exchangeable lifetimes”, IEEE Trans. Reliability,

38, 460-461.

[24] Papastavridis, S.G. and Koutras, M.V. (1993). ”Bounds for reliability of con-

secutive k-within-m-out-of-n:F systems”, IEEE Trans. Reliability, 42, 156-

160.

[25] Samaniego, F. (1985). ”On closure of the IFR class under formation of co-

herent systems”, IEEE Trans. Reliability, R-34, 69-72.

[26] Sfakianakis, M., Kounias, S. and Hillaris, A. (1992). ”Reliability of a con-

secutive k-out-of-r-from-n:F system”, IEEE Trans. Reliability, 41, 442-447.

[27] Shanthikumar, J.G. (1985). ”Lifetime distribution of consecutive k -out-of-

n:F systems with exchangeable lifetimes”, IEEE Trans. Reliability, R-34,

480-483.

[28] Triantafyllou I. and Koutras M. (2008). ”On the Signature of Coherent Sys-

tems and Applications”, Probability in the Engineering and Informational

Sciences, 22, 19-35.

[29] Worsley, K.J. (1982). ”An improved Bonferroni inequality and applications”,

Biometrika, 69, 297-302.

[30] Xiao, G., Li, Z. and Li, T. (2007). ”Dependability estimation for non-Markov

consecutive k-out-of-n:F repairable systems by fast simulation”, Reliability

Engineering and System Safety, 92, 293-299.

[31] Yun, W.Y., Kim, G.R. and Yamamoto, H. (2007). ”Economic design of a cir-

cular consecutive k-out-of-n:F system with (k−1) step Markov dependence”,

Reliability Engineering and System Safety, 92, 464-478.



VITA
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