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Abstract We investigate the properties of the

recently proposed “shotgun” sampling approach

for the common inputs problem in the func-

tional estimation of neuronal connectivity. We
study the asymptotic correctness, the speed of

convergence, and the data size requirements of

such an approach. We find that the shotgun ap-
proach can be expected to allow the inference

of the complete connectivity matrix in large

neuronal populations under some rather gen-
eral conditions. However, we find that the pos-

terior error of the shotgun connectivity esti-
mator may grow quickly with the size of the

unobserved neuronal populations, the connec-
tivity strength, and the square of the observa-

tions’ sparseness. This implies that the shotgun
connectivity estimation will require significant
amounts of neuronal activity data whenever the

number of neurons in the observed populations
is small. We present a numerical approach for

solving the shotgun estimation problem in gen-

eral settings and use it to demonstrate the shot-

gun connectivity inference in simulated synfire
and weakly coupled cortical neuronal networks.
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1 Introduction

Recent advances in multi-neuronal activity record-

ings using calcium-sensitive fluorescence imag-

ing have made it possible to image the activity

of large neuronal populations over extended pe-
riods of time (Tsien, 1989; Yuste et al., 2006;

Cossart et al., 2003; Ohki et al., 2005; Reddy

et al., 2008a; Grewe et al., 2010). Bulk-loading

of organic calcium-sensitive fluorescent dyes of-
fers the fluorescent signal-to-noise ratio (SNR)

sufficient for resolving individual action poten-
tials (spikes) of neurons (Yuste et al., 2006;

Stosiek et al., 2003) and genetically encoded
calcium indicators are approaching the SNR

levels necessary for neuronal activity imaging

with single spike accuracy (Wallace et al., 2008).

Modern cooled CCD-microscopy can allow imag-

ing of calcium fluorescence in neuronal pop-

ulations in-vitro with frame-rates of over 60
Hz (Djurisic et al., 2004) and 2-photon laser

scanning microscopy offers similar frame-rates
in-vivo (Iyer et al., 2006; Salome et al., 2006;

Reddy et al., 2008b; Cotton et al., 2013; Theis
et al., 2015). These advances now allow study-

ing the single-cell structure of neuronal circuits
in the brain using accurate statistical approaches

(Pillow et al., 2008; Stevenson et al., 2008a;

Stevenson et al., 2008b; Stevenson et al., 2009;

Mishchenko et al., 2011).

One of the biggest challenges of the func-

tional analysis of the neuronal connectivity in
he brain remains the presence of unobserved

or hidden inputs in the recordings of neuronal

population activity (Nykamp, 2007; Pillow and

Latham, 2007; Vidne et al., 2009). Because func-
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tional connectivity estimation relies on corre-

lating the activity of different neurons in a neu-

ronal population over extended periods of time,

the presence of unobserved inputs can contribute
errors to functional analysis. In particular, the

well-known “common inputs” problem causes
one to mistake the correlations in the activity of
different neurons caused by the correlations in

their unobserved inputs for a direct connection
between those neurons (Nykamp, 2005; Nykamp,

2007; Kulkarni and Paninski, 2007; Pillow and

Latham, 2007). Despite rapid progress in exper-

imental neuronal population activity imaging

techniques, the simultaneous observation of the
activity of all neurons even in the smallest of

neuronal circuits is currently not plausible, and

the development of robust analytical and com-
putational techniques for overcoming the hid-

den inputs problem remains one of the impor-

tant open questions of computational neuro-

science (Nykamp, 2005; Nykamp, 2007; Kulka-
rni and Paninski, 2007; Pillow and Latham,

2007; Vidne et al., 2009; Keshri et al., 2013).
Recently a promising approach for overcom-

ing the hidden inputs problem—the shotgun

sampling—had been proposed in (Turaga et al.,

2013; Keshri et al., 2013). In this approach,
neurons in a large neuronal population are pro-

posed to be imaged in small random groups,

whereas the connectivity matrix of the com-

plete neuronal population is assembled statis-
tically by combining the information about the

neuronal connectivity from different such par-
tial measurements. The shotgun approach of-

fers the possibility for reconstructing the con-

nectivity of large neuronal circuits by using lim-

ited imaging resources, without the need to si-
multaneously image the entire neuronal circuits.

In this paper, we perform a systematic anal-

ysis of certain aspects of the shotgun sampling

proposal such as the asymptotic correctness of
the connectivity estimation, the speed of con-

vergence, and the necessary data sizes. It may
not be clear at first if the shotgun connectiv-
ity estimation is really free from the hidden in-
puts problem. One may observe that, even as

all neurons in a neuronal population do get im-

aged with this approach over different points of
time, these observations still fail to provide the

complete input-output relationships of even a
single neuron in the population: the total num-

ber of neurons that need to be simultaneously

imaged to provide all the inputs of even a single

neuron in mammalian cortex can be as high as

10,000. Without having the information about
the complete set of inputs and outputs of any

single neuron, one may wonder if the hidden
inputs problem is really resolved. Furthermore,

if the shotgun approach does allow the unam-
biguous determination of the complete connec-

tivity matrix, what are the trade-offs that had
been made? In particular, what is the minimal

imaging time required for a given accuracy of

the connectivity matrix reconstruction and how

does this time scale with the size of the unob-
served populations, observation sparseness, and

other parameters?

Here, we show that the shotgun approach

can be expected to recover the complete neu-
ronal connectivity matrix in general neuronal

activity models under some rather general con-
ditions. We calculate the speed of convergence

of the shotgun connectivity estimator and show

that the imaging time required to achieve a

given estimation accuracy scales with the num-
ber of neurons in the unobserved neuronal pop-

ulations as well as the inverse square of the frac-

tion of neurons observed during one imaging

trial. This scaling is inopportune for the recon-
structions of neuronal connectivity in the situa-

tions, where the number of unobserved neurons
remains large. We further discuss a numerical

approach for solving the connectivity estima-

tion problem from shotgun sampling data and

use it to demonstrate the shotgun connectiv-
ity estimation in small model neuronal popula-

tions.

In this paper, we focus specifically on the

problem of the inference of the underlying neu-
ronal connectivity matrix from partial neuronal

population activity observations. In the case
of calcium imaging—currently the most plau-

sible modality for collecting large scale neu-

ronal population activity data—another impor-

tant component of such inference is the decon-

volution of the calcium signal into the underly-

ing neuronal spike trains. In recent years, sig-

nificant progress had been made with respect to

the deconvolution of the calcium imaging sig-
nal, for example, see (Vogelstein et al., 2009)

and (Vogelstein et al., 2010), and (Theis et al.,
2015) for a survey and comparison of recent de-

convolution approaches. Unfortunately, recent
experimental work had indicated that the ex-

isting calcium signal deconvolution approaches
still may need significant improvement to be

practically usable (Cotton et al., 2013; Theis

et al., 2015). In this paper, we do not consider
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this important aspect of the analysis of func-

tional data. Instead, we focus on the mathe-

matical and computational problem of specif-

ically the shotgun estimation, assuming that
the deconvolved neuronal activity data is al-

ready available (Section 2.4) or that an effec-
tive neuronal activity model based on the con-
tinuous calcium fluorescence signal can be used

(Section 2.2). However, in the future the incor-
poration of the calcium imaging deconvolution

problem into and the impact of this problem

onto the inference of neuronal connectivity will

require more detailed investigation, including

the understanding of the impact of the added
uncertainties in the spike timing (as deduced

from a lower frame-rate calcium imaging data),
the apparently high fractions of lost spikes and
the tendency to overestimate bursting and un-

derestimate isolated neuronal spiking activity

(Cotton et al., 2013; Theis et al., 2015).

In the remainder of the paper our presen-
tation is organized as follows. In Materials and

Methods, Section 2.1, we provide a general over-
view of the shotgun neuronal connectivity esti-

mation problem and offer its mathematical for-

malization. In Section 2.2, we investigate the

shotgun connectivity estimation problem in a
linear neuronal population activity model. We

analytically obtain the properly marginalized

observations log-likelihood in this model in asymp-

totic limit and derive the conditions under which
the maximum likelihood estimator in this model

is consistent. Furthermore, we explicitly derive
the sufficient conditions for the consistency of

the shotgun connectivity estimation in general

spiking models of neuronal activity, where the

rate of neuronal spiking is described as a gen-
eral function of linearly summed inputs. We

also analytically demonstrate and discuss the

impact of the hidden inputs problem on the

connectivity estimation in the linear model. In
Section 2.3, we study the shotgun connectivity

estimation in general settings and propose an
exact numerical algorithm for solving the as-

sociated estimation problem in general causal
neuronal population activity models. In Section

2.4, we discuss the numerical simulations per-

formed in this paper.
In Results, Section 3.1, we generalize the

results of Section 2.2 to show that the shotgun
maximum likelihood estimator can be proved

more generally to converge to the true connec-

tivity matrix of a neuronal population as long

as certain conditions are met by the set of the

neuronal subpopulations imaged by the shot-
gun sampling. In Section 3.2, we use this re-

sult to propose a different organization of the
shotgun neuronal activity sampling that may

be more advantageous for experimental real-
ization. In Sections 3.3 and 3.4, we discuss the

results of the shotgun connectivity estimation
in simulated linear and generalized linear neu-

ronal models. Discussion and conclusions follow

in Section 4.

2 Materials and Methods

2.1 The shotgun sampling approach for
neuronal connectivity estimation

In the shotgun sampling, one’s objective is to

recover the effective connectivity matrix of a
large neuronal population using a collection of

partial samples of the activity of that popula-

tion’s different subpopulations. One simple way

to visualize this idea is to think about the re-
construction of a large image by using small

fragments of that image from the image’s dif-
ferent locations.

More formally, we define the effective con-

nectivity matrix W as a parameter of a sta-

tistical model of neuronal population activity,

P (X|W), where X stands for the raster of the
historical activities of all neurons in a neuronal

population, and P (X|W) is the model likeli-

hood of observing a particular raster X . In net-

work models, W is typically a matrix W =
(wij) having as many rows and columns as there

are neurons in the population, N . Each ele-

ment wij characterizes the impact of the past
activity of one “input” neuron j on the activity

of one “output” neuron i. Our objective here,

therefore, is to estimate the complete matrix

W given a series of partial observations of the

activity X .

In the context of this problem we introduce

the following notation. We denote the raster of

the activities of the entire neuronal population

(that is, both observed and hidden) over all ob-

servations by the subscript-less symbol X , and

we denote the activity of that population dur-

ing one observation t by the symbol Xt. That is,

X = {Xt, t = 1 . . . T}, where T is the number of

the observations. Similarly, we denote the col-
lection of all observed neuronal activities over

all observations by the subscript-less symbolX,

whereas the activity of the observed neurons
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during one shotgun observation t is denoted by

the symbol Xt, so that X = {Xt, t = 1 . . . T}.
Finally, the collection of all unobserved neu-
ronal activities will be referred to by using the

symbols Y and Yt, respectively, so that Y =

{Yt, t = 1 . . . T}.
We formally say that the shotgun estima-

tion problem is the problem of estimating the

effective connectivity matrix W of a statistical
model of neuronal population activity P (X|W)

given a set of partial observations of neuronal
activity X.

For the simplicity of the following discus-

sion, in a significant part of this manuscript
we will focus on the shotgun connectivity es-

timation formulated for a single output neu-
ron and a randomly sampled population of neu-

ronal inputs. In this picture, the output neuron
is observed continuously in every observation,

whereas the set of observed neuronal inputs
changes. This assumption allows us to signif-

icant simplify the discussion, while not leading

to any significant loss of generality. The latter is

because in typical network models of neuronal
activity the activities of neurons are condition-

ally independent given the activity of the presy-
naptic neuronal population and the respective

input connection weights. In other words, the
full likelihood P (X|W) in such models factor-

izes over the rows of the connectivity matrix
W,

P (X|W) =
�

i,t

P (Xit|{Xt� , t
� < t};Wi), (1)

where Wi = {wij , j = 1 . . . N}. It is possible,

therefore, to perform the estimation of W one

row Wi at a time.
In the rest of the paper we will consistently

make use of the following notation. The script

symbolW will always refer to the complete con-
nectivity matrix of the entire neuronal popu-

lation of N neurons, whereas the symbols Wi

will refer to a single row of W, corresponding
to the set of all input connection weights of one

neuron. The symbol wij will refer to one con-

nection weight between an output neuron i and

an input neuron j.

The script symbols X and Xt will be always
used to refer to the neuronal activity of the

entire neuronal population, whereas the plain
symbols X, Xt, Y , and Yt will be used to de-

note the observed and the unobserved parts of

the neuronal activity, respectively. We shall oc-

casionally make use of the symbols Xt and Yt

to refer to the set of neurons contained in Xt or

Yt, as opposed to their activities. This distinc-

tion will always be made clear by the context.
Finally, Xt, Xt and Yt will be understood to

be column-vectors, while Wi will always be a

row-vector.

2.2 The shotgun connectivity estimation in

linear neuronal population activity model

2.2.1 The linear model of neuronal activity

The linear model of neuronal activity has the
advantage here of allowing the analysis of the

shotgun connectivity estimation approach to be

carried out analytically. The primary reason
warranting the inspection of this model here,

thus, is its analytical tractability.

In the linear neuronal activity model, we

model the activity of a neuronal population
using a continuous variable Xt, which can be
thought, for example, to represent suitably smoo-

thed firing rates of different neurons or the stan-

dard ΔF/F calcium imaging measure of neu-
ronal activity. The input-output relationships
between these variables is assumed to be lin-

ear,

Xt+1 = WXt + �t. (2)

Thus, here Xt is an N -element column-vector
representing the activity of the population of

N neurons, while the index t plays the role of

discrete time. The parameter W is a N × N
connectivity matrix, and � is a i.i.d. normal ran-

dom noise variable. Without loss of generality,

we assume � to have the variances of one. The

model probability density P (X|W) then would
be defined by,

P (X|W) ∝ exp
�
−
�

t

(Xt+1 −WXt)
2/2

�
. (3)

The problem of estimating the connectivity ma-

trix W is simple, if the activity of the entire
neuronal population is observed. In that case,

we consider the observations’ log-likelihood,

logP (X|W) =�
t
{X T

t+1WXt − Tr[WXtX T
t WT ]/2}+ const.

(4)

The maximum likelihood estimation (MLE) of

W is found as the maximum of Eq. (4). One
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can see rather immediately that such MLE con-

verges to the true connectivity matrix whenever

the matrix
�

t XtX T
t is of full rank.

In the partial observations case, a similar
program can be pursued but one has to prop-

erly consider now the marginalized likelihood
P (X|W) =

�
dY P (X,Y |W), where the unob-

served neural activity variables Y had been in-

tegrated out. For the linear neuronal activity
model, we can calculate this likelihood analyt-

ically (that is, in the asymptotic limit of large
numbers of observations) and study the prop-

erties of such MLE explicitly.

2.2.2 The calculation of the partial
observations likelihood in the linear neuronal

activity model

In this section, we aim to calculate the marginal-
ized observations likelihood P (X|W) for the

shotgun connectivity estimation in the linear

neuronal activity model. We specifically focus

on the input-output form of the model (2), with
a scalar output variable Zit and two vector in-

put variables Xt and Yt, defined by the rela-
tionship,

Zit = WiXtXt +WiYtYt + �it. (5)

Here, Zit represents the “output” activity of
one neuron i at time t+1, while Xt with Yt rep-
resent the activities of the observed and the un-

observed “input” neuronal populations at time

t. Wi is the row of the complete connectiv-
ity matrix W specifying the input connection

weights of the output neuron i, and WiXt
and

WiYt are the parts of Wi corresponding to the
observed and the unobserved inputs Xt and Yt,
respectively. �it is an i.i.d. zero mean and unit

variance normal random variable representing

noise.
The inputs Xt and Yt are assumed to be

drawn jointly from a distribution P (Xt, Yt). Un-

derstanding that Xt and Yt represent the ac-
tivity of the neuronal population in the model

given by Eq. (2), the distribution P (Xt, Yt) can

be taken as the stationary distribution of the

Markov process defined by Eq. (2). This distri-
bution is Gaussian. By suitably offsetting the

variables Xt in Eq.(2), it is always possible to

make this distribution have vanishing first mo-

ments. However, the covariance matrix of this
disribution, Σ, in general will be nontrivial.

It shall be noted that in the above the con-

nectivity vector Wi and the covariance matrix

Σ are both the parameters of the model (5).

However, it can be also observed that Σ is not

an independent parameter per-se since, by virtue

of P (Xt, Yt) being the stationary distribution

of (2), it depends on the connectivity matrix

W. We will ignore this point for now, assuming

no connection between W and Σ, as this will
have no impact on the complexity of the cal-

culations that we will need to perform, while a

more general result can be obtained by ignor-
ing this connection. However, see Section 2.2.5

for some important repercussions.

The specific quantity of interest in this sec-
tion is the average log-likelihood of the observed

data Zi and X in model (5) (in the sense of the

compositional estimation of W one output neu-

ron at a time, see Section 2.1), marginal over

the missing data represented by the hidden in-
put variables Y ,

l(Wi,Σ|Zi, X) =
1

Ti
logP (Zi, X|Wi,Σ), (6)

where P (Zi, X|Wi,Σ) is the marginal distri-
bution of the observed variables in model (5),

P (Zi, X|Wi,Σ) =
�
dY P (Zi, X, Y |Wi,Σ). Note

that Zi and X in Eq. (6) are the collections of
all observations (Zit, Xt) for all t ∈ {t1, t2, . . . , tTi

}
such that the output neuron i is observed, per

the general conventions of Section 2.1. There-
fore, in the RHS of Eq. (6) Zi, X, and
P (Zi, X|Wi,Σ) are all dependent on Ti in this

manner. Also note that both Zi and X are the
observed data.

When the number of observations Ti is large,

the RHS of Eq. (6) converges in probability to

the expectation value of logP (Zit, Xt|Wi,Σ)

under the true distribution of the observed in-

puts and outputs P (Zit, Xt),

l(Wi,Σ|Zi, X) = 1
Ti

logP (Zi, X|Wi,Σ)

= 1
Ti

Ti�
t=1

logP (Zit, Xt|Wi,Σ)

≈ EP (Zit,Xt)[logP (Zit, Xt|Wi,Σ)],

(7)

in which we recognize the expected log-likelihood
function,

l(Wi,Σ) ≈
E[log

�
dYtP (Zit, Xt, Yt|Wi,Σ)],

(8)

where the expectation, again, is taken with re-
spect to the true density of the observed input

and output variables, Xt and Zit, and we used

P (Zit, Xt|Wi,Σ) =�
dYtP (Zit, Xt, Yt|Wi,Σ).

(9)
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We see that it is necessary for us now to calcu-

late,

P (Zit, Xt|Wi,Σ) =�
dYt exp

�
− (Zit −WiXt

Xt −WiYt
Yt)

2/2

−X T
t Σ−1Xt/2 + const

�
,

(10)

where Xt is the vector of the complete input

activities formed by suitably combining Xt and

Yt, that is, Xt = [Xt;Yt]. The integral in Eq. (10)

can be taken explicitly, although the respective
calculation is complex and we move it to Ap-

pendix B. The result of this calculation can be
stated as follows,

logP (Zit, Xt|Wi,Σ) =

−1/2(1 +B2
it)

−1(Zit −WiΣ∗Xt
Σ−1

XtXt
Xt)

2

−1/2 log(1 +B2
it)−XT

t Σ
−1
XtXt

Xt/2

−1/2 log detΣXtXt + const,

(11)

where the scalars B2
it are defined by

B2
it = WiΣWT

i −WiΣ∗XtΣ
−1
XtXt

ΣXt∗W
T
i

= WiYt(ΣYtYt −ΣYtXtΣ
−1
XtXt

ΣXtYt)W
T
iYt

,

and the subscripted notation for Σ refers to
the parts of Σ corresponding to the neuronal

inputs identified in Xt and Yt. For example,
ΣXtXt

refers to the submatrix of Σ composed

of all elements of Σ located at the intersection

of the rows and the columns identified by Xt.
Similarly, Σ∗Xt

is the rectangular submatrix of

Σ containing all the columns corresponding to

the observed inputs Xt, and ΣXt∗ is a similar

rectangular submatrix of all the Xt-rows of Σ.

Eq. (11) allows us to obtain the final expres-

sion for the expected log-likelihood l(Wi,Σ),

l(Wi,Σ) =

−1/2E
�
(Zit−WiΣ∗XtΣ

−1
XtXt

Xt)
2

1+B2
it

+ log(1 +B2
it)

+XT
t Σ

−1
XtXt

Xt + log detΣXtXt

�
,

(12)

where the expectation is again with respect to

the true distribution of the observed inputs and
outputs Xt and Zit. Consider now the expected

log-likelihood l(Ŵi, Σ̂) for an estimate of the

parameters Ŵi and Σ̂. We first take the aver-

age in Eq. (12) over all Xt such that the set of

neurons contained in Xt is fixed. This allows us

to rewrite l(Ŵi, Σ̂) in the following form,

l(Ŵi, Σ̂) ≈
−1/2E

�
1+WiΣWT

i −2ŴiAXtW
T
i +ŴiA�

Xt
ŴT

i

1+B̂2
it

+ log(1 + B̂2
it)

�

−1/2E
�
ΣXtXt

Σ̂−1
XtXt

+ log det Σ̂XtXt

�
,

(13)

where the matrices A and A� are defined by,

AXt = Σ̂∗XtΣ̂
−1
XtXt

ΣXt∗
A�

Xt
= Σ̂∗XtΣ̂

−1
XtXt

ΣXtXtΣ̂
−1
XtXt

Σ̂Xt∗,
(14)

and Wi and Σ are the true connection weights

and the true covariance matrix, respectively,
and where the remaining average is over the

different subsets of observed neurons Xt.

It can be verified by a direct inspection that

Ŵi = Wi and Σ̂ = Σ achieves the global maxi-
mum of Eq. (13) by separately maximizing the

expressions under both expectation values for

everyXt, that is, Σ̂XtXt = ΣXtXt andΣXt∗Ŵi =
ΣXt∗Wi. Moreover, this global maximum is unique
whenever the covariance matrix Σ is nonsingu-

lar and the submatrices Σ∗Xt
and ΣXtXt

for

the sampled Xt cumulatively (but separately)
tile the entirety of the matrix Σ. This is be-

cause the collection of individual-Xt optimal-

ity conditions Σ̂XtXt = ΣXtXt and ΣXt∗Ŵi =
ΣXt∗Wi in this case uniquely specifies Σ̂ and
Ŵi.

However, we also find that Eq. (13) may

contain local optima different from the global
maximum. For example, a second local “mir-

ror” optimum can be found at Σ̂ = Σ and

Ŵi ≈ −Wi, when the fraction of observed neu-
rons in Xt is small, Figure 1. This mirror opti-
mum can be shown to arise from the cancella-

tion of the variations of the terms (1 + B̂2
it)

−1

and log(1 + B̂2
it) in Eq. (13). The difference in

the expected log-likelihoods of the true and the

mirror solution tends to zero with the the aver-

age fraction of the observed neurons Xt, p, as
Δl = O(p2).

The conditions above give the sufficient con-

ditions for the consistency of the MLE in the

considered neuronal activity model. We point

out that the condition of tiling of Σ by Σ∗Xt

and ΣXtXt
can be restated as the condition

that the set of all observed neuronal subsets Xt

cumulatively covers the entire range of possible

inputs j = 1 . . . N (that is, Σ∗Xt
tiles Σ), and
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Fig. 1 An example of l(Ŵi, Σ̂|Zi, X) for a choice of
Wi and Σ = I along the solution ray Ŵi = αWi,
Σ̂ = Σ. The plot shows that α = 1 is not a unique
local maximum. The second “mirror” optimum is
located at α ≈ −1.

the set of all Xt×Xt covers the range of all pos-

sible input-input pairs {(j, j�) : j, j� = 1 . . . N}
(that is, ΣXtXt

also tiles Σ). Furthermore, we
can note that the fact of the full coverage of Σ

by the collections of Σ∗Xt and ΣXtXt is impor-
tant and not the manner in which it is achieved.

Thus, any observations organization that can

provide such a coverage will be equally capa-

ble of uniquely constraining W. For example, a
plausible strategy for estimating the complete

connectivity matrix W in these settings can be

to image the activity of all individual neuronal

pairs (Xit,Xjt) and (Xi,t+1,Xjt), one pair at a
time, in any order.

2.2.3 The hidden inputs bias in the linear
neural activity model

The expected log-likelihood l(Wi,Σ) calculated

in Section 2.2.2 can be used to provide an ex-

plicit example of the hidden inputs problem.

Specifically, we consider the situation when the

set of the observed input neurons Xt is kept
constant throughout the experiment, Xt ≡ X.

In this case, we can remove in Eq. (13) the ex-

pectation value with respect to the different
sets of neurons Xt. Performing the variation
with respect to ŴiX then yields the following

equation for ŴiX ,

ŴiX = WiX +Σ−1
XXΣXY WiY − Σ̂−1

XXΣ̂XY ŴiY .

(15)

Eq. (15) shows that, if one has access to the in-
coming connection weights of the hidden neu-

ronal population, ŴiY = WiY , and the correct

covariance matrix, Σ̂ = Σ, then it is possi-

ble to estimate the correct connectivity weights

WiX even without observing the hidden neu-

ronal activity. However, if hidden contributions

are ignored, for example, by setting ŴiY = 0 or

Σ̂XY = 0, then the hidden inputs induce a bias

in the estimated neuronal connectivity, which
we obtain here explicitly as,

E[ŴiX −WiX ] = Σ−1
XXΣXY WiY . (16)

2.2.4 The variance of the shotgun connectivity

estimator in the linear neuronal activity model

We can evaluate the variance of the shotgun

ML connectivity estimator in the linear neu-

ronal activity model by calculating the Laplace

approximation in Eq. (13) around Ŵi = Wi.

In this case, denoting Ŵi = Wi + δWi, we find

with respect to δWi,

l(δWi) ≈
−Ti

2

�
1 + δWi

A�

1+B2 δW
T
i

�
+ o(δW 2

i ).
(17)

From Eq. (17), we read out the variance of the

ML estimator Ŵi as,

var(Ŵi) = (1 +B2)(A�Ti)
−1. (18)

For weakly correlated case, Σ ≈ I, this can be
reduced to a much more intuitive expression,

var(Ŵi) =
1 + (1− p)|Wi|22

pTi
, (19)

where p is the fraction of the neurons contained

on average in one observation Xt, and |Wi|2 is
the 2-norm of the input connectivity row-vector

Wi.

The above result indicates that the poste-

rior variance of the shotgun connectivity esti-
mator grows with the square of neuronal con-

nectivity as well as the size of the unobserved

neuronal populations. In addition, the estima-

tor variance grows as 1/pTi as p drops.

As we will see in Section 3, this result has
a particularly simple interpretation: The statis-

tical error in Ŵi is introduced by the intrinsic
noise � as well as the uncontrolled variability of

the hidden inputs ζ = WiYt
Yt. The reduction

in that error for a given weight wij occurs in

the proportion to the number of the observa-
tions in which the output of neuron i and the

input of neuron j are simultaneously observed,

pTi. If both the output neuron and the input

neuron are observed randomly with probability
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p, as in the original shotgun proposal, then the

estimator error respectively is,

var(Ŵi) =
1 + (1− p)|Wi|22

p2T
(original shotgun),

(20)

where T is now the total number of the observa-

tions and p2T is the number of the observations

of different input-output neuronal pairs.

2.2.5 The general correctness of the shotgun

ML connectivity estimation in the linear

neuronal activity model

Theorem 1 proved in Section 3.1 can be used to

put in context the analytical results of Section

2.2.2. In particular, Theorem 1 shows that, if
a neuronal population activity model param-

eter W can be brought into a unique corre-

spondence with a set of partial neuronal ac-

tivity distributions P(S) = {P (XS |W),S ∈
S}, where S stands for different subsets of ob-

served neurons and P (XS |W) is the distribu-
tion of their activity, then such parameter can

be uniquely estimated given any set of partial

neuronal activity observations containingP(S).
We can rephrase this statement to say that, if
the set S is such that different model parame-

ters W always identify distinct subpopulation

activity distributions in P(S), then MLE prov-
ably converges to the true W on the set of ob-
servations {XS , S ∈ S}.

We can use this theorem to put in context

the result of Section 2.2.2. In particular, by
multiplying Eq. (2) on the left with X T

t and
averaging over time, we can obtain

Σ1 = WΣ, (21)

where Σ1 = E[Xt+1X T
t ] and Σ = E[XtX T

t ]. As
long as the matrixΣ is nonsingular, Eq. (21) es-

tablishes a unique correspondence between the

neuronal connectivity matrix W and the corre-

lation matrices Σ1 and Σ. That is, if two con-

nectivity matrices are not equal, by virtue of

Eq. (21) they require two different pairs of the

correlation matrices Σ1 and Σ. Since a given

probability distribution implies a definite value

of the correlation matrix, this establishes the

desired correspondence between W and the set

of neuronal activity distributions P (XS |W).

More specifically, we conclude that in the

linear neuronal activity model different connec-

tivity matrices W necessarily require different

sets of neuronal activity probability distribu-
tions P (Xi,t+1,Xjt) (defining the matrix Σ1)

and P (Xit,Xjt) (defining the matrix Σ). By

Theorem 1, any set of partial activity obser-
vations that fully specify these two sets is suf-

ficient to uniquely identify the full W. This
statement is identical to the result of Section

2.2.2: providing all distributions P (Xi,t+1,Xjt)

and P (Xit,Xjt) is equivalent to fully tiling Σ

with the submatrices Σ∗Xt and ΣXtXt .

Finally, we recall the note of Section 2.2.2
that, although the input-output model defined

by Eq. (5) needs to be specified by two ma-

trix parameters W and Σ, the parameter Σ in
fact is not independent, if considered within the

scope of Eq. (2). For example, for the stationary
distribution of Eq. (2)Σ(W) =

�∞
n=0(W)n(WT )n.

It can be shown then in principle that the single
set of the distributions P (Xi,t+1,Xjt) suffices to
completely constrain the full model W.

Thus we note that, either non-determinis-
tic sampling protocols or otherwise reasonable

deterministic protocols that change which sub-

population is imaged more slowly than the record-
ing device’s temporal resolution, can allow esti-

mating all distributions P (Xi,t+1,Xjt) and
P (Xi,t,Xjt), thus satisfying the sufficient con-
ditions obtained in this section and in Section

2.2.2.

2.2.6 The sufficient conditions for the

correctness of the shotgun ML connectivity

estimation in exponential generalized linear

models of spiking neural activity

Of special interest to applications in basic neu-

roscience is the so called spiking generalized lin-

ear model (GLM) of neuronal activity with ex-

ponential nonlinearity (Brillinger, 1988; Rigat
et al., 2006; Pillow et al., 2008). In greater de-

tails this model is described in this paper in

Section 2.4.2. For this model, we obtain ex-

plicitly important results regarding the correct-
ness of the shotgun ML connectivity estimation

in the practically interesting case of the large
number of neurons N .

More specifically, we examine the spiking

exponential-GLM described by a nonuniform
Poisson spiking process with the instantaneous

spiking rate

rit = exp


bi +

N�

j=1

WijXj,t−1


 . (22)
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Note that here the probability of neuronal spik-

ing depends only on the previous neuronal pop-

ulation’s state Xt−1. This situation is simpler to

analyze, while it remains sufficiently general so
that the GLM in the form given by Eq. (40-41)

can be reduced to Eq. (22) by concatenating
into Xt the neural spikes from many past times.

Each Xit is binary, either 1 or 0, corresponding

respectively to spike or no-spike of neuron i at
time t. The standard log-likelihood is,

logP (X|b,W) =
�

i,t

(XitJit − exp(Jit)Δt) ,

(23)

where

Jit = bi +

N�

j=1

WijXj,t−1. (24)

In the case when N is large, the law of large
numbers states that the sum in Eq. (24) can

be approximated under rather general condi-

tions by a Normally distributed random vari-

able with the mean mi = bi +
�

j wijµj and

variance σ2
i = Wi∗ΣWT

i∗, where µ = E[Xt] and
Σ = E[XtX T

t ] is the same-time covariance ma-

trix, as before. The sum over the second term

in Eq. (23) then can be replaced with

�
t
exp(Jit)Δt =

T

(2πWi∗ΣWT
i∗)

1
2

�
dJeJe−(J−mi)

2/(2Wi∗ΣWT
i∗),

(25)

which clearly only depends on mi and Σ, aside

from the sought model parameters b and W.

The sum over the first term in Eq. (23) is ex-

plicitly
�
i,t

X T
it Jit =

�
i

µibi + Tr[WΣT
1 ], (26)

where Σ1 = E[Xt+1X T
t ] is the time-shifted co-

variance matrix, as before. We can conclude,

then, that the log-likelihood of the exponential-
GLM in the limit of large number of neurons is

a function of only µ, Σ, and Σ1,

logP (X|b,W) = F (b,W;µ,Σ,Σ1). (27)

By Theorem 1 in Section 3.1, then, any set
of partial observations completely constraining

µ, Σ and Σ1 is sufficient to uniquely identify

the full W. That is, any set of observations

specifying all distributions P (Xi,t+1,Xjt) and

P (Xit,Xjt) suffices to uniquely constrain W,

insofar as any two exponential GLM are dis-

tinguishable on the full set of observations.

Note that this also provides an extremely
handy method for estimating W (Soudry et al.,

2015). In particular, once µ, Σ and Σ1 had

been calculated from any observations, W can
be found by maximizing

l(b,W) = µT b+ Tr[WΣT
1 ]− J2(µ,Σ,W), (28)

where

J2(µ,Σ,W) =
�
i

emi+2Wi∗ΣWT
i∗ , (29)

and the column-vector m = b+Wµ.

We can also note, as before, that the pa-

rameters µ, Σ and Σ1 are not all independent

and, in particular, knowing µ and Σ1 one can

expect that Σ can be extracted from the dy-

namics equations of the model. Then, W can

be found by using

logP (X|b,W) = F (b,W;µ,Σ(µ,Σ1),Σ1),

(30)

whereas the measurement of all P (Xi,t+1,Xjt)
already suffice to determine W. However, in

that case one needs to explicitly obtain the so-

lution for Σ(µ,Σ1), which may be more chal-
lenging in practice than simply measuring Σ
separately.

2.2.7 The sufficient conditions for the

correctness of the shotgun ML connectivity

estimation in general generalized linear models
of spiking neural activity

Here, we extend the result of the previous sec-

tion to general spiking generalized linear neu-

ral activity models, where the spiking rate is

defined by

rit = f (Jit) , (31)

where Jit is given by Eq. (24). The standard
observations’ log-likelihood now is given by,

logP (X|b,W) =�
i,t

Xit log f(Jit)−
�
i,t

f(Jit)Δt. (32)

As before, in the limit of large N the distribu-
tion of Jit can be approximated using Gaussian.

Then, we can rewrite the log-likelihood (32) as

logP (X|b,W) =

J1(b,W;µ,m�,Σ�)− J2(b,W;m,Σ),
(33)
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10 Yuriy Mishchenko

where

J1(b,W;µ,m�,Σ�) =
�
i

µi

�
1

(2πWi∗Σ�(i)WT
i∗)

1
2
×

�
dJ log f(J +m�(i))e−J2/(2Wi∗Σ

�(i)WT
i∗)

�
,

(34)

and

J2(b,W;m,Σ) =
�
i

�
1

(2πWi∗ΣWT
i∗)

1
2
×

�
dJf(J +mi)e

−J2/(2Wi∗ΣWT
i∗)

�
.

(35)

Wherem, µ and Σ were defined in Section 2.2.6

and m�(i) and Σ�(i) are,

m�(i) = bi +Wi∗E[Xt|Xi,t+1 = 1]

Σ�(i) = E[XtX T
t |Xi,t+1 = 1]

(36)

By Theorem 1 in Section 3.1, these imply that

the set of distributions P (Xit,Xjt), P (Xi,t+1,Xjt)

and P (Xi,t+1,Xjt,Xkt) is sufficient to identify
W.

2.3 The numerical solution of the shotgun

connectivity estimation problem in general
causal models of neuronal population activity

2.3.1 The general causal model of neuronal

population activity

The problem of estimating the effective connec-

tivity matrix W in realistic settings will require

numerical solution. In this section, we develop

a numerical approach for solving this problem
using the Expectation Maximization algorithm.

In the following, we assume throughout that

the activity Xt of the neuronal population in
question can be modeled by a general Markov

model defined by the relationship

Xt ∼ P (Xt|Xt−1;W), (37)

where Xt is the activity of the neuronal pop-
ulation at time t, defined to be conditional on

the state of the neuronal population at time

t − 1, Xt−1, and some parameter W. The lin-
ear neuronal activity model, Section 2.2, is ev-

idently in this form. However, Eq. (37) is more

general and covers a great variety of other im-

portant statistical approaches for neuronal ac-

tivity modeling, with a particularly important
case being that of the generalized linear model

of neuronal activity, discussed in greater detail
in Section 2.4.2.

2.3.2 Expectation Maximization algorithm for

the shotgun connectivity estimation problem in

general neuronal activity models

We formulate the problem of connectivity es-
timation from the shotgun sampling data as

the estimation of W in model (37) over a set
of partial observations of the neuronal activity

X ⊂ X . The standard method for solving such

a parameter estimation problem in the presence

of missing data is the Expectation Maximiza-
tion (EM) algorithm (Dempster et al., 1977).

To recap briefly, the EM algorithm produces a

sequence of parameter estimates Ŵk with uni-

formly increasing likelihoods P (X|Ŵk), guar-

anteeing at least a locally-maximum likelihood

estimate of W. The sequence Ŵk is produced

by iteratively maximizing the functions

Q(W|Ŵk) = EP (Y |X,Ŵk)[logP (X,Y,W)],

(38)

where P (Y |X; Ŵk) is the posterior distribu-

tion of the hidden neuronal activities given the

available observations X and the current esti-

mate Ŵk. This maximization is typically real-

ized by constructing M samples of the missing

data Y l from P (Y |X; Ŵk) and then calculating
Q(W|Ŵk) asQ(W|Ŵ) = 1

M

�
l logP (X,Y l;W).

To apply the EM algorithm here, we refor-

mulate Eq. (37) as a Hidden Markov Model
(HMM) in which the neuronal population ac-

tivities, Yt, are treated as hidden states and

the activities Xt are treated as observations.
We first construct the sample of the unobserved
neuronal activities Y . Given the above defini-

tions, this problem can be stated as the sam-

pling of the hidden state sequences Yt from a
HMM constrained on the observations X, and

solved efficiently using the standard forward-
backward algorithm (Rabiner, 1989; Paninski

et al., 2010).

Assuming the sample Y ∼ P (Y |X; Ŵk) had

been constructed, we evaluate Q(W|Ŵk) by us-
ing,

Q(W|Ŵ) = logP (W) + E[logP (X0)]

+
�
t
E[logP (Xt|Xt−1;W)], (39)

where the expectation values are with respect
to the produced sample of Y . This function can

be calculated straightforwardly and also can be

made convex with a suitable choice of the cau-

sation in Eq. (37)—for example, by using a log-
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concave rate function f in Eqs. (40-41) (Panin-

ski, 2004; Paninski et al., 2010). If the latter

is achieved, the maximum of Q(W|Ŵ) can be

found efficiently with the help of standard gra-
dient descent algorithms.

A detailed description of the implementa-

tion of the EM algorithm for model (37) is given

in Appendix A.

2.4 Numerical simulations

2.4.1 Numerical simulations of the shotgun

connectivity estimation in the linear neuronal
activity model

As a check of the calculations in Section 2.2.2,

we performed numerical simulations of the shot-
gun connectivity estimation in the linear neu-

ronal activity model. The model was simulated
using the definition given by Eq. (5) for a sin-

gle output neuron and a population of neu-

ronal inputs. The input connection weights W

were chosen uniformly at random on the in-
terval [0,Wmax], with a connection probabil-
ity s. The activities of the input neurons Xt

and Yt were drawn from a multivariate normal
distribution with zero mean and a covariance

matrix Σ, randomly generated from uniform

distribution on [0, 1] and normalized to unit
variances. More specifically, the elements of Σ
were initially independently chosen from uni-

form random distribution on the interval [0, 1].
Then, thus obtained matrix was symmetrized

by using Σ := Σ + ΣT and offset by using
Σ := Σ +

√
N · I, to guarantee the positive

definitiveness (Furedi and Komlos, 1981). Fi-

nally, each raw and each column of Σ were

divided by the square of the respective diag-

onal element,
√
Σii, to normalize Σ to unit

variances Σii = 1. The observations were sim-

ulated by continuously observing the activity

of the output neuron and sampling the activi-

ties of the input neurons using the block-wise

round-robin strategy, discussed in Section 3.2.

The original connectivity was numerically re-
covered from thus simulated data using an im-
plementation of the EM algorithm in Matlab,

following the discussion of Section 2.3.2, with

the sample size of the hidden neuronal activi-

ties set at M = 100.

2.4.2 Numerical simulations of the shotgun

connectivity estimation in the generalized

linear neuronal activity model

In order to test the shotgun connectivity esti-

mation in more realistic settings, we performed

the numerical simulations of the shotgun con-

nectivity matrix estimation using several model
cortical neuronal networks, described using the

generalized linear model (GLM) (Brillinger, 1988;
Rigat et al., 2006; Pillow et al., 2008).

GLM is a particularly general and powerful
class of statistical models of neuronal popula-

tion activity, described as a nonuniform Poisson
neuronal spiking process,

Pr(ηit = 1) = f


bi +

N�

j=1

wijJjt


 (40)

Jjt = aj · (Jj,t−1 + ηj,t−1) + �jt, (41)

Here, ηit is a binary variable specifying whether
i-th neuron fired at time t, f is a nonlinear firing

rate function, bi is a scalar offset, and wij are
coupling weights. The driving currents Jjt are
defined as autoregressive processes with decay

constants aj and a normal noise �jt ∼ N(0,σ2
J).

More than one autoregressive current may be

defined per neuron, allowing the modeling of

complex neuronal responses as the combina-

tions of Jjt’s with different decay constants.
The diagonal weights wii model the self-depen-
dencies in neuronal activity, such as refractory

period, bursting, etc., whereas the off-diagonal

weights wij model the interactions between neu-
rons. Generalized linear models had been suc-

cessfully applied in the literature to model the
statistical properties of individual neurons as

well as that of large neuronal populations (Bril-
linger, 1988; Chornoboy et al., 1988; Brillin-

ger, 1992; Plesser and Gerstner, 2000; Paninski
et al., 2004; Paninski, 2004; Rigat et al., 2006;

Truccolo et al., 2005; Nykamp, 2007; Kulkarni

and Paninski, 2007; Pillow et al., 2008; Vidne
et al., 2009; Stevenson et al., 2009). The model

given by Eqs. (40-41) falls under the general

definition given by Eq. (37) after the identifi-

cation Xit = (ηit, Jit).

In this paper, we simulated two GLM model

neuronal networks—a small toy model of a syn-

fire neuronal circuit and a larger realistic weakly

coupled network of cortical neurons.

The synfire network was simulated in or-

der to demonstrate the resolution of the canon-

ical common inputs situation in the shotgun
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approach. The synfire model was created as

an all-excitatory network of N = 10 neurons

with strong feed-forward connectivity, as de-

scribed in Figure 4. All connection strengths
were chosen as a constant Wsyn, selected so

that the probability of a post-synaptic neuron
spiking conditional on a spike of a connected

pre-synaptic neuron was approximately 80%.

The model was then simulated using Eqs. (40-

41) and the parameter definitions in Table 2.
The neuronal activity was collected using the

block-wise round-robin sampling, described in

Section 3.2.

The model of a weakly coupled cortical neu-
ronal network was adopted here from (Mishche-

nko et al., 2011), and was intended to demon-
strate the shotgun connectivity estimation in a

more realistic setting. The model closely repro-
duced the experimental data about local corti-

cal neuronal circuits available in the literature
(Braitenberg and Schuz, 1998; Gomez-Urquijo
et al., 2000; Lefort et al., 2009; Sayer et al.,

1990). More specifically, the neuronal popula-
tion was created as 80% excitatory and 20% in-

hibitory neurons. The neurons were connected

with each other randomly and homogeneously

with the probability of 10%. The Dale’s law
was respected. The strength of the excitatory

connections was set using the peak excitatory

post-synaptic potential (PSP) values randomly

chosen from an exponential distribution with
mean 0.5 mV (Lefort et al., 2009; Sayer et al.,

1990). The strength of the inhibitory connec-
tions was set using a similar exponential dis-

tribution with the mean chosen to balance the

average excitatory and inhibitory inputs in the

network (Abeles, 1991). All neurons had the re-
fractory periods of 1 msec, enforced in Eqs. (40-

41) via the self-currents Jit with the decay time-

constants 1 msec and wii = −100. Individual
PSPs were modeled using the alpha function

(Koch, 1999), described as the difference of two

exponentials with a rise time of 1 msec and a

decay time of 10 to 20 msec (Sayer et al., 1990).

Given the simulations time step of 1 msec here,
such PSPs can be described more precisely as

an instantaneous jump followed by an expo-

nential decay of 10 to 20 msec, as described
by Eq. (41). The spiking activity was simu-

lated at 1 msec time step ignoring the interneu-

ronal conduction delays, negligible for spatially
compact neuronal circuits. The neuronal activ-

ities were downsampled at 100 Hz, in order to

simulate the observations using a slow imag-

ing technique such as calcium imaging. Gen-

erated neuronal activities were collected using

the block-wise round-robin sampling strategy,

Section 3.2. The detailed parameters used in
the simulations are listed in Table 3.

The connectivity matrix was estimated from

the simulated data using a Matlab implemen-

tation of the EM algorithm described in Ap-
pendix A. The sample size of the hidden neu-

ronal population activity was taken as M = 50
for the cortical neuronal networks andM = 150

for the synfire network. Only the connectiv-
ity matrix weights were estimated, taking the

PSP time-constants as known. This was done
to separate different sources of errors in the

estimation, understanding that the focus here

is on the problem of the shotgun connectivity

inference. The PSP time-constants, more gen-
erally, can be set uniformly in the population

from physiological data without a significant
impact on the connectivity estimation, or also

included into the EM procedure. For more in
depth discussion of this issue see (Mishchenko

et al., 2011).
The EM algorithm was executed on a 4 dual-

core i7 processor desktop computer with 8GB

of RAMmemory. The numerical estimation prob-

lems could be generally solved in a reasonable
amount of time, however, we found that the

necessity to keep up to M samples of the com-
plete activity of the hidden neuronal popula-

tions imposed drastic requirements on RAM
memory. In particular, for the GLM cortical

neuronal networks described here and using the

said workstation, we could solve at most the

models with T = 3000 seconds of neuronal ac-

tivity data and M = 50 examples of the hidden

activity data. The above configuration, thus,
set the limits on the numerical experiments per-

formed in this paper.

More generally, in order to set the parame-

ter M of the number of samples used to model
the posterior distribution of hidden neuronal

activities, we tried different M such as M = 10,
50, 100 and 150. The value of M = 50 was the

highest value that we could try on the above

mentioned computer configuration for the GLM

neuronal networks. The value M = 150 was the

highest that we could try for the synfire model.

Generally, we found thatM = 10 sufficed to ob-

tain a solution, however, the noise in that solu-

tions was high and correlated but disconnected
neurons frequently were identified as connected

(in the case of the synfire model). Using a larger
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hidden activity sample M , thus, appeared to

be necessary. M = 50 appeared to be suffi-

cient to achieve satisfactory reconstructions for

the weakly correlated cortical neuronal models,
but appeared to be lacking in the case of the

strongly correlated synfire model. M above 100
appeared to be satisfactory in the case of the
weakly correlated cortical neuronal network as

well as the synfire model.

Table 1 The parameters of the linear neuronal ac-
tivity model used in the numerical simulations in
this paper. U(a, b) is a uniform probability distribu-
tion on [a, b].

Number of input neurons, N 100
Input weights distribution, W U(0,Wmax),

Wmax = 2
Connection probability, s 10%
Observations sparseness, p 20%
Sample size, T 500 samples

Table 2 The parameters of the toy GLM synfire
model used in the numerical simulations in this pa-
per.

Number of neurons 10
Base log-firing rate (exp(bi)) 15 Hz
Average firing rate 33 Hz
Simulation time step 1 msec
Max observation duration 50 sec
Neurons per imaging block 20%
Excitatory conn. strength (wij) 13
Excitatory PSP rise time 1 msec
Excitatory PSP decay time 1 msec
Refractory time 1 msec

3 Results

3.1 The correctness of the shotgun neuronal

connectivity estimation

One of the biggest challenges of the functional
connectivity estimation in neuroscience remains

the presence of unobserved or hidden inputs in

neuronal population activity data. The shot-

gun connectivity estimation is a promising ap-

proach for alleviating this problem, consisting

in imaging a large neuronal population using

small groups of random neurons and reconstruct-

ing the complete connectivity matrix from such
partial observations.

In Materials and Methods, we study analyt-
ically the problem of the shotgun connectivity

estimation in a linear model of neuronal popu-
lation activity. We show that the shotgun esti-

mation can be always posed as the problem of
estimating the input connectivity of one “out-

put” neuron at a time, given a partially ob-

served population of neuronal inputs. This is

because in typical network models of neuronal
activity the activity of neurons is conditionally

independent given the activity of their presy-
naptic neuronal populations and the respective

connection weights.

In the considered linear neuronal activity
model, we explicitly calculate the observations

likelihood P (X|W) and demonstrate that the

MLE in this case converges to the correct com-

plete connectivity matrix as long as all possible
input-input and input-output pairs of neurons

are observed together in at least a fraction of
the observations. We also explicitly derive the

hidden inputs bias and the variance of the shot-

gun estimator in this model.

It is possible to further extend these results

to more general settings. For that, we assume

first that the activity of a neuronal population,
X , can be described by a general parametric

model probability density P (X|W), given a pa-
rameter W . We say that an estimator Ŵ is con-

sistent as long as Ŵ → W as the sample size
tends to infinity. Given a set of partial neuronal

activity observationsX ⊂ X , we recall from the
asymptotic estimation theory that the MLE is

guaranteed to provide a consistent estimator as

long as the observations distribution P (X|W)

Table 3 The parameters of the realistic GLM corti-
cal neuronal network used in the numerical simula-
tions in this paper. Exp(λ) is the exponential prob-
ability distribution with mean λ, and Np(µ,σ) is
the truncated-normal probability distribution with
mean µ, standard deviation σ, and lower bound p.

Number of neurons 50
Base log-firing rate (exp(bi)) 10 Hz
Average firing rate 10 Hz
Excitatory neurons 80%
Inhibitory neurons 20%
Connectivity sparseness 10%
Simulation time step 1 msec
Max observation duration 3000 sec
Neurons per imaging block 20%
Excitatory PSP peak Exp(0.5) mV
Inhibitory PSP peak Exp(-2.3) mV
Excitatory PSP rise time 1 msec
Inhibitory PSP rise time 1 msec
Excitatory PSP decay time N5(10, 2.5) msec
Inhibitory PSP decay time N10(20, 5) msec
Refractory time N1(2, 0.5) msec
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14 Yuriy Mishchenko

possesses no observation-indistinguishable pa-

rameter sets. That is, P (X|W) is such that

no two distinct parameters W �= W � result in

identical distributions P (X|W) ≡ P (X|W �).
The above condition is commonly referred to

in statistics as the identifiability property.

The above observation can be made most
readily by considering the average observed-

data log-likelihood maximized by the MLE. More
specifically, let us consider a collection of neu-
ronal population activity observations {X(k), k =

1 . . . n}. This can be understood as a collection

of repeated experiments or a collection formed

from different segments of the same experiment,
corresponding to its different time-intervals.

In the MLE, we maximize the log-likelihood
of the observed data, whereas by the observed
data here we understand the collection of all

neuronal activity observations X(k). The aver-

age observed-data log-likelihood in the limit of

large n converges in probability to

l(Ŵ|{X(k)}) = 1
n

n�
k=1

logP (X(k)|Ŵ)

≈ EP (X|W)[logP (X|Ŵ)],
(42)

where the last line identifies the expected log-
likelihood function l(Ŵ) = E[logP (X|Ŵ)], and

the expectation is with respect to the true dis-

tribution of X, P (X|W). Well known Gibbs in-

equality then tells us that Eq. (42) achieves its
global maximum when and only when P (X|Ŵ) ≡
P (X|W) for all X. The above standard argu-

ment leads to nontrivial insights about the shot-

gun neuronal connectivity estimation below.

From the perspective of the identifiability

of the connectivity estimation problems in neu-

ronal activity models with the lack of complete
observations, we first point out that the prob-

lem of hidden inputs in that setting arises be-

cause the identifiability condition becomes bro-

ken. That is, different models of hidden neu-

ronal connectivity can produce the same distri-

bution of the observed data. In the classical ex-

ample of the hidden inputs problem, for exam-
ple, a direct connection is inferred between two

unconnected observed neurons because a cor-
related input fed into these neurons by a third

neuron also can reproduce the data collected on

the observed neurons. The violation of identifi-

ability leads to multiple network models being
able to reproduce the same empirical distribu-

tion P (X|W) and, therefore, achieve the global

maximum of the log-likelihood (42). However,

the key observation at this stage is that the

true connectivity W still remains a ML solu-

tion. Thus, it is not that the hidden inputs

problem somehow skews the neuronal connec-

tivity estimation. It is just that such estimation
is no longer unique.

To examine this state of things in the shot-
gun estimation, we recognize initially that the

expected log-likelihood (42) in this case should
be re-written as,

l(Ŵ) = ES
�
EP (XS |W)[logP (XS |Ŵ)]

�
. (43)

Here, S denotes a particular subpopulation of
observed neurons and the external average is

over such subpopulations S imaged during a
shotgun sampling experiment. XS refers to the

part of the neuronal population’s activity ob-
served in S, and P (XS |W) is the probability

distribution of such activities.
Once again, we recall the observation above

that the true connectivity matrix Ŵ = W is

necessarily a global maximizer of Eq. (43), by
Gibbs inequality. More significantly, Ŵ = W
maximizes Eq. (43) by simultaneously maxi-

mizing all individual terms

EP (XS |W)[logP (XS |Ŵ)], since evidently

P (XS |Ŵ) = P (XS |W) for all S whenever

Ŵ = W. We now ask whether there can ex-
ist another model W � �= W such that achieves
the same global maximum. We note that, since

Ŵ = W achieves the global maximum of Eq. (43)

by simultaneously globally maximizing all
EP (XS |W)[logP (XS |Ŵ)], any other such maxi-
mizer of Eq. (43) must also have this property.

In turn, this implies that any such P (XS |W �)
must match the marginal distributions P (XS |W)

on all inspected S.
We thus arrive at the following conclusion:

Definition 1 Assume that a statistical model
of neuronal population activity P (X|W) and

a set of neuronal subpopulations S = {S} are
such that for any two different model parame-

ters W and W � there exist at least one S in
S such that the distributions P (XS |W) and

P (XS |W �) are not identically equal, where XS
is the restriction of X to S. Then, we say that

the model P (X|W) is uniquely identified by the

set of distributionsP(S) = {P (XS |W),S ∈ S}.

Definition 2 Assume that for any neuronal sub-

population S in a set of neuronal subpopula-
tions S there exist a subpopulation S � in a dif-

ferent set S� such that S ⊂ S �. Then we say

that S� completely covers S.
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Theorem 1 Assume a statistical model of neu-

ronal population activity P (X|W) is uniquely

identified by a set of distributions {P (XS |W), S ∈
S}. Then, for any set of partial observations of
the neuronal population activity in this model

on a set of neuronal subpopulations S� that com-

pletely covers S, the ML estimator defined as
the argmin of (43) is consistent.

In other words, if the shotgun sampling S�

covers all neuronal subpopulations S from the

identifying set of partial neuronal activity dis-
tributions P(S), then the shotgun ML estima-

tor is guaranteed to converge to the correct W.
The condition on S� to completely cover S en-

sures that any P (XS |W) can be recovered from

some P (XS� |W) such that S ⊂ S �, by marginal-

ization.

Theorem 1 replaces the question of the con-

sistency of the MLE in the shotgun sampling

by the question of finding the identifying sets
P(S) for a given neuronal activity model. It

shows that, whenever an identifying set P(S) is
covered by a sampling scheme, either using non-

deterministic or deterministic protocol, the re-
spective inference problem possesses the identi-

fiability property, whereas in general such iden-
tifiability property for an inference problem with

only partial observations data is unknown and,

in fact, cannot be guaranteed even when the

original full problem is identifiable. It is also
worth noting that in Theorem 1 it is not im-

portant how exactly the mapping between the
identifying sets P(S) and W is constructed, or

by using which statistics of the distributions in
P(S) the parameter W can be extracted and

how. As long as such a mapping exists, the full
parameter W is recoverable by Theorem 1 by

using the MLE.

It remains to establish the identifying sets

of given neuronal activity models. In certain
cases, such as in the linear neuronal activity

model, the identifying set can be rather im-
mediately established (Section 2.2.5), providing

the sufficient conditions for the shotgun sam-

pling to be successful. However, in general, dif-

ferent neuronal activity models require sepa-
rate investigation into their identifying sets. From

general arguments, we can conjecture that in a

large class of network models of neuronal ac-

tivity the set of all pair-wise input-output neu-
ronal activity distributions such as P (Xi,t+1,Xjt)

would suffice to form such a set, see below.
However, in general the question of finding the

identifying setsP(S) of a neuronal activity model

is nontrivial, and even the existence of nontriv-

ial identifying sets P(S) cannot be always guar-

anteed.

Specifically, consider an arbitrary probabil-

ity density P (X ) defined on a discrete grid of
d points in n dimensions, with dn points in to-

tal. Such P (X ) has dn − 1 free parameters. All

marginal distributions of up to n−1 dimensions
together provide n(d−1)+n(n−1)/2(d2−1)+

n(n−1)(n−2)/3!(d3−1)+ ... < (1+d)n−dn <

ndn−1 linear conditions on P (X ). Therefore,

even all marginal distribution P (XS) together

are not sufficient to determine P (X ) uniquely
whenever d > n.

As a specific counter-example, let us con-

sider a toy model P (X1,X2|W) with 2 neurons

in 4 possible states (n = 2 and d = 4). Specify-
ing such a general model requires providing 42−
1 = 15 different probability values P (X1,X2).

However, the two marginal distributions P (X1)
and P (X2) provide only 8 linear constraints on
P (X1,X2): P (X1) =

�
X2

P (X1,X2) and
P (X2) =

�
X1

P (X1,X2). Clearly, an infinite

number of P (X1,X2) can be suggested perfectly
matching these constraints for almost any P (X1)
and P (X2). In this case, any partial observation

of X is insufficient—a complete observation is

required.

We ran into the problems in the above ex-

ample because the number of the degrees of
freedom of the model probability distribution

P (X ) was simply too high. However, in net-

work models of neuronal population activity

P (X|W) is generally a much more constrained
distribution, which is typically completely spec-

ified by a single connectivity matrix W of N2

elements, where N is the number of neurons.
Counting the degrees of freedom in this case

implies that there can be at most N2 indepen-
dent distributions in the set of all marginal dis-

tributions P (XS |W). Choosing any subset of
N2 independent such distributions, thus, will

uniquely fix all other distributions and, there-

fore, the complete model W.

It is natural to conjecture (but we cannot

prove this now rigorously) that such a subset
can be chosen in the form of the N2 input-

output distributions P (Xi,t+1,Xjt). Other choices

may also exist. For example, if the stationary
distribution of the model (37), π(Xt), is such

that a unique mapping is formed by π(Xt) →
W, then a set of N2 independent same-time
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distributions such as P (Xit,Xjt) may do just

as well for specifying W1.

In summary, we suggest, based on the count-

ing of degrees of freedom, that one can expect

the set of the observations of all distinct input-
output neuronal pairs P (Xi,t+1,Xjt) to be suffi-

cient for recovering the complete neuronal con-
nectivity matrix in general network models of

neuronal population activity. At the same time,

the above argument cannot constitute a rigor-

ous proof. Therefore, we must present it here
as a conjecture open for further investigation.

3.2 Alternative organizations of the shotgun

neuronal population activity sampling

The results obtained in Section 3.1 have certain
implications for the organization of the shot-

gun connectivity estimation experiments. We

see that, to be able to reconstruct a complete

neuronal connectivity, it is only important that
the identifying set P(S) is covered by the obser-

vations, and the manner in which such coverage

is provided is not important. Per the conjecture

of Section 3.1, any imaging organization of a
neuronal network that furnishes the observa-

tions of all input-output neuronal pairs in that
network would suffices to uniquely identify the

complete neuronal connectivity matrix.

A particularly advantageous and conceptu-

ally simple alternative organization of neuronal
activity sampling from this perspective is the

block-wise round-robin sampling illustrated in
Figure 2. In this approach, a neuronal popula-

tion is imaged as a series of contiguous blocks,
one input and one output block imaged simul-

taneously for a set number of observations Tb.

The blocks are moved through the population

so that all possible combinations of the input
and the output blocks are inspected.

The block-wise round-robin strategy can be

straightforwardly implemented using the exist-

1 In this respect, note that the pairwise same-
time distributions P (Xit,Xjt) in general may not
be sufficient to identify W since these are symmet-
ric and, in the worst case scenario, only provide
N(N + 1)/2 independent constraints on W. In that
sense, the time-shifted distributions P (Xi,t+1,Xjt)
are guaranteed to provide N2 different constraints.
One can also look at the distributions of triples
P (Xit,Xjt,Xkt) from π(Xt). Alternatively, if the
distributions P (Xit,Xjt) contain different statistics
(such as mean and variance) that essentially inde-
pendently relate to W, then measuring P (Xit,Xjt)
may also prove sufficient for identifying W.
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Fig. 2 Block-wise round-robin neuronal population
activity sampling strategy. In this strategy, the neu-
ronal population is imaged as a sequence of con-
tiguous blocks of input and output neurons. Dur-
ing one section of the experiment, the neurons in
one input and one output block are observed simul-
taneously for a set of observations Tb. All possible
combinations of the input and the output blocks are
observed over the entire experiment. The figure illus-
trates the block-wise round-robin sampling strategy
applied to a hypothetical population of 100 neurons
with 20 neurons observed per each input and out-
put block. White color indicates the neurons in the
output blocks and gray color indicates the neurons
in the input blocks. In each observation, the activity
of all marked neurons is observed simultaneously.

ing fluorescent microscopy tools by scanning
two field-of-views of a confocal or two-photon

microscope over the neuronal population. An-
other advantage of this strategy is a simpler

numerical connectivity estimation problem.

Block-wise round-robin sampling strategy is

sufficient for collecting all input-output as well
as same-time pairs of neurons and, in that sense,

is sufficient for the recovery of the complete

neuronal connectivity in the sense of the con-
jecture about the identifying sets of network
models of neuronal activity in Section 3.1.

3.3 The impact of the missing data on the
shotgun connectivity estimation

In Section 2.2.4 we obtained some key prop-

erties of the shotgun connectivity estimator in

the linear neuronal activity model. It is inter-
esting to return to these results now, from the

positions of the discussion of the last sections.
In particular, let us consider a segment of a

block-wise round-robin neuronal activity sam-

pling experiment with a fixed input and output

neuronal blocks. We can roughly relate the ac-
tivity of the observed neurons in this scenario

as,

Zt = f(WZXXt + ζt + �t), (44)

where Zt is the column-vector of the activities

of the neurons in the output block, Xt is the

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 20, 2015. ; https://doi.org/10.1101/032409doi: bioRxiv preprint 

https://doi.org/10.1101/032409
http://creativecommons.org/licenses/by/4.0/


Consistent neural connectivity estimation using shotgun sampling 17

column-vector of the activities of the neurons

in the input block, and we introduced a new

random variable ζ = WZY Y , which represents

the combined input of the hidden neurons into
the neuronal outputs.

Posed from this perspective, the shotgun
connectivity estimation appears now as the prob-

lem of estimating a block of the connectivity

matrix WZX given the observations of the ac-

tivities of all relevant input and output neu-
rons, whereas the presence of the unobserved

neurons enters solely in the form of an addi-

tional noise ζ. The noise ζ is both structured

and correlated with X. The knowledge of that
structure is required to successfully remove the

associated bias from the estimates ofWZX . How-

ever, ζ also introduces additional statistical un-
certainty into the estimates ofWZX . We can es-

timate the variance of ζ as var(ζ) = var(WZY Y ) ≈
|WZY |2var(Y ), leading to a rough estimate of
the variance of the estimator ŴZX as,

var(ŴZX) ∝ (Tbvar(X))−1var(�+ ζ)

≈ (Tbvar(X))−1(var(�) + |WZY |2var(Y )),

(45)

where |WZY |2 is understood as the average 2-
norm of the rows of WZY . In the limit where

the size of the hidden neuronal population is

large, we can write that approximately,

var(ŴZX) ≈ sNhA
2
w/Tb, (46)

where Nh is the number of neurons in the un-
observed neuronal population, Aw is the root
mean square average of the (nonzero) neuronal

connectivity weights, s is the sparsity of the

connectivity matrix, and Tb is the number of
observations observing given input-output neu-

ronal pairs.

Eq. (46) provides a useful approximation for
the error of the shotgun connectivity estimator.

We see that the primary source of that error

is the uncontrolled fluctuations of the hidden
inputs in the observed neurons. The error is af-

fected by both the size of the hidden population

and the strength of its coupling, and is reduced
in the proportion to the total number of the
observations of different input-output neuronal

pairs.

3.4 Numerical simulations

In this section we demonstrate the recovery of

the complete neuronal connectivity matrix from
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Fig. 3 The properties of the shotgun connectivity
estimator in relation to the missing data. From top
to bottom, the posterior error of the shotgun estima-
tor is shown in relation to the observations sparse-
ness, the total number of observations, the size of
the hidden population, and the rms average connec-
tivity strength. The results of numerical simulations
are shown with solid lines and the theoretical pre-
dictions are shown with dashed lines. The model pa-
rameters are described in Table 1.
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partial neuronal activity observations using sim-

ulated neuronal population activity data.

We first examine the problem of such a con-

nectivity estimation in a small model synfire

network of N = 10 neurons, Figure 4. Syn-

fire model represents one of the worst cases
of the hidden inputs problem in the functional
connectivity inference, as the correlations can

propagate down the synfire chain over large
distances and emulate false connections among

distant neurons.

We first illustrate the connectivity estima-

tion in this model in the population of 5 neu-

rons indicated in Figure 4 with solid circles.
This corresponds to the typical neuroimaging

situation, in which a fixed neuronal population
is continuously observed whereas the rest of
the neurons or their inputs are hidden. As a

measure of connectivity, we present in Figure 5

the calculation of the time-shifted correlogram

(of lag 1 bin) for the selected neuronal popu-
lation, widely used in the literature as a func-

tional connectivity measure, and a generalized
linear model (GLM) connectivity matrix esti-

mation. We observe that either the correlogram

and the GLM connectivity matrix produce spu-

rious connections in this neuronal population,
namely, such seen between the neurons 4 and

9, 3 and 6, and 9 and 6.

Next, in Figure 6 we perform the estimation

of this neuronal connectivity matrix using the
block-wise round-robin sampling strategy and

the EM estimation algorithm described in Sec-
tion 2.3.2. Despite the fact that at most 4 neu-

rons are observed in this situation at a time,

the complete neuronal connectivity matrix is

recovered rather well. The strength of the false-
positive connections between the neurons 4-9,

3-6 and 9-6 is also reduced by a factor of 2

to 3 compared to the reconstruction in Figure

5. At the same time, the obtained connectivity
matrix is substantially more noisy and requires

more observations to suppress that noise. Typi-
cally, we observe that the accuracy of the shot-

gun connectivity estimation with the observa-
tion time T is comparable to that using the

full observations and the observations duration

p2T , essentially in agreement with Eq. (46), the
bottom panel in Figure 6.

In Figure 7, we apply the shotgun approach
to the estimation of the complete connectiv-

ity matrix in a model of realistic weakly cou-

pled cortical neuronal network with N = 50

neurons. The shotgun estimation again allows

5
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Fig. 4 A model fragment of synfire neuronal circuit
illustrating the resolution of the hidden inputs situ-
ation in the shotgun connectivity estimation.

recovering the complete neuronal connectivity

matrix from partial neuronal population activ-
ity observations. Once again, the data size nec-

essary to achieve a given accuracy is signifi-

cantly greater than that required when using
the complete neuronal activity. Specifically, if a

good connectivity matrix reconstruction could
be obtained in this simulation with all neurons

observed from a total of T = 60 seconds of

neuronal activity data, in p = 20% block-wise
round-robin sampling case the imaging time nec-
essary for a similar reconstruction accuracy ap-

proached T = 3000 seconds, the lower panel in

Figure 7.

4 Discussion and Conclusions

The shotgun sampling solution of the common
inputs problem is a promising new approach

for the functional estimation of the neuronal

connectivity in large neuronal networks in the

brain without requiring the simultaneous imag-
ing of entire neuronal populations. By statisti-

cally estimating the neuronal connectivity from
a collection of partial observations of different

neuronal sub-populations, the shotgun sampling

offers a possibility of recovering the connectiv-

ity matrix in realistically large neuronal circuits
using limited imaging resources.

In this paper, we investigate analytically and

in simulations the properties of such shotgun
neuronal connectivity estimation. In Theorem

1 of Section 3.1 we establish the sufficient and

necessary conditions for the complete connec-

tivity matrix of a neuronal population to be
recoverable from shotgun-type incomplete neu-

ronal activity observations. In Section 2.2.2, 2.2.3

and 2.2.4, we discuss the shotgun connectivity

estimation in a linear neuronal activity model
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Fig. 5 The hidden inputs problem in the model syn-
fire circuit in Figure 4. The top panel shows the true
connectivity matrix for the circuit in Figure 4. The
middle panel shows the time-shifted correlogram cal-
culated for the population if neurons indicated in
Figure 4 with solid circles, from T = 10 seconds of
observation. The bottom panel shows the GLM con-
nectivity matrix estimation for the same population
from T = 10 seconds of neuronal activity data. The
simulation parameters are as described in Table 2.

more explicitly, and analytically derive its shot-

gun observations likelihood function, associated

maximum-likelihood estimator, and the key prop-

erties of that estimator. In Section 2.2.5, 2.2.6

and 2.2.7, we explicitly establish the sufficient

conditions for the correctness of the shotgun
connectivity estimation in linear and exponen-
tial GLM neuronal activity models as well as

in general spiking models of neuronal popula-
tion activity, where the neuronal firing rates are
described by a general nonlinear function of lin-

early summed inputs. The latter, in particular,

covers a great variety of general network mod-

els of neuronal populations activity.
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Fig. 6 Estimation of the complete neuronal connec-
tivity in the model synfire circuit in Figure 4 using
the block-wise round-robin activity sampling. The
top panel shows the result of the neuronal connec-
tivity reconstruction using this approach and T = 50
seconds of neuronal activity data. The middle panel
shows, for comparison, a similar reconstruction but
using the complete observations and T = 10 seconds
of neuronal activity data. The bottom panel com-
pares the quality of the estimated connectivity ma-
trices for the block-wise round-robin approach (dia-
monds) and the complete data (solid line). The shot-
gun approach points are placed at the ”equivalent”
time calculated as T � = p2T . The simulation param-
eters are given in Table 2.

In the linear and the exponential-GLMs of

neuronal activity in the limit of large number of

neurons, we find that the shotgun estimation is
guaranteed to produce the complete connectiv-

ity matrix whenever all possible input-output
pairs of neurons as well as all the pairs of same-

time neuronal activities had been observed in

at least some parts of a shotgun sampling ex-
periment. In these models, constraining all el-
ements of the same-time and time-shifted co-
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Fig. 7 The shotgun connectivity estimation in a
model of a realistic weakly coupled cortical neu-
ronal network. The upper panel shows the recon-
struction of the complete connectivity matrix us-
ing p = 0.2 block-wise round-robin neuronal ac-
tivity observations in such network and T = 3000
seconds of neuronal activity data. The multiplica-
tive bias seen in the reconstructed weights is the
finite time-discretization bias discussed in (Mish-
chenko et al., 2011) (not corrected here). The re-
constructed connection weights reproduce the true
connectivity, however, are rather noisy. The bottom
panel shows the correlation coefficient of the recon-
structed connection weights vs the true connectivity
as a function of the EM algorithm’s iteration num-
ber, for T = 300, 1500 and 3000 seconds of neuronal
activity data. Solid gray line represents the baseline
reconstruction produced using the complete observa-
tions and T = 60 seconds of neuronal activity data.
The simulation parameters are given in Table 3.

variance matrices, Σ = E[XtX T
t ] and Σ1 =

E[Xt+1X T
t ] respectively, suffices to uniquely iden-

tify the full connectivity matrix as well as of-

fers a simple way for deducing the connectiv-

ity matrix with modest computational effort, as

discussed in Section 2.2.5 and 2.2.6. For gen-

eral spiking GLM of neuronal population ac-

tivity, we find that the set of observations of
all neuronal activities in the form (Xit,Xjt),

(Xi,t+1,Xjt) and (Xit,Xjt,Xkt) can be guaran-

teed to allow the recovery of the full connectiv-

ity matrix, as discussed in Section 2.2.7.

We find that, whenever the full connectivity

matrix is uniquely identified by a set of obser-

vations, the observations likelihood function is

as well guaranteed to have the correct connec-

tivity matrix as a unique global maximum. At
the same time, observations likelihood cannot

be guaranteed to have a unique local optimum.

Already in the case of the linear neuronal activ-

ity model, where the MLE solution in the full-
observations case is globally and locally unique,

we find the possibility of two local optima—the
true solution Ŵtrue = W and the “mirror” so-

lution Ŵmirror ≈ −W , Section 2.2.2.

The mirror optimum-like solutions clearly
will need to be avoided in practice. Simple heuris-

tics may be able to achieve this objective in
many cases, such as inspecting the likelihood

of the “mirror” solution for any found locally
optimal Ŵ. However, this strategy may not be
plausible when the fraction of observed neurons

p tends to zero, as we can show that the dif-
ference between the likelihoods of the true and

the mirror solutions in this case quickly tends to
zero. Alternatively, the resolution of the mirror-

optima can be based on the use of a-priory in-

formation. Such a-priory information may in-
clude the identity of one or several excitatory

or inhibitory neurons in the population or the
relative abundances of the excitatory and in-
hibitory neuronal populations, which are rather

easy to assess. By requiring given neurons in
the reconstruction to be excitatory or by requir-

ing a particular split between the abundances
of the excitatory and inhibitory neuronal pop-

ulations, the sign of the solution can be fixed
trivially.

We find that the lack of the observations of

the entire neuronal population in the shotgun

estimation leads to an increase in the statisti-
cal error of the connectivity estimator, warrant-

ing a respective increase in the imaging time

necessary to suppress that error. We find that

the required shotgun sampling data size scales
proportionally to the number of neurons in the

unobserved neuronal populations and the aver-
age square neuronal connectivity strength. The

data size also increases as the inverse square of

the fraction of neurons in the shotgun observa-

tions. This scaling is inopportune for the recon-
structions of neuronal connectivity where the

fraction of observed neurons will remain small.

In Section 2.3.2, we propose an exact nu-

merical approach for solving the shotgun con-
nectivity estimation problem in general settings,

and demonstrate its applications to the estima-
tion of the complete neuronal connectivity ma-
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trix in different model neuronal circuits, includ-

ing linear neuronal models, a spiking synfire

network, and a small realistic weakly coupled

cortical neuronal network. In all cases we find

that the shotgun sampling succeeds in recover-

ing the complete neuronal connectivity matrix
from partial activity observations.

In Section 3.1, we prove important Theorem

1 that sets the basis for the subsequent inves-
tigation of the correctness of the shotgun con-

nectivity estimation in different neuronal pop-

ulation activity models. This theorem also es-

tablished important results about the design

of possible shotgun-type neuronal connectivity
imaging experiments. Theorem 1 establishes that

any sparse neuronal activity imaging that cov-

ers a particular set of marginal ”identifying”
neuronal activity distributions is sufficient for

the recovery of the complete connectivity ma-

trix. In the linear model and the exponential-

GLM of neuronal activity such sets of marginal
neuronal activity distributions can be explicitly

shown to consist of all time-shifted and same-
time neuronal activity pairs, such as P (Xit,Xjt)
and P (Xi,t+1,Xjt). It is not important how such

set of neuronal activity distributions was cov-

ered, what is important for the identifiability of
full connectivity matrix is that such set is com-

pletely obtained. These results open new pos-

sibilities for investigating alternative shotgun-

type neuronal population activity sampling or-
ganizations optimized for different experiment

parameters.

In Section 3.2, we propose a particularly ad-
vantageous such alternative organization con-

sisting of block-wise sequential scanning of a

neuronal population’s activity. In this approach,
the neurons are observed in two contiguous in-

put and output blocks, sequentially, with all

possible combinations of input and output blocks

imaged during the experiment. This sampling
organization guarantees the coverage of all same-

time and time-shifted neuronal activity pairs
and furthermore has the advantage of allow-

ing straightforward implementations using ex-
isting fluorescent microscopy tools as well as

simpler associated numerical connectivity esti-
mation problem. At the same time, truly ran-

dom sampling of the neuronal activity in a large

neuronal population proposed in (Turaga et al.,

2013; Keshri et al., 2013) is significantly more
challenging, both from the experimental im-

plementation stand-point and the solution of
associated estimation problem. Thus proposed

“block-wise round-robin” sampling strategy is
simple conceptually and can be straightforwardly

implemented experimentally, which hopefully
will allow it to be realized in experimental de-

signs by researchers in the near future.
Another particularly important issue raised

by this study in Sections 3.3 and 3.4 is that
of the scalability of the numerical shotgun con-

nectivity estimation. We demonstrated here the

shotgun connectivity estimation in simulated

neuronal networks of up to N = 50 neurons.
In practice, the reconstructions of real neuronal

circuits will require solving this estimation prob-

lem for thousands and even millions of neurons.

The SMC EM procedure described here is effi-
cient, requiring O(N2M2T ) time for the E-step

and O(N2MT ) time for the M-step, as well as

parallelizable, making the solution of the above
problems possible using the high-performance

computing infrastructures currently existing in
the world. Faster sampling schemes for hidden
neuronal population’s activity may be proposed,

for example, by using the fast Metropolis-Hastings

algorithm described in (Mishchenko and Panin-

ski, 2011), reducing the cost of the E-step to
O(N2MT ).

At the same time, in this work the require-

ment to store up to M examples of the entire
hidden neuronal population’s activity was the

most significant burden on the numerical com-

putation. For example, for N = 104 neurons,
M = 100 EM samples, and T = 104 seconds of
neuronal activity data recorded at 100 Hz, the

required sample of the hidden neuronal activi-

ties constitutes and requires storing in the com-
puter memory of staggering 1012 neuronal ac-

tivity states. While this problem can be solved

by partitioning over the nodes of a supercom-
puting infrastructure, research of alternative ap-

proaches for reducing the memory footprint of

the shotgun connectivity estimation appears to
be of relevance.

Among possible solutions is the use of alter-

native sampling schemes such as the block-wise

round-robin strategy above, where the connec-

tivity matrix estimation can be solved as a se-

quence of smaller problems, in which only the
part of the experiment corresponding to a given
input and output blocks is considered. While

not affecting N and M , this reduces T to at

most such containing the given input and out-

put neuronal blocks. Another alternative is to
make use of the sufficient statistics of the con-

nectivity estimation problem in a given neu-
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ronal activity model. This would allow using

the smaller sufficient statistics in the place of

large hidden neuronal population activity sam-

ples. Finally, one other approach can consist in
using approximate models for the combined in-

puts from hidden neuronal populations. For ex-
ample, one can model the inputs into observed
neurons from hidden population using a multi-

variate Gaussian distribution constructed using
the current estimate of the connectivity matrix

in the hidden and the observed neuronal popu-

lation sectors.

Several issues remain open in this work and

require future investigation. Among these is the

issue of the identifying sets of marginal neu-
ronal activity distributions for given neuronal

population activity models. We proposed here,
based on the degrees-of-freedom counting, that

the sets of all pair-wise input-output neuronal
activity distributions would suffice to uniquely

constrain any network model of neuronal pop-
ulation activity parametrized by a single con-

nectivity matrix W of N2 weights, where N is

the number of neurons in the model. How can

this conjecture be established rigorously? What

are the identifying sets of the generalized linear

model of neuronal activity defined by Eqs. (40-
41) for general f(.)? What are the sufficient

statistics of different network models of neu-
ronal activity, that can be used in the connec-

tivity matrix estimation? Do time-shifted cor-

relation matrices provide the sufficient statis-
tics for network models of neuronal activity?

Another set of questions is related to the de-

sign of the shotgun-like neuronal activity sam-
pling strategies. Does the block-wise round-robin

strategy offer the same speed of accumulating
the information about different input-output

neuronal pairs as the random sampling in the
original shotgun proposal? What are other strate-

gies that allow uniformly collecting pairwise input-

output neuronal activity measurements? What

are their important properties? Are all identify-
ing sets equivalent from the point of view of ac-

cruing information about neuronal connectivity
or some sets are more advantageous than the

others? We hope that this work will stimulate
further discussion regarding these questions.
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A Sequential Monte Carlo Expectation

Maximization algorithm for numerical
solution of the shotgun connectivity

estimation problem

The EM algorithm (Dempster et al., 1977) is the
standard method of statistical inference in the pres-
ence of missing data. Briefly, the EM algorithm pro-
duces at least a locally maximum likelihood esti-
mate of the parameters of a model P (X,Y |θ) given
a set of observations X with the data Y missing,
θ̂ = argmax

�
Y P (θ, Y |X). The EM algorithm pro-

duces a sequence of parameter estimates θ̂k by iter-
atively maximizing the functions Q(θ|θ̂k),

Q(θ|θ̂k) = EP (Y |X,θ̂k)
[logP (X,Y, θ)], (47)

where Q(θ|θ̂k) at each step is calculated by con-
structing M samples of the unavailable data Y from
P (Y |X, θ̂k) and using the following average,

Q(θ|θ̂) = 1

M

M�

l=1

logP (X,Y l, θ). (48)

In the case of the shotgun sampling, the sam-
pling step of the EM algorithm can be implemented
using the forward-backward algorithm (Rabiner, 1989)
and the sequential Monte-Carlo method also known
as the Particle Filtering (Godsill et al., 2001). In
this case, the distribution of the hidden neuronal
activities at every observation is modeled by a sam-
ple of M hidden neurons’ activity configurations,
Y l
t ∼ P (Yt|X,W), each referred to as a “particle”.

In order to produce this sample, it is advan-
tageous to reformulate the sampling problem Yt ∼
P (Yt|X,W) in a more convenient way as applying
to drawing a sample of the complete neuronal activ-
ity configurations Xt in such a way that the activity
of the parts of the neuronal population observed at
time t match the available neuronal activity data Xt.
In this sense, we view the activity of the entire neu-
ronal population Xt as “hidden” and the mapping of
Xt onto the subset of observed neurons, Xt �→ Xt, as
the observation. In this form, the problem becomes
that of sampling the sequence of the hidden states
Xt from a Hidden Markov Model with the observa-
tions Xt. This problem now can be efficiently solved
using the standard forward-backward algorithm.

Forward-backward algorithm consists of two passes.
In the first forward pass, a sequence of samples of
hidden neural activity states is produced according
to P (Xt|X1:t,W), where X1:t refers to the collection
of all observed neuronal activities up to and includ-
ing the time t. Each sample in this sequence contains
M examples of the complete neuronal population ac-
tivity, Xt ∼ P (Xt|X1:t,W), while the entire sequence
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contains T such samples t = 1 . . . T , where T is the
number of the observations, {Xk

t , k = 1 . . .M, t =
1 . . . T}.

Forward pass samples can be constructed itera-
tively by drawing the first sample X0 from the prior
distribution P (X0), and then constructing each next
sample according to,

Xt ∼ P (Xt|X1:t) =
Z−1

�
Xt−1

P (Xt|Xt)P (Xt|Xt−1)P (Xt−1|X1:t−1).

(49)

Here Z is a normalization constant to be calculated
below and we stopped writing parameter W in the
probability densities for brevity.

According to Eq. (49), the forward pass step at
each t can be realized by taking the previous sam-
ple’s particles Xk

t−1 ∼ P (Xt−1|X1:t−1) and ”moving”
them according to the transition probabilities

P (Xk
t−1 → Xk

t ) = Z−1P (Xt|Xk
t )P (Xk

t |Xk
t−1). (50)

Eq. (50) can be simplified by noting that P (Xt|Xt)
has the effect of only restricting the moves Xk

t−1 →
Xk

t to such that make the activity patterns of the
neurons observed in Xk

t match the available obser-
vation Xt,

P (Xt|Xk
t ) ∝

�
1 if Xk

t = Xt

0 otherwise
(51)

By using this and taking advantage of the factoriza-
tion of the probabilities P (Xt|Xt−1) over individual
neurons i, P (Xt|Xt−1) =

�
i P (Xi,t|Xt−1), we can

obtain the normalization constant Z explicitly as,

Z = EXt−1
[P (Xt|Xt−1)] =

1

M

�

k

P (Xt|Xk
t−1). (52)

With this simplification, we arrive at the final for-
ward step algorithm as follows:
Forward Step

(i) Select one Xk
t−1 from the previous t−1 sample

Xk
t−1 ∼ P (Xt−1|X1:t−1) with the probability

p(k) = 1/M · P (Xt|Xk
t−1)/Z

= P (Xt|Xk
t−1)/

�
k P (Xt|Xk

t−1);
,

where

P (Xt|Xt−1) =
�

Xt

P (X|Xt)P (Xt|Xt−1).

(ii) Set in Xk
t the activity of the neurons i observed

in observation t as Xk
it = Xit;

(iii) Set in Xk
t the activity of the neurons i� not ob-

served in observation t as Xk
i�t ∼ P (Xi�t|Xk

t−1).

In the backward pass, the samples (Xt−1,Xt) ∼
P (Xt−1,Xt|X) need to be constructed for each t con-
ditional on the all observations X = {Xt, t = 1 . . . T}.
These samples can be constructed using the follow-
ing relationship that we adopt here from (Paninski
et al., 2010),

P (Xt,Xt+1|X) = P (Xt|X1:t)
P (Xt+1|Xt)
P (Xt+1|X1:t)

P (Xt+1|X),

(53)

where P (Xt+1|X1:t) =
�

Xt
P (Xt+1|Xt)P (Xt|X1:t) =

EXt [P (Xt+1|Xt)], the average being over the forward
pass sample Xk

t ∼ P (Xt|X1:t).

According to Eq. (53), the backward step can be
constructed by first combining into pairs the forward
pass samples t, Xk

t ∼ P (Xt|X1:t), and the backward
pass samples t + 1, X l

t+1 ∼ P (Xt+1|X), and then
weighing these with the weights
wkl

t = P (X l
t+1|Xk

t )/
�

k P (X l
t+1|Xk

t ). Evidently, thus

formed pairs (Xk
t ,X l

t+1) are distributed according

to (Xk
t ,X l

t+1) ∼ P (Xt|X1:t)P (Xt+1|X), and the ex-
pectation value of any functional F (Xt,Xt+1) over
P (Xt,Xt+1|X) can be calculated by using such pairs
as E[F ] = 1/M

�
kl F (Xk

t ,X l
t+1)w

kl
t . In addition,

P (Xt|X) =
�

Xt+1
P (Xt,Xt+1|X) and the next back-

ward pass sample for observation t, Xk
t ∼ P (Xt|X),

can be constructed by drawing with replacement Xk
t

from (Xk
t ,X l

t+1) with probabilities p(k) ∝
�

l w
kl
t .

Thus, we arrive at the final backward step algo-
rithm as follows:
Backward Step

(i) Form M2 pairs (Xk
t ,X l

t+1) for each available

forward pass sample Xk
t ∼ P (Xt|X1:t) and back-

ward pass sample X l
t+1 ∼ P (Xt+1|X);

(ii) Calculate the weights
wkl

t = P (X l
t+1|Xk

t )/
�

k P (X l
t+1|Xk

t );

(iii) As the next backward pass sample X l
t ∼ P (Xt|X)

select with replacement Xk
t from the pairs (Xk

t ,X l
t+1)

with the probabilities p(k) = 1/M
�

l w
kl
t ;

(iv) The expectations values of a functional
F (Xt,Xt+1), EP (Xt,Xt+1|X)[F (Xt,Xt+1)], are given

by E[F ] = 1/M
�

kl F (Xk
t ,X l

t+1)w
kl
t .

In the optimization step of the EM algorithm we
maximize with respect to W the following function,

Q(W|Ŵ) = EP (Y |X,Ŵ)[logP (X,Y,W)]

= logP (W) + EP (X0|X,Ŵ)[logP (X0)]

+
�
t
EP (Xt−1,Xt|X,Ŵ)[logP (Xt|Xt−1,W)].

(54)

In order to calculate Q(W|Ŵ) it is sufficient to know
the samples (Xk

t ,X l
t+1) ∼ P (Xt|X1:t)P (Xt+1|X) and

the weights wkl
t . Moreover, Q(W|Ŵ) can be split

into a sum over the rows of the matrix W, Wi, as
Q(W|Ŵ) =

�
i Q(Wi|Ŵ), with Q(Wi|Ŵ) given by

Q(Wi|Ŵ) = logP (Wi) + EP (X0|X,Ŵ)[logP (Xi0)]

+
�
t
EP (Xt−1,Xt|X,Ŵ)[logP (Xit|Xt−1,Wi)].

(55)

Thus, the optimization of Eq. (54) can be solved
for each row i independently, reducing the complex-
ity of the problem from quadratic in the number of
neurons N to linear. Finally, inhomogeneous Poisson
point-process models of neuronal activity with log-
concave rate functions result in the problems Q(Wi|Ŵ)
that are convex, which allows their efficient numeri-
cal optimization for very large N using the standard
gradient descent methods (Paninski, 2004).
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B The calculation of posterior

log-likelihood for the linear neuronal

activity model with input neuronal

populations.

In this appendix we calculate the marginal likelihood

P (Zt, Xt|Ŵ ) ∝�
dYt exp

�
− (Zt −WXt)2/2− XT

t C−1Xt/2
�
,

(56)

of the model (3), where the input neuronal activities
are distributed according to a correlated Gaussian
distribution with covariance matrix C,

P (Xt) ∝ exp(−XT
t C−1Xt/2)

and the integration is performed over the part of
Xt, Yt, that is not observed during observation t.
The part of Xt observed during observation t, respec-
tively, is held fixed at Xt. W is a single row-vector
from the full connectivity matrix W corresponding
to the input connection weights of one “output” neu-
ron.

The calculation of Eq. (56) can be simplified if
we represent the integral in an invariant form by
introducing δ-functions, which will restrict the inte-
gration over Xt to the hyperplane of the observed
neuronal activities Xt, namely,

�
dYt exp

�
− (Zt −WXt)2/2− XT

t C−1Xt/2
�
=

�
dXt

i=m�
i=1

δ(Xit −Xit)

× exp
�
− (Zt −WXt)2/2− XT

t C−1Xt/2
�
.

(57)

Here m is the number of the observed neuronal in-
puts and w.l.o.g. we assumed that the observed in-
puts Xt comprise the first m elements of Xt. We now
replace the δ-functions in Eq. (57) with their Fourier
representation, δ(x) = 1

2π

�
dke−ikx, yielding

�
dXtdK

i=N�
i=m+1

δ(Ki) exp
�
− (Zt −WXt)2/2

−iKT (Xt − X̄t)− XT
t C−1Xt/2

�
,

(58)

where X̄t is a full-size column-vector of neuronal in-
puts, with the first m elements equal to Xt and the
rest of the elements zero (these do not affect the inte-
gral since Ki = 0 for i > m). In Eq. (58), the integral
over Xt now can be taken explicitly as a Gaussian,
resulting in

�
dK

i=N�
i=m+1

δ(Ki) exp(iX̄T
t K)

√
detΓ

× exp
�
− Z2

t /2 + (ZtW − iKT )Γ (ZtWT − iK)/2
�
,

(59)

where the matrix Γ is identified from the part of the
argument of the exponential in Eq. (58) quadratic

in Xt, Γ−1 = (C−1+WTW ). We expand the second
term under the exponential in Eq. (59) as

�
dK

i=N�
i=m+1

δ(Ki)
√
detΓ

× exp
�
− Z2

t /2 + Z2
t WΓWT /2

+iX̄T
t K − iZtWΓK −KTΓK/2

�
.

(60)

The δ-functions in Eq. (60) can be used subsequently
to restrict the integration over K to only such values
where Ki = 0 for all m < i ≤ N . Thus, we rewrite
this integration as

�
dKX

√
detΓ

× exp
�
− Z2

t /2 + Z2
t WΓWT /2

+i(X̄T
t − iZtWΓ )XKX −KT

XΓXKX/2
�
,

(61)

where the subscript X means restriction to the first
m elements, as contained in the observed set of neu-
ronal inputs Xt. Thus obtained integration over KX

is again Gaussian, and so we can perform it explic-
itly producing

�
dYt exp(−(Zt −WXt)2/2− XT

t C−1Xt/2) ∝�
detΓ
detΓX

exp
�
− Z2

t /2 + Z2
t WΓWT /2

−(X̄T
t − ZtWΓ )XΓ−1

X (X̄t − ZtΓWT )X/2
�
.

(62)

A simple check is in order now. By assuming C = I
(uncorrelated inputs), we obtain by repeatedly using
Woodbury lemma,

Γ = (I +WTW )−1 = I −WTW/(1 +W2)
ΓX = I −WT

XWX/(1 +W2)
Γ−1
X = I +WT

XWX/(1 +W2
Y )

(WΓ ) = W/(1 +W2)
(WΓ )X = WX/(1 +W2)

(63)

where WX and WY are the restrictions of W to
the subsets of the neuronal inputs Xt and Yt, re-
spectively, and W2 = WWT . For detΓ and detΓX ,
we then obtain detΓ = (1 + W2)−1 and detΓX =
(1 +W2

Y )/(1 +W2), therefore,

detΓ/detΓX = 1/(1 +W2
Y ).

Similarly, we calculate

−Z2
t + Z2

t WΓWT = −Z2
t /(1 +W2)

XT
t Γ−1

X Xt = X2
t + (WXXt)2/(1 +W2

Y )
Zt(WΓ )XΓ−1

X Xt = Zt(WXXt)/(1 +W2
Y )

Z2
t (WΓ )XΓ−1

X (ΓWT )X = −Z2
t W

2
X/((1 +W2)(1 +W2

Y ))

(64)

Combining all of Eqs.(64), we obtain for Eq. (61)
and the case C = I,

�
dYt exp(−(Zt −WXt)2/2− XT

t C−1Xt/2) =

(1 +W2
Y )−1/2 exp

�
− 1

2

�
Z2

t
1+W 2

Y
+ 2ZtWXXt

1+W 2
Y

− (WXXt)
2

1+W 2
Y

�
− X2

t
2

�
,

(65)

which is the same as Eq. (??) in the main text.
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In the case of general C, we calculate similarly
by repeatedly using Woodbury lemma

Γ = C − C WTW
1+WCWT C

ΓX = CXX − CX∗ WTW
1+WCWT C∗X

Γ−1
X = C−1

XX + C−1
XX

CX∗WTWC∗X
1+B2 C−1

XX

(WΓ ) = WC
(1+WCWT )

(WΓ )X = WC∗X
(1+WCWT )

(66)

where

B2 = WCWT −WC∗XC−1
XXCX∗WT ,

and CXX is the square block of the full covariance
matrix C corresponding to the observed inputs Xt,
while CX∗ and C∗X are the rectangular blocks of the
full covariance matrix containing all the rows or the
columns corresponding to the observed inputs Xt.
Then, for the determinant factor we obtain,

detΓ = detC/(1 +WCWT )

and

detΓX = detCXX(1 +B2)/(1 +WCWT ).

Consequently,

�
detΓ

detΓX
=

�
detC

detCXX
· (1 +B2)−1/2. (67)

By considering

C =

�
CXX CXY

CY X CY Y

�
,

we can also reorder the quantity B2 as

B2 = WY (CY Y − CY XC−1
XXCXY )WT

Y .

We see that B2 plays the role here of W2
Y in Eq. (65).

We further proceed to simplify all the terms under
the exponent in Eq. (62) using Eqs.(66). This cal-
culation is highly tedious, however, its result is ob-
tained in the form,

�
dYt exp(−(Zt −WXt)2/2− XT

t C−1Xt/2) ∝�
detC

detCXX
(1 +B2)−1/2

× exp
�
− 1

1+B2

Z2
t
2

− 1
2
XT

t C−1
XXXt

+
ZtWC∗XC−1

XX
Xt

1+B2 − 1
2

(WC∗XC−1

XX
Xt)

2

1+B2

�
.

(68)

As a consistency check, we can verify that Eq. (68)
reduces to Eq. (65) when C = I. Finally, we rewrite
Eq. (68) more concisely as

�
dYt exp(−(Zt −WXt)2/2− XT

t C−1Xt/2) ∝�
detC

detCXX
(1 +B2)−1/2

× exp
�
− 1

2

(Zt−WC∗XC−1

XX
Xt)

2

1+B2 − 1
2
XT

t C−1
XXXt

�

(69)
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