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ABSTRACT

RELIABILITY EVALUATION OF SYSTEMS WITH
WEIGHTED COMPONENTS

Timur Aksoy

M.S. in Applied Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Assoc. Prof. Dr. Serkan Eryılmaz

June 2009

This thesis concerns the reliability evaluation of weighted systems and also

their non-weighted (usual) models which have been studied extensively in the

literature. All studied weighted systems have nonidentical, independent compo-

nents which can take arbitrary weights.

Exact reliability formulas for weighted k-out-of-n and weighted consecutive

k-out-of-n systems which already exist in literature are reviewed and explained

explicitly. Chapters 3 and 4 introduce the adjustments of usual combined k-

out-of-n and consecutive k-out-of-n systems, and k-within-consecutive-m-out-of-n

systems to weighted models. Chapter 3 proposes an exact reliability formula and

equivalent usual models of the weighted combined systems. Two lower bounds

and an upper bound are presented for the reliability of k-within-consecutive-m-

out-of-n system in Chapter 4.

The first lower bound and the upper bound perform well for weighted models.

A second lower bound is obtained with the same method for the usual systems.

The results show that both lower bounds are improvements for usual models as

well. The second lower bound performs better than other bounds for the usual

systems in the literature in some cases and can be a good approximation for all

values of system variables.

Keywords: Reliability analysis, weighted components, k-out-of-n system, consec-

utive k-out-of-n system, k-within-consecutive-m-out-of-n system.
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ÖZ

AĞIRLIKLI BİLEŞENLİ SİSTEMLERDE
GÜVENİLİRLİK ANALİZİ

Timur Aksoy

Uygulamalı İstatistik , Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Yöneticisi: Doç. Dr. Serkan Eryılmaz

Haziran 2009

Bu tez literatürde sıkça çalışılmış sistemlerin hem ağırlıklı modellerinin hem de

ağırlıksız (olağan) durumlarının güvenilirlik analizlerini kapsar. Çalışılan tüm

ağırlıklı modellerin bileşenleri farklı, bağımsızdır ve farklı ağırlıklara sahiptirler.

Literatürde zaten bulunan ağırlıklı n’den-k’lı ve ardıl n’den-k’lı sistemler ince-

lenip detaylı bir biçimde anlatılmıştır. 3. ve 4. bölümler olağan bileşik n’den-k’lı

ve ardıl n’den-k’lı sistemler ve n’den-ardıl-m-içinde-k’lı sistemleri, ağırlıklı mod-

ellere uyarlar. 3. bölüm ağırlıklı bileşik sistemlerin kesin güvenilirlik formülünü

ve eşdeğer olağan modellerini açıklar. 4. bölümde n’den-ardıl-m-içinde-k’lı sis-

temlerin güvenilirliği için iki alt sınır ve bir üst sınır sunulmuştur.

İlk alt sınır ve üst sınır ağırlıklı modellerde iyi sonuçlar verir. Aynı metodla

olağan modeller için ikinci bir alt sınır bulunmuştur. Sonuçlar, iki alt sınırın

olağan sistemler için de daha gelişmiş olduğunu gösterir. İkinci alt sınır, olağan

sistemlerde literatürde bulunan diğer sınırlara göre bazı durumlarda daha ke-

skindir ve tüm sistem değerleri için güvenilirliğin yaklaşık değeri olarak kul-

lanılabilir.

Anahtar Kelimeler : Güvenilirlik analizi, ağırlıklı bileşenler, n’den-k’lı sistem,

ardıl n’den-k’lı sistem, n’den-ardıl-m-içinde-k’lı sistem.
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Chapter 1

Introduction

Reliability is most commonly defined as the survival probability of a system con-

sisting of one or more components arranged in a specific structure. The structure

may be a network of components where connections between components rep-

resent the path an electrical, mechanical or logical signal may travel from the

source to the sink. In these structures, if all paths between the source and the

sink are cut then the system fails. There are also other configurations such as

general k-out-of-n systems where components are ordered in a line or circle but

connections between components do not usually have a physical meaning.

The system reliability evaluation is based on reliabilities of individual com-

ponents, their specific configuration and survival (failure) criteria. The system’s

reliability is always a function of the individual reliabilities and this function

depends on the configuration and operation rules of the system. Series systems

have components arranged in series and it fails when only one component fails.

This structure has the lowest survival probability with respect to configurations.

A parallel system fails iff all components fail, having the highest reliability and

redundancy with respect to configurations. Most structures studied in the lit-

erature are combination of serial and parallel subsystems with system reliability

falling in between these lowest and highest bounds. In reliability analysis, our

main interest is to find the relation between component and system reliabilities.

1



CHAPTER 1. INTRODUCTION 2

The reliability evaluation may be time dependent (dynamic) and time inde-

pendent (static). In time dependent reliability evaluation, individual components

survival time is random varible with a specific cumulative distribution function

Fi(t) and system’s survival time is a function of these random variables hence its

distribution can be derived from components’ distributions. In this paper, time

will be constant t = tc and the reliability of components up to that fixed time

will be considered. Therefore reliability of the system and components will be

time-independent Bernoulli random variables with Fi(tc) = pi and Fi(tc) = 1− pi
representing the reliability and unreliability of component i.

Redundancy is built into non-weighted general k-out-of-n and consecutive k-

out-of-n models models where components are ordered in a line or cicle but they

do not constitute a serial system in the reliability sense. The issue here is the

failure (survival) criteria and serial connections between components do not have

a physical interpretation, they only specify the order of the components. General

k-out-of-n systems’ criterion is the number of working(failed) components in the

system therefore the order or locations of components do not matter. In consecu-

tive k-out-of-n models, components have to be adjacent to each other to operate

or fail the system. Therefore the indices of failed or working components have

to be consecutive for the survival or failure of the system. The order of compo-

nents in relation to others may represent physical proximity or logical connections

between components. These systems can also be represented as combination of

serial and parallel arrays.

Both of these systems have been very popular subjects in the literature. The

earliest reliability computations for k-out-of-n systems were proposed by Barlow

and Heidtmann (1984), Jain and Gopal (1985), Risse (1987) and Sarje and Prasad

(1989). Many others have generalized the subject and applied it to different cases

and problems. Consecutive k-out-of-n systems were introduced by Chiang and

Niu (1981), and the earliest efficient algorithms for its reliability were proposed

by Derman et al. (1982), Hwang (1982), Shanthikumar (1982), Ge and Wang

(1990). Consecutive k-out-of-n systems are still very popular in the literature.

Recent discussions on the topic are in the works of Navarro and Eryılmaz (2007),
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Eryılmaz (2007), Eryılmaz(2009). They have also been extended to two dimen-

sions by Salvia and Lasher (1990) and Boehme et al. (1992). Yamamoto and

Miyakawa (1995) have provided exact reliability and Koutras et al. (1997) have

provided bounds for rectangular two-dimensional consecutive models.

The k-out-of-n systems where all components have weight 1 are special cases

of weighted systems. Weights can be assigned arbitrarily in the weighted models

and as described in the next chapter, they may be regarded as a measure of com-

ponents’ importance. Weights are most commonly applied to general k-out-of-n

and consecutive k-out-of-n models in literature. This paper focuses on weighted

k-out-of-n, weighted consecutive k-out-of-n, combined weighted and weighted k-

within-m-out-of-n systems. Some of these models can be represented as a coherent

network structure with physical connections. Whereas in usual general k-out-of-n

and consecutive k-out-of-n systems, the component importances are only deter-

mined by their order, weights make some components more critical and some

even irrelevant in weighted systems.

There are less publications in literature regarding weighted systems which

were introduced by Wu and Chen (1994a). A method for finding reliability of

weighted consecutive k-out-of-n systems was first proposed again by Wu and

Chen (1994b) followed by Chang and Chen (1998) for the circular case. Chen

and Yang (2005) have generalized the subject into two stage weighted k-out-of-n

systems. Eryılmaz and Tütüncü (2008) provided recursive formulas for the relia-

bility of weighted consecutive k-out-of-n systems consisting of Markov-dependent

components. Weighted combined systems and k-within-consecutive-m-out-of-n

systems are introduced for the first time in this paper. Their literature review

and potential applications will be discussed in Chapters 3 and 4.

Advances in science and technology have made systems consisting of multi-

ple components increasingly more complex. The management of all components

in engineering systems becomes more difficult as the number of units rise and

their structures become more sophisticated. Since absolute control over their op-

erations may not be feasable, breakdowns of some parts may be an inevitable

consequence. Failure of critical systems such as electrical power in hospitals,
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fluid transmission infrastructures and electronic equipment in space shuttles can

lead to serious and unrecoverable damages. Therefore redundancy is required in

critical situations to sustain the process under adverse circumstances.

Applications of reliability modeling can range from electrical, mechanical con-

texts to processes involving humans. The scale of applied area is usually the issue,

some examples are arrays of solar cells producing power at a certain voltage at

the micro-scale, arrays of batteries in serial-parallel arrangement constituting an

emergency backup power supply for a hospital or a nuclear power plant in the

mid-scale and power plants supplying power to a grid or communication systems

in the Internet in the macro-scale. The specific application would depend on the

configuration and survival (failure) criteria of the models.

Weighted systems have potential applications in systems where components

make unequal contribution to the specific requirement. The most frequently re-

ferred applications are load versus capacity problems. An example of weighted

k-out-of-n systems is a power plant with different power generators and total

power supplied by the plant is the sum of capacities of working generators. If it

cannot supply the grid with a desired capacity it would result in reduced voltage

or blackouts. Units providing ventilation in a facility with different cooling capac-

ities required to keep the temperature below certain degrees is another example

(Samaniego, 2008).

Usual and weighted consecutive k-out-of-n systems has applications in mon-

itoring systems, relayed communication and fluid transmission systems. An ex-

ample of a weighted F system may be waste water flowing through treatment

facilities that clean it. As the waste water travels between facilities, different

amount of pollution is added to the sewage at each center and if a facility is

failed, the pollution continues to accumulate until the next working facility. If

pollution is below a fixed amount then a working facility can treat it completely

but if it exceeds the threshold, then the waste water is completely contaminated

and cannot be treated anywhere.



Chapter 2

Systems with Weighted

Components

2.1 Introduction

Components in a system may have unequal contribution to systems performance.

Wu and Chen (1994a) introduced a k-out-of-n system model considering unequal

weights for the components. The system was called weighted k-out-of-n:F(G)

system. A weighted k-out-of-n:F(G) system has n components ordered in a line

or circle, each with its own positive integer weight, fails (works) iff the total weight

of failed (working) components is at least k. Obviously these systems reduce to

the usual k-out-of-n models if each component has weight 1.

In binary weighted systems, the components and the structure has only two

states as in usual systems. The component variable xi representing its state

remains as a boolean variable, 1 indicating on and 0 indicating off or vice versa.

Define:

Zi = wiXi

and

Yi = wi(1−Xi)

5



CHAPTER 2. SYSTEMS WITH WEIGHTED COMPONENTS 6

for i = 1, ..., n where wi represents the weight associated with component i and

Xi is a binary random variable representing the state of component i. Thus the

reliability of a weighted system can be represented in terms of random variables

Y1, Y2, . . . , Yn or Z1, Z2, . . . , Zn.

In this paper, all studied weighted systems will be linear, binary and with

independent and nonidentical components unless stated otherwise. All weights

are assumed to be positive integer values.

2.2 Review of Boolean Algebra

Three basic boolean operations will be briefly reviewed. All boolean variables

and functions take the value of either 0 and 1. Let B = {0, 1} and Bn be set

of all possible n-tuples of 0s and 1s which actually contains n Boolean variables

belonging to set B. If the Boolean variable takes value only from the set B, then

the function from Bn to B is called a boolean function of degree n.

The complement of a variable changes the value of its state to the other state.

It is obtained by subtracting the variable from one.

x1 = 1− x1

The boolean product operates like multiplication but the variables xi’s are idem-

potent i.e. x2
i = xi therefore larger terms absorb the smaller terms. Boolean

product takes the minimum of the states of multiplied terms.

x1x2x3 ∧ x2x3 = min(x1x2x3, x2x3) = x1x2x3

In boolean sum, the boolean product of complements of each term is subtracted

from 1. The smaller terms absorb the larger terms. Boolean sum takes the max-

imum of the added boolean terms.

x1x2x3 ∨ x2x3 = max(x1x2x3, x2x3) = 1− (1− x1x2x3)(1− x2x3)

= x1x2x3 + x2x3 − x1x2x3 = x2x3
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Product
∏

and coproduct
∐

have the same meanings as boolean product ∧
and sum ∨ respectively but they operate on more than two terms. Therefore∐n

j=1 xj = 1−
∏n

j=1(1− xj) = 1− (1− x1)(1− x2) . . . (1− xn).

With these boolean laws, we can turn a boolean expression into an ordinary

algebra expression which is required for deriving structure and reliability functions

of systems.

2.3 Weighted k-out-of-n:G Systems

Weighted k-out-of-n:G system survives iff the total weight of working components

is at least a fixed threshold k. The reliability function of this system can be

derived in several ways. Components will be assumed to be independent but

not necessarily identical. The states of components will be xi = 0 if component

i is failed and xi = 1 if component i survives. We can write all path sets of

the system P1, P2 . . . Pl which belong to set of subsets {J : Wj ≥ k} where J =

{i1, i2, . . . is} ⊆ {1, 2, . . . , n} and Wj =
∑s

j=1wij . Thus, a path set includes any

combination of components in the system whose total weights are at least k.

Therefore, if all components in the set survive, the system survives. In contrast

to minimal path sets, a path set may be a subset of another path set, a condition

not allowed in minimal path sets. If the system has any chance of survival,

the union of all path sets would include all components from 1 to n. Therefore

the set of all path subsets include the all combinations of working components

which would operate the system. If we set all components in each path set as

working and ones in its complement as failed, we generate a distinct event from

each path subset. The union of all these events would yield the reliability of the

system since it includes all possible component states for system’s survival. Due

to mutual exclusiveness, we can add the probabilities of these events to derive

the reliability function of Weighted k-out-of-n:G system in an unsimplified form:
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P (
n∑
i=1

Zi ≥ k) = P (
n∑
i=1

Yi < W − k) = h(p) =
l∑

j=1

∏
i∈Pj

pi
∏
s∈Pj

c

(1− ps)


where W =

∑n
i=1wi and l is the number of path sets.

Minimal path sets MP1,MP2 . . .MPr can be found by removing all path sets

containing another path set as a subset. According to Barlow and Proschan

(1975), all variables in each minimal path set are multiplied with boolean prod-

ucts, we obtain minimal path structures for each set. If minimal path structures

of each set are added with boolean sum, the boolean structure function of the

system is obtained. Therefore,

φ(x) = max
1≤i≤r

min
j∈MPi

xj

means

φ(x) =
r∨
i=1

∧
j∈MPi

xj =
r∐
i=1

∏
j∈MPi

xj

For deriving the probability function, the boolean terms have to be converted

into ordinary algebra terms using boolean laws for sums and products and then

xi’s are replaced with pi’s by taking their expectations. However this method

involves cancellation of many terms hence not very efficent. Since the minimal

path sets are known, Inclusion Exclusion (IE) and Sum of Disjoint Products

(SDP) methods can also be applied. For these methods the reliability of the

system is written as the union of survival events of every minimal path structure:

P (Ej) = P (
∏

i∈MPj

Xi = 1) =
∏

i∈MPj

pi

h(p) = P (
r⋃
j=1

Ej)

IE method requires joint probabilities of all combinations of Ej for j = 1, . . . , r

to be written and they are added and subtracted according to IE principle. In

other words, all products of different combinations of Ej have to be found and
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then their probabilities are computed with law of boolean products. This involves

many terms growing very large as number of minimal path sets grow large. SDP

method sums the products of each minimal path structure with the complements

of preceding minimal path structures. It involves less number of terms than

IE method but extensive boolean algebra operations may be still required for

cancelling variables because minimal path structures may have many components

in common.

The most efficient method proposed by Wu and Chen (1994a) involves a re-

cursive algorithm for computing the exact reliability. The reliability function of

the G system is derived using pivotial decomposition. According to Barlow and

Proschan (1975), the pivotial decomposition is described as follows,

Lemma 2.1

h(p) = pih(1i,p) + (1− pi)h(0i,p) for i = 1, . . . , n. (2.1)

If RG(j, i,p) is the reliability of Weighted j-out-of-i:G system then

RG(j, i,p) = piR
G(j, i, 1i,p) + (1− pi)RG(j, i, 0i,p) for i = 1, . . . , n.

RG(j, i, 1i,p) is equal to RG(j − wi, i − 1,p) because given that ith component

is working, the rest of the system requires working components weighing at least

j−wi to survive, thus it is j−wi-out-of-i− 1:G system. RG(j, i, 0i,p) is equal to

RG(j, i− 1,p) because given that ith component is failed, the rest of the system

still requires working components weighing at least j to survive, thus it is j-out-

of-i− 1:G system. Therefore the recursive formula is:

RG(j, i,p) = piR
G(j − wi, i− 1,p) + (1− pi)RG(j, i− 1,p)for i = 1, . . . , n.

with the initial conditions,

RG(j, i,p) = 1, for j ≤ 0 and i = 0, 1, . . . , n.

RG(j, 0,p) = 0, for j > 0.

Considering RG(j, 0,p) for j ≤ 0, since the weight of 0 components is always

0, which is greater than or equal to j hence RG(j, 0,p) is 1. If we replace pi’s
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with xi’s in the formula, we can also obtain the structure function of the system.

A table with at most n+1 rows and k+1 columns is needed to record reliabilities

of all called functions. Therefore this algorithm requires O((n + 1)(k + 1)) or

O(n · k) computing time and space to evaluate the reliability of n components.

Note that the reliability of weighted k-out-of-n:G system can also be repre-

sented as

RG(k, n,p) = P (
n∑
i=1

Yi ≥ k) = P (
n∑
i=1

wiXi ≥ k) (2.2)

and the recursive relation (2.1) can be obtained from (2.2) by conditioning on Yn.

2.4 Weighted k-out-of-n:F Systems

Weighted k-out-of-n:F System survives iff the total weight of failed components

is less than a fixed threshold k. The weighted k-out-of-n:F System is the dual

of the Weighted k-out-of-n:G system with same configuration. A cut set of the

system contains any combination of components whose total weight is at least k.

Therefore path sets of the G system are the cut sets of the F system. This holds

for minimal path and cut sets as well.

The states of components will be xi = 0 if component i is failed and xi = 1

if component i survives. Therefore if each cut set generates the event that all

components in the cut set are failed and components in its complement are good,

the sum of probabilities of events derived from all cut sets yield the unreliability of

the system. Since reliability is the complement of the unreliability, the reliability

function is:

P (
n∑
i=1

Yi < k) = P (
n∑
i=1

Zi ≥ W − k) = h′(p) = 1−
l∑

j=1

∏
i∈Cj

(1− pi)
∏
s∈Cj

c

ps


where W =

∑n
i=1wi and l is the number of cut sets.

These equations coincide with the definition of duality hD(p) = 1−h(1− p) =
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h′(p) where p is the probability vector of the system and 1 is a vector of ones of

size n.

Alternatively to derive the structure function, minimal cut setsMC1,MC2 . . .MCs

are obtained by removing all cut sets containing other cut sets as a subset. The

coproduct of all components in a minimal cut set yield the minimal cut structure

of that set. The product of all minimal cut structures yield the boolean structure

function of the system. After it is converted to ordinary algebra terms using

boolean laws, the expectation would yield the reliability of the system. So,

φ(x) = min
1≤i≤s

max
j∈MCi

xj

means

φ(x) =
s∧
i=1

∨
j∈MCi

xj =
s∏
i=1

∐
j∈MCi

xj

Using Wu and Chen’s method, the reliability function of the F system is

derived similarly. By the duality of G and F systems we only replace pi’s by 1−pi’s
and take the complement of initial condition values. If initial condition values did

not change, the result would yield the unreliability of F system. Complementing

the initial values takes the complement of the whole function which yields the

reliability of the F system. The reliability function of weighted j-out-of-i:F system

RF (j, i,p) is obtained by pivotial decomposition as in G system:

RF (j, i,p) = (1− pi)RF (j, i, 0i,p) + piR
F (j, i, 1i,p)for i = 1, . . . , n.

RF (j, i, 0i,p) is equal to RF (j −wi, i− 1,p) because given that ith component is

failed the rest of the system requires failed components weighing at least j−wi to

fail, thus it is j−wi-out-of-i−1:F system. RF (j, i, 1i,p) is equal to RF (j, i−1,p)

because given that ith component is working, the rest of the system still requires

failed components weighing at least j to fail, thus it is j-out-of-i − 1:F system.

Therefore the recursive formula is:

RF (j, i,p) = (1− pi)RF (j − wi, i− 1,p) + piR
F (j, i− 1,p)for i = 1, . . . , n.
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with initial conditions,

RF (j, i,p) = 0, for j ≤ 0 and i = 0, 1, . . . , n.

RF (j, 0,p) = 1, for j > 0.

We took complement of initial condition values, since weight argument less

than or equal to 0 would imply that the total weights of the failed components

have exceeded the threshold hence the unreliability is 1. Likewise if there are no

components left and weight argument is greater than 0, it would imply that total

weights of failed components were below the threshold, hence the unreliability is

0. If we replace pi’s with xi’s in the formula, we obtain the structure function of

the F system.

2.5 Equivalent Coherent Systems and Compo-

nent Importance in G Systems

Samaniego and Shaked (2008) stated that weighted systems can have equivalent

coherent systems with a specific structure. First minimal path and cut sets for

the weighted system are derived then any coherent system with same minimal

path and cut sets is considered as an equivalent coherent system. In other words,

a coherent system with the same structure or reliability function as the weighted

system is its equivalent. The components not included in any of the minimal path

or cut sets are irrelevant components thus their variables are cancelled out in the

reliability and structure functions. The position of a component in a coherent

structure would be determined by the weights of components and the threshold.

If the locations of components in a coherent structure solely determine their struc-

tural importances, the weights of components solely determine their structural

importances in weighted k-out-of-n systems. The position of a component has no

significance in these weighted systems. We will consider weighted k-out-of-n:G

systems for the evaluation of component importance. Similar arguments can be

extended to F systems. We can derive the reliability and structural importances

of each component from reliability and structure functions. As we have stated
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before, the reliability function is obtained just by taking the expectation of the

structure function. The reliability importance of a components also takes ac-

count the reliabilities of other components and uses the reliability function of the

system:

Rφ(i,p{i}c) =
∂

∂pi
h(p)

The partial derivative implies that the reliability importance measures the effect

of a change in reliability of a component to the reliability of the whole system.

The structural importance does not take account the reliabilities of compo-

nents and but just their locations in an equivalent coherent structure. The struc-

tural importance assumes that all components have equal probability of failure

and survival, therefore if the set the probabilities of all other components to 1/2

in the reliability importance function we obtain the structural importance of the

component. Another way to find the structural importance is by finding the

critical path set of the component. A critical path set for component i includes

components that the system is down when they are up and system is up when in

addition the component i is up. We can generate its corresponding binary vector

of size n-1 indicating the states of other components where the components in the

set are 1 and others are 0. At these states of n-1 components, the systems survival

depends only on the component i. So the critical path vectors of component i

consist of all x{i}c such that

φ(1i,x{i}c)− φ(0i,x{i}c) = 1

The structural importance of i equals the number of its critical path vectors

divided by the number permutations of n-1 component states. Therefore:

Iφ(i) =
1

2n−1

∑
x{i}c

[
φ(1i,x{i}c − φ(0i,x{i}c)

]
where

∑
x{i}c

[
φ(1i,x{i}c − φ(0i,x{i}c)

]
yields the number of critical path vectors

(or equivalently critical path sets) of component i.

If we delete component i from all of minimal path sets including component i,

then we obtain critical path sets for component i. Irrelevant components can also



CHAPTER 2. SYSTEMS WITH WEIGHTED COMPONENTS 14

be included in the critical path set of component i since they do not effect the state

of the system. Thus the number of critical path sets of component i are equal to

or greater than the number of minimal path sets including component i. It is also

obvious that irrelevant components’ structural and reliability importances are 0

since their variables and reliabilities are not included in structure or reliability

functions.

Because reliability and structure importances are a function of the structure

function which in turn is a function of weights, importances can be considered as

functions of weights. Samaniego and Shaked (2008) have proved that reliability

and structure importances of a component are increasing function of its weight

wi if all other weights and the threshold are fixed. This is obvious from the fact

that as a component’s weight increases it is more likely to effect the state of the

system. However importances of other components are not necessarily decreasing

functions of wi.

Samaniego and Shaked (2008) also stated that if a component’s weight exceeds

the threshold then the reliability and structural importances of other components

are minimized with respect to wi when other weights are kept fixed. We can fur-

ther prove that if a component i’s weight is increased from below the threshold to

the threshold while keeping others fixed, the importances of all other components

sharing the same critical path set with i will decrease since the number of their

critical path vectors will decrease. Any component with weight below the thresh-

old has to be in a critical path set of at least one component regardless of whether

it is relevant or irrelevant. Thus the importance of at least one component will

decrease if wi increases to or above the threshold value. Increasing component

i’s weight any further above the threshold will not affect importances of other

components.
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2.6 Weighted Consecutive k-out-of-n:F Systems

A linear weighted consecutive k-out-of-n:F system consists of n components or-

dered in a line. The system fails iff the total weight of consecutively failed com-

ponents is at least k. Usual consecutive k-out-of-n:F system is a special case of

the weighted one, where each component has the weight 1.

Wu and Chen (1994b) have proposed an efficient algorithm for evaluation of

the exact reliability. First the components that form a minimal cut are found

by scanning components from the beginning to the end. The components in a

cut set have to be consecutive therefore the weights of components are added in

sequence from the beginning to the end until the total weight reaches k. Once

the threshold k is reached or exceeded, a cut set will be obtained. Samaniego

and Shaked (2008) have expressed cut sets Ci of the form {i, . . . , n(i)} where

1 ≤ i ≤ n(i) ≤ n as:
n(i)−1∑
j=i

wj < k ≤
n(i)∑
j=i

wj

The algorithm would stop adding weights when n(i) is reached and starts sub-

tracting weights of components from the beginning of the cut set from the total

weight sequentially. If the weight drops below k then a minimal cut has been

obtained and the components at the beginning and the end of the minimal cut

are recorded. The process repeats the same arguments starting from the sec-

ond component of the minimal cut set. Once the minimal cut sets are derived,

they are arranged in increasing order with respect to their components from 1

to r. Components in each set are also arranged in increasing order. Therefore

First(MCi) denotes the component with smallest index and Last(MCi) indicates

the component with the largest index in the set MCi.

The methods discussed in previous sections can be applied to find the unre-

liability function of the system, namely multiplying the minimal cuts, inclusion

exclusion method and sum of disjoint products method. Wu and Chen (1994)

have employed the sum of disjoint products method which requires O(n) com-

puting time. If xi = 1 when component i is failed and xi = 0 when component
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i survives, a minimal cut structure is expressed as the product of all component

variables in the set in contrast to coproduct in the previous section where states

of components were reversed. The unreliability of the system would be expressed

as the failure of at least one of the minimal cut structures:

F (k, n,p) = E(
r∐
i=1

∏
m∈MCi

Xm) = E(
∏

m∈MC1

Xm ∨
∏

m∈MC2

Xm ∨ . . . ∨
∏

m∈MCr

Xm)

Expectation of binary random variables in this equation would yield the unreli-

abilities of components and the system. Let Si denote the event that all compo-

nents in the minimal cut set MCi are failed or the minimal cut structure fails,

i.e. the product of all variables in the set is 1. If any Si for i = 1, . . . , r occurs,

system fails. Therefore,

P (Si) = E(
∏

m∈MCi

Xm) = P (
∏

m∈MCi

Xm = 1)

F (k, n,p) = P (S1 ∪ S2 ∪ . . . ∪ Sr)

According to the sum of disjoint products method, the unreliability from

component 1 to last component of jth minimal cut set equals the probability that

at least one of all preceding minimal cut structures fail plus the joint probability

none of the preceding minimal cut structures fail and the jth minimal cut structure

fails:

F (k, Last(MC(j)),p) = P (S1 ∪ S2 ∪ . . . ∪ Sj−1) + P (S1 ∩ S2 ∩ . . . ∩ Sj−1 ∩ Sj)
(2.3)

which is same as

F (k, Last(MC(j)),p) = P (

j−1∐
i=1

∏
m∈MCi

Xm = 1)

+ P ((1−
∏

m∈MC1

Xm)(1−
∏

m∈MC2

Xm) . . .

· (1−
∏

m∈MCj−1

Xm) · (
∏

m∈MCj

Xm) = 1)

The probabilities of two events on the r.h.s. of (2.3) can be added by their

mutual exclusiveness. The first term on the r.h.s. is the unreliablity of the
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system from component 1 to the last component of the j − 1th minimal cut set.

The second term is the joint probability that the system up to last component of

the j − 1th minimal cut set is working and all components in jth minimal cut set

are failed. If j−1th and jth minimal cut sets have no components in common then

the probability of Sj can be multiplied due to independence with the reliability

of the system from component 1 to Last(MCj−1),

F (k, Last(MC(j)),p) = F (k, Last(MC(j − 1)),p) +R(k, Last(MC(j − 1)),p)P (Sj)

If last two minimal cut sets have components in common, then all components

in the last set must be failed and at least one component not element of the last

set but element of the preceding set must be working. Therefore,

F (k, Last(MC(j),p)) = P (

j−1∐
i=1

∏
m∈MCi

Xm = 1)

+ P ((1−
∏

m∈MC1

Xm)(1−
∏

m∈MC2

Xm) . . .

· (1−
∏

m∈MCj−1,m/∈MCj

Xm) · (
∏

m∈MCj

Xm) = 1)

There are ‖MCj−1−MCj‖mutually exclusive events for the different locations

of last working component p (working component with the highest index) which

is in the set MCj−1 but not in MCj. The reliability of the system up to that

component p is simply the probability that all minimal cut structures which

do not include component p work. Since all minimal cut structures including

component p work, their reliability is 1. All components following component p

must be failed. Thus the probability of each event can be found by independence

of p, failed components after p and the reliability of the system before p which

we already know. The formula for this algorithm is written explicitly by Wu and

Chen (1994b). This recursive formula is efficient requiring O(n) computing time

since it requires at most one entry for each F (k, i,p) for every i = 1, . . . , n. There

is another recursive method starting from the end of the structure that conditions

on the last working component and this method will be used in the next chapter.



Chapter 3

Combined Systems with

Weighted Components

3.1 Introduction

Reliability of systems with multiple failure and survival criteria have been studied

in literature recently. If we combine the criteria of both weighted f-out-of-n

structure and weighted consecutive k-out-of-n structure in one system, we obtain

the following combined models:

A linear weighted (n, f, k,w):F system consists of n components ordered in

a line and the system fails iff the total weight of failed components is at least f

or the total weight of the failed consecutive components is at least k. Thus the

system works iff total weight of failed components is less than f AND the total

weight of failed consecutive components is less than k. Therefore this system

survives iff both corresponding weighted f-out-of-n:F and weighted consecutive

k-out-of-n:F structures survive.

A linear weighted (n, f, k,w):G system consists of n components ordered in

a line and the system survives iff the total weight of working components is at

least f OR the total weight of the working consecutive components is at least k.

18
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Thus the system fails iff total weight of working components is less than f AND

the total weight of working consecutive components is less than k. Therefore this

system survives when either one of weighted f-out-of-n:G or weighted consecutive

k-out-of-n:G structures work. Thus, failure of the system requires that both

corresponding weighted f-out-of-n:G and the weighted consecutive k-out-of-n:G

structure fail. The system’s unreliability will be found by the probability that

both failure criteria occur.

A linear weighted-〈n, f, k,w〉:F system consists of n components ordered in

a line and the system fails iff the total weight of failed components is at least f

AND the total weight of the failed consecutive components is at least k. Thus

the system works if total weight of failed components is less than f OR the total

weight of failed consecutive components is less than k. Therefore if either one of

weighted f-out-of-n:F OR weighted consecutive k-out-of-n:F structures work, the

system survives . If both of these structures fail, the system fails.

Tung (1982) has first introduced (n, f, k) systems in reliability context, Sun

and Liao (1990) and Cheng et al. (1999) have presented formulas for special

and general cases respectively. Zuo et al. (2000) and Gera (2004) have also

studied F and G combined systems respectively. Recently Eryılmaz (2008) has

derived lifetime distributions of combined systems with exchangable components.

Cui et al. (2005) have proposed both recursive methods and Markov Chain

imbedding technique for exact reliability of both (n, f, k):F(G) and 〈n, f, k〉:F(G)

models without weights. In this chapter, exact recursive reliability formulas for

(n, f, k,w):F(G) systems with weighted, independent components are presented

which can also be used for usual models of these systems. Our method is as

efficient as the formula presented by Zuo et al. (2000) for usual systems.

The algorithms explained in this chapter can also be extended to weighted

〈n, f, k〉:F(G) to obtain the weighted version of the formula found by Cui et al.

(2005). In other words, if all component weights are 1, weighted unreliability

formula for 〈n, f, k〉:F system found by method presented here would reduce to

the related formula in Cui et al. (2005), therefore it will not be discussed in this

thesis.
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These models can be used in practical problems having failure (survival) crite-

ria involving both weighted consecutive components and all weighted components

together.

3.2 Definition of Symbols

Let Xi denote the state of the ith component (Xi = 1(0) if component i is

failed (working)), i = 1, 2, ..., n. Suppose that component i is associated with

a weight wi ∈ Z+, i = 1, 2, ..., n and the components are independent and the

reliability of the ith component is pi = P {Xi = 0} (qi = 1 − pi), i = 1, 2, ..., n.

Define the vectors Y = (Y1, ..., Yn),Z = (Z1, ..., Zn), θ(1) = (θ
(1)
1 , ..., θ

(1)
n ), and

θ(0) = (θ
(0)
1 , ..., θ

(0)
n ), where

Yi = wi ·Xi, i = 1, 2, ..., n,

Zi = wi · (1−Xi), i = 1, 2, ..., n,

and

θ
(1)
i+1 =

{
θ

(1)
i + Yi+1 if Yi+1 6= 0

0 if Yi+1 = 0
, i = 0, 1, ..., n− 1,

and

θ
(0)
i+1 =

{
θ

(0)
i + Zi+1 if Zi+1 6= 0

0 if Zi+1 = 0
, i = 0, 1, ..., n− 1,

with the convention θ
(1)
0 = θ

(0)
0 = 0. It is clear that the random variables

∑n
i=1 Yi

and
∑n

i=1 Zi represent the total weight of the failed and working components,

respectively.

It can be easily seen that θ
(1)
i , θ

(0)
i ∈

{
0, wi, wi−1 + wi, wi−2 + wi−1 + wi, ...,

∑i
j=1wj

}
,

i = 1, 2, ..., n, w0 ≡ 0.

Example 3.1. Let the states of n = 10 components be 1001100010 with the

weight vector w = (1, 2, 1, 3, 2, 3, 3, 2, 2, 3), where ”1” and ”0” represent failure

and working states, respectively. Then the linear weighted-(10, 6, 7,w):F system

is in a failure state while the linear weighted-(10, 6, 7,w):G system is in a working

state. Then it is also true that θ(1) = (1, 0, 0, 3, 5, 0, 0, 0, 2, 0).
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3.3 (n, f, k):F Systems with Weighted Compo-

nents

The reliability of the weighted (n, f, k,w):F system can be represented in terms

Y, and θ(1). They will be used to represent two structures that need to work for

survival of the system, namely, weighted consecutive k-out-of-n:F and weighted

f-out-of-n:F structures. More explicitly, the survival of the linear weighted-

(n, f, k,w):F system requires that the sum of Yi’s must be less than f, and all

the elements of the sequence
{
θ

(1)
i , 1 ≤ i ≤ n

}
which measure the total weight of

consecutive failed components, must be less than k. Thus the reliability of linear

weighted (n, f, k,w):F system is represented by the following probability.

Rw(n, f, k:F) = P

{
θ

(1)
1 < k, ..., θ(1)

n < k ∧
n∑
i=1

Yi < f

}
.

Theorem 3.1 The reliability of linear weighted-(n, f, k,w):F system is given as

follows.

For f ≤ k

Rw(n, f, k:F) = Rw(n, f :F)

where Rw(n, f :F) is the reliability of weighted f-out-of-n:F System.

For f > k

if k ≤ wn then

Rw(n, f, k:F) = Rw(n− 1, f, k:F)pn,

if wn−j+1 + ...+ wn < k ≤ wn−j + ...+ wn, j = 1, ..., n− 1 then

Rw(n, f, k:F) =

j+1∑
m=1

[
Rw(n−m, f −

n∑
i=n−m+2

wi, k:F)pn−m+1

n∏
t=n−m+2

qt

]
,

and if w1 + ...+ wn < k then Rw(n, f, k:F) = 1.
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Proof. We will start with the case f > k. First the reliability of the weighted

consecutive k-out-of-n:F structure will be considered. Maximum number of failed

components j that can follow the last working component p is found. By con-

ditioning on possible locations for p, we create mutually exclusive events whose

probabilities can be added. Since k < f , the weighted f-out-of-n structure also

survives.

If wn−j+1 + ...+ wn < k ≤ wn−j + ...+ wn, j = 1, ..., n− 1 then

Rw(n, f, k:F) = P (θ
(1)
1 < k, ..., θ

(1)
n−1 < k,Xn = 0 ∧

n−1∑
i=1

Yi < f)

+ P (θ
(1)
1 < k, ..., θ

(1)
n−2 < k,Xn−1 = 0, Xn = 1 ∧

n−2∑
i=1

Yi < f − wn) + . . .

+ P (θ
(1)
1 < k, ..., θ

(1)
n−j−1 < k,Xn−j = 0, Xn−j+1 = 1, . . . Xn = 1

∧
n−j−1∑
i=1

Yi < f − wn − . . .− wn−j+1)

Therefore,

if wn−j+1 + ...+ wn < k ≤ wn−j + ...+ wn, j = 1, ..., n− 1 then

Rw(n, f, k:F) = Rw(n− 1, f, k:F)pn +Rw(n− 2, f − wn, k:F)pn−1qn + . . .

+Rw(n− j − 1, f − wn − . . .− wn−j+1, k:F)pn−jqn−j+1 . . . qn.

Regarding the initial condition, if total weight of components left in the system

is less than k, total weight of failed components must be less than both f and

k, thus none of the failure criteria can occur so the system’s survival would be

certain.

If f ≤ k then the survival of the second structure
∑n−2

i=1 Yi < f would imply

that all θ(1)’s are also less than f, thus less than k. Therefore if the weighted f-out-

of-n:F structure works, it implies that weighted consecutive k-out-of-n:F structure

also works so the system is reduced to a weighted f-out-of-n:F structure.

In the following example we illustrate the computation of Rw(n, f, k:F) using

Theorem 3.1. We choose n = 5 so that the computations can be done by hand.
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Example 3.2. Let the system consists of n = 5 components with the weight

vector w = (2, 3, 2, 1, 3). For f = 4 and k = 3 we have

Rw(5, 4, 3:F) = Rw(4, 4, 3:F)p5 (k ≤ w5),

Rw(4, 4, 3:F) = Rw(3, 4, 3:F)p4 +Rw(2, 3, 3:F)p3q4 (w4 < k ≤ w3 + w4),

Rw(3, 4, 3:F) = Rw(2, 4, 3:F)p3 +Rw(1, 2, 3:F)p2q3 (w3 < k ≤ w2 + w3),

Rw(1, 2, 3:F) = p1, Rw(2, 3, 3:F) = p2, Rw(2, 4, 3:F) = p2.

Thus

Rw(5, 4, 3:F) = p2p3p5 + p1p2q3p4p5.

If all weights are positive integers, the computation time and space needed

for these formulas is O(n · f) since a table with at most n+1 columns and f+1

rows can be constructed to record the values of functions called within recursive

formulas for every value of f and n.

To compare our formula to one found by Zuo et al. (2000), both formulas for

the usual case of combined F model (where all weights are 1) will be given.

Zuo et al.’s (2000) formula for (i, f, k):F model:

R(i, f, k:F) = piR(i− 1, f, k:F) + qiR(i− 1, f − 1, k:F)

+ [1−R(i− k − 1, f − k, k:F)]pi−k

i∏
t=i−k+1

qt

Our formula for the usual case of (i, f, k):F model:

R(i, f, k:F) =
k∑

m=1

[R(i−m, f −m+ 1, k:F)pi−m+1

i∏
t=i−m+2

qt]

= R(i− 1, f, k:F)pi +R(i− 2, f − 1, k:F)pi−1qi + . . .

+R(i− k, f − k + 1, k:F)pi−k+1qi−k+2 . . . qi.

Zuo et al.’s (2000) formula has 3 and our formula has k terms but they have the

same complexity requiring O(n · f) computing time and space. Therefore, our

formula can be an alternative to Zuo et al.’s (2000) formula.
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3.4 (n, f, k):G Systems with Weighted Compo-

nents

The unreliability of the weighted (n, f, k,w):G system can be represented in terms

Z, and θ(0). They will be used to represent two structures that need to fail for fail-

ure of the system, namely, weighted consecutive k-out-of-n:G and weighted f-out-

of-n:G structures. More explicitly, the failure of the linear weighted (n, f, k,w):G

system requires that the sum of Zi’s must be less than f, and all the elements of

the sequence
{
θ

(0)
i , i ≥ 1

}
which measure the total weight of consecutive work-

ing components, must be less than k. Thus the unreliability of linear weighted

(n, f, k,w):G can be represented as

Fw(n, f, k:G) = P

{
θ

(0)
1 < k, ..., θ(0)

n < k ∧
n∑
i=1

Zi < f

}
.

Theorem 3.2 The unreliability of linear weighted-(n, f, k,w):G system is given

as follows.

For f ≤ k we have

Fw(n, f, k:G) = Fw(n, f :G)

where Fw(n, f :G) is the unreliability of weighted f-out-of-n:G System.

For f > k,

if k ≤ wn then

Fw(n, f, k:F) = Fw(n− 1, f, k:F)qn,

if wn−j+1 + ...+ wn < k ≤ wn−j + ...+ wn, j = 1, ..., n− 1 then

Fw(n, f, k:G) =

j+1∑
m=1

[
Fw(n−m, f −

n∑
i=n−m+2

wi, k:F)qn−m+1

n∏
t=n−m+2

pt

]
,

and if w1 + ...+ wn < k then Fw(n, f, k:G) = 1.
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Proof. We will start with the case f > k. First the unreliability of the weighted

consecutive k-out-of-n:G structure will be considered. The maximum number of

working components j, that can follow the last failed component q is found. By

conditioning on possible locations for q, we would create a mutually exclusive

event whose probabilities can be added. Since k < f , the weighted f-out-of-n:G

structure also fails.

If wn−j+1 + ...+ wn < k ≤ wn−j + ...+ wn, j = 1, ..., n− 1 then

Rw(n, f, k:G) = P (θ
(0)
1 < k, ..., θ

(0)
n−1 < k,Xn = 1 ∧

n−1∑
i=1

Zi < f)

+ P (θ
(0)
1 < k, ..., θ

(0)
n−2 < k,Xn−1 = 0, Xn = 1 ∧

n−2∑
i=1

Zi < f − wn) + . . .

+ P (θ
(0)
1 < k, ..., θ

(0)
n−j−1 < k,Xn−j = 0, Xn−j+1 = 1, . . . Xn = 1

∧
n−j−1∑
i=1

Zi < f − wn − . . .− wn−j+1)

Therefore,

if wn−j+1 + ...+ wn < k ≤ wn−j + ...+ wn, j = 1, ..., n− 1 then

Fw(n, f, k:G) = Fw(n− 1, f, k:G)pn + Fw(n− 2, f − wn, k:G)pn−1qn + . . .

+ Fw(n− j − 1, f − wn − . . .− wn−j+1, k:G)pn−jqn−j+1 . . . qn.

Regarding the initial condition, if total weight of components left in the system

is less than k, total weight of failed components must be less than both f and k,

so none of the survival criteria can occur so the system’s failure would be certain.

If f ≤ k then the failure of the second structure
∑n−2

i=1 Zi < f would imply

that all θ(0)’s are also less than f, thus less then k. Therefore if the weighted

f-out-of-n:G structure fails, it implies that the weighted consecutive k-out-of-n:G

structure also fails so the system is reduced to a weighted f-out-of-n:F structure.

It is clear that if we replace pi’s in the unreliability function of the weighted

(n, f, k) : G system by qi’s, we obtain the reliability function of the weighted

(n, f, k) : F system. Since reliability is the complement of failure, this coincides
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with the definition of duality. Hence weighted (n, f, k) : G and (n, f, k) : F

systems are duals of each other.

Example 3.3. For the system described in example 3.2,

Fw(5, 4, 3:G) = Fw(4, 4, 3:G)q5 (k ≤ w5),

Fw(4, 4, 3:G) = Fw(3, 4, 3:G)q4 + Fw(2, 3, 3:G)q3p4 (w4 < k ≤ w3 + w4),

Fw(3, 4, 3:G) = Fw(2, 4, 3:G)q3 + Fw(1, 2, 3:G)q2p3 (w3 < k ≤ w2 + w3),

Fw(1, 2, 3:G) = q1, Fw(2, 3, 3:F) = q2, Fw(2, 4, 3:G) = q2.

Thus

Fw(5, 4, 3:G) = q2q3q5 + q1q2p3q4q5.

3.5 Equivalence of Usual Combined Systems

and Weighted Combined Systems

If a non-weighted consecutive k-out-of-n:F(G) system has the same minimal cut

(path) sets of a weighted consecutive k-out-of-n:F(G) they are considered as

equivalent systems. This holds true for non-weighted and weighted f -out-of-

n:F (G) systems as well. The minimal cuts (paths) of weighted consecutive k-

out-of-n:F(G) and weighted-f -out-of-n:F(G) models will be found with the same

methods described in Chapter 2 and their non-weighted equivalents (if they ex-

ist) whose minimal cuts (paths) are already known are found by the following

theorem.

Theorem 3.3 A consecutive-weighted-k-out-of-n:F (G) system is equivalent to a



CHAPTER 3. COMBINED SYSTEMS WITH WEIGHTED COMPONENTS27

consecutive-k∗-out-of-n:F (G) system if

max
1≤j≤n−k∗+2

(
j+k∗−2∑
i=j

wi

)
< k ≤ min

1≤j≤n−k∗+1

(
j+k∗−1∑
i=j

wi

)
, (3.1)

and a weighted-f -out-of-n:F (G) system is equivalent to a f ∗-out-of-n:F (G) sys-

tem if

max
~if∗−1∈C

f∗−1
1,2,..,n

(
f∗−1∑
j=1

wij

)
< f ≤ min

~if∗∈C
f∗
1,2,..,n

(
f∗∑
j=1

wij

)
, (3.2)

where ~im = (i1, i2, ..., im), and Cm
1,2,..,n denotes the set of all m-combinations of

{1, 2, ..., n} .

Proof A consecutive-weighted-k-out-of-n:F (G) system is equivalent to a

consecutive-k∗-out-of-n:F (G) system if for all 1 ≤ j ≤ k∗ − 1,

wi−j+1 + ...+ wi < k, i = j, j + 1, ..., n, (3.3)

and for all k∗ ≤ j ≤ n

wi−j+1 + ...+ wi ≥ k, i = j, j + 1, ..., n. (3.4)

We observe that if (3.3) holds true for j = k∗ − 1 then it is satisfied for all

1 ≤ j < k∗ − 1. Thus the condition (3.3) is equivalent to

wi−k∗+2 + ...+ wi < k, i = k∗ − 1, k∗, ..., n. (3.5)

Similarly, if (3.4) holds true for j = k∗ then it is also true for all k∗ < j ≤ n.

That is, the condition (3.4) is equivalent to the condition

wi−k∗+1 + ...+ wi ≥ k, i = k∗, k∗ + 1, ..., n. (3.6)

Combining (3.5) and (3.6) we obtain (3.1). On the other hand, a weighted-

k-out-of-n:F (G) system is equivalent to a f ∗-out-of-n:F (G) system if for

all 1 ≤ j ≤ f ∗ − 1 the sum of any j weights is less than k, and for all

f ∗ ≤ j ≤ n the sum of any j weights is at least k. Repeating the above

arguments for weighted-f -out-of-n:F (G) system we get (3.2).�



CHAPTER 3. COMBINED SYSTEMS WITH WEIGHTED COMPONENTS28

Corollary 3.4 A linear weighted-(n, f, k,w):F (G) system is equivalent to

(n, f ∗, k∗):F (G) system if both (3.1) and (3.2) hold true.

To make the clear the above Theorem and its proof we provide the following

simple illustration which includes all possible states of n = 4 components. In

Table 3.1 we present the states of three weighted systems S1: weighted-7-out-of-

4:F, S2: consecutive-weighted-5-out-of-4:F, and S3: weighted-(4, 7, 5,w):F when

w =(2, 3, 3, 2).

States Y S1 S2 S3 States Y S1 S2 S3

0000 0000 0 0 0 0101 0302 0 0 0

1000 2000 0 0 0 0110 0330 0 1 1

0100 0300 0 0 0 0011 0032 0 1 1

0010 0030 0 0 0 1110 2330 1 1 1

0001 0002 0 0 0 0111 0332 1 1 1

1100 2300 0 1 1 1101 2302 1 1 1

1010 2030 0 0 0 1011 2032 1 1 1

1001 2002 0 0 0 1111 2332 1 1 1

Table 3.1. States of the systems S1, S2, and S3.

In view of Table 3.1, weighted-7-out-of-4:F system is equivalent to the 3-out-

of-4:F system because the minimal cut and path sets of these two systems are same

when w =(2, 3, 3, 2). It can be easily checked that the condition (3.2) is satisfied

for f = 7, f ∗ = 3, and w =(2, 3, 3, 2). Similarly, consecutive-weighted-5-out-

of-4:F system is equivalent to consecutive 2-out-of-4:F system. Thus weighted-

(4, 7, 5,w):F system is equivalent to (4, 3, 2):F system when w =(2, 3, 3, 2).

Example 3.4. For w = (2, 2, 2, 1, 2) a linear weighted-(5, 5, 3,w):F (G) system

is equivalent to (5, 3, 2):F (G) system.

Example 3.5. For w = (2, 3, 2, 2, 3) a linear weighted-(5, 9, 4,w):F (G) system

is equivalent to (5, 4, 2):F (G) system.



Chapter 4

The k-within-consecutive-m-out-

of-n:F

System

4.1 Introduction

A linear weighted k-within-consecutive-m-out-of-n:F systems consists of n compo-

nents ordered in a line and fails iff the total weights of failed components among

m consecutive components is at least k. If all components have weight 1, the

model is reduced to a usual k-within-consecutive-m-out-of-n system. It reduces

to weighted k-out-of-n:F system when m = n.

The usual k-within-consecutive-m-out-of-n:F system was first introduced by

Griffith (1986), efficient lower and upper bounds were proposed by Sfakianikis et

al. (1992) and Papastavridis and Koutras (1993). Sfakianikis et al. (1992) also

presented exact reliability formula using combinatorics for the system with i.i.d.

components for the case k = 2 and bounds based on improved Bonferroni inequal-

ities for k ≥ 2. Recursive equations for exact reliability for k ≥ 2 was provided

by Preuss (1997). This model was extended to rectangular or cylindirical two

29
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dimensional k-within-connected-r × s-out-of-m × n systems having a very com-

plicated reliability structure. Makri and Psikallis (1997) have provided a bound

based on imporved Bonferroni Inequalities and Akiba and Yamamoto(2001) have

presented an algorithm for exact reliability of the two-dimensional model.

Usual versions of this model have applications in quality control, radar and

sliding window detection. When at least k items fall outside the limits among

m consecutive items in Shewart control charts, the manufacturing process would

be adjusted to correct the defects. In sliding window detection, if k ones are

encoutered in an m-bit wide sliding window at an instance, an error would be

detected (Papastavridis and Koutras (1993)).

The weighted version of this model can be used in overlapping local networks.

Each window of m consecutive units in an array of n units with unequal capaci-

ties would be required to supply adjacent regions with a certain capacity where

neighboring regions share m-1 units as their source. In the F system, if at least

one region is not supplied with the desired load then the local failure would have

a global impact. Power plants with different generation capacities might be an

example of the sources of power for neighboring regions.

The lower and upper bounds presented in this chapter are based on bounds

obtained for non-weighted models by Papastavridis and Koutras (1993).

4.2 Exact Reliability

The exact reliability computation of Weighted k-within-consecutive-m-out-of-n:F

System is based on the method provided by Preuss(1997) for usual k-within-

consecutive-m-out-of-n:F systems. When all component weights are 1, we obtain

the formulas given by Preuss(1997).
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4.2.1 Definition of Symbols

pj: Survival probability of component j for j = 1 . . . n.

wj: The weight of component j for j = 1 . . . n.

yj: yj ∈ {0, wj} for j = 1 . . . n.

Yj: Yj = wj if component j fails and Yj = 0 if component j works for j = 1 . . . n.

Ai: Event that weighted k-within-m-out-of-i system consisting of components

1,..,i works for i=m,...,n.

Bn,m The set of all m-element positive integer vectors (yn−m+1, yn−m+2, . . . , yn)

such that
∑m

j=1 yn−m+j < k.

Rn: The exact reliability of weighted k-within-consecutive-m-out-of-n:F System

4.2.2 Reliability Evaluation

Rn = P (An) =
∑

(yn−m+1,yn−m+2,...,yn)∈Bn,m

P (An|Yn−m+1 = yn−m+1, . . . , Yn = yn)

·
n∏

j=n−m+1

(pjI(yj = 0) + (1− pj)I(yj = wj))

where

I(yj = wj) =

{
1 if yj = wj

0 if yj 6= wj

and probabilities P (An|Yn−m+1 = yi−m+1, . . . , Yn = yn) are computed by recur-

sion:

for j = m, . . . , n− 1

P (Aj+1|Yj−m+2 = yj−m+2, . . . , Yj+1 = yj+1) =
0 if

∑m
i=1 yj−m+1+i ≥ k

P (Aj|Yj−m+1 = 0, Yj−m+2 = yj−m+1, . . . , Yj = yj)pj

+P (Aj|Yj−m+1 = wj−m+1, Yj−m+2 = yj−m+1, . . . , Yj = yj)

·(1− pj) if
∑m

i=1 yj−m+1+i < k
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with initial condition,

P (Am|Y1 = y1, . . . , Ym = ym) =

{
0 if

∑m
j=1 yj ≥ k

1 if
∑m

j=1 yj < k

The complexity of this algorithm is O(n ·
∑k−1

i=1

(
m
i

)
) which grows very fast for

large n and m.

4.3 Lower bound

The lower bound in Papastavridis and Koutras (1993) has been improved and

adjusted for weighted model. When all weights are 1, sharper lower bounds

are obtained compared to Papastavridis and Koutras (1993) therefore our lower

bounds are improvements for usual models as well. A second lower bound ob-

tained by the same method and it is even sharper than the first lower bound but

it is more complicated hence the formula for only the usual case is given.

4.3.1 Definition of Symbols

RW (k,m, n) : The exact reliability of weighted k-within-consecutive-m-out-of-n-

system.

Xi : The random variable of component i. Xi = 1 if it is failed and Xi = 0 if it

is working for i = 1 . . . n.

Yi : wi ·Xi.

φi(x) The state or structure function of k-within-m-out-of-i:F system consisting

of components 1,2,....,i. φn(x) yields the state of the whole system for i = 1 . . . n.

qi, pi : Unreliability and reliability of component i for i = 1 . . . n.

R(j, s, i) : The reliability of j-out-of-s:F system consisting of components i-

s+1,....,i for i = 1 . . . n.

RLB1
i , RLB2

i : The first and second lower bounds for the reliability of linear

weighted k-within-consecutive-m out of i:F system consisting of components

1,2,....,i, for i = 1 . . . n.
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LB1 : The first lower bound for the reliability of the whole system. Same as

RLB1
n .

LB2 : The second and sharpest lower bound for the reliability of the whole

system. Same as RLB2
n .

4.3.2 Association of Events

If two structure functions φ1(X) and φ2(X) are s-independent random variables

we can simply multiply their reliabilities:

P (φ1(X) = 1 ∩ φ2(X) = 1) = P (φ1(X) = 1)P (φ2(X) = 1)

According to Esary and Proschan (1970), if two random variables’ covariance is

greater than or equal to 0, then they are associated. This means that an increase

in a random variable does not decrease the probability that the other random

variable will increase. Two events are associated if given that one event has oc-

curred the probability of other event does not decrease. If two structures share at

least one component in common then the random variables of those structures are

associated but not independent i.e. their covariance is greater than or equal to 0.

Then survival events of these two structures are also associated but not indepen-

dent i.e. survival probabilities of these two structures are increasing functions of

each other. If φ1(X) and φ2(X) are associated binary random variables then:

P (φ1(X) = 1 ∩ φ2(X) = 1) ≥ P (φ1(X) = 1)P (φ2(X) = 1)

4.3.3 Reliability Evaluation

The system is decomposed into n-m+1 weighted k-out-of-m:F subsystems con-

sisting of m consecutive components. Each consecutive substructure has m-1

components in common with the neighboring substructure. The survival event

for every substructure is
∑j+m−1

i=j Yi < k for j = 1, ...., n−m+1. When one event

in this sequence does not occur i.e. when at least 1 of these substructures fail,

the whole system fails. The survival of the system requires that all substructures
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survive i.e.
∑j+m−1

i=j Yi < k for j = 1, ...., n −m + 1. Therefore we can express

the survival probability of the whole system as:

P (φn(x) = 1) = P (
m∑
i=1

Yi < k ∩
m+1∑
i=2

Yi < k ∩ . . . ∩
n∑

i=n−m+1

Yi < k)

= P (
n−m+1⋂
j=1

j+m−1∑
i=j

Yi < k)

According to Barlow and Proschan (1971), each substructure is a minimal cut

structure since failure of one of them causes the system to fail. Since minimal cut

structures are arranged in series, the intersection of their survival events yield the

survival event of the system. Taking the joint probability of these events yields

the reliability of the system.

A lower bound is obtained based on the minimal cut structure representation

of the system. The simplest lower bound will be the product of reliabilities of

every substructure i.e. weighted k-out-of-m:F subsystems but because these sub-

structures in the sequence are m-dependent on each other, the error of the bound

would be high. In this section, we reduced the dependencies between consecutive

subsystems to attain a sharper lower bound. With pivotial decomposition and

removing dependence between neighboring substructures a more accurate lower

bound will be obtained. The substructures are decomposed by conditioning on

the components at the ends and shared components, and an expression in terms

of weighted k*-out-of-m*:F systems is obtained.

We begin with the reliability of the subsystem consisting of first m+1 compo-

nents. Its reliability will be expressed in terms of the joint probability of survival

events of first two minimal cut structures.

Lemma 4.1 The exact reliability of weighted k-within-consecutive-m-out-of-m+1
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system with independent components is:

P (φm+1(x) = 1) = P (
m∑
i=1

Yi < k ∩
m+1∑
i=2

Yi < k)

= [pm+1R(k,m,m)] + qm+1[p1R(k − wm+1,m− 1,m)

+ q1R(k −max(w1, wm+1),m− 1,m)]

If all components have weight 1, this formula is reduced to

P (φm+1(x) = 1) = R(k,m,m)pm+1 +R(k,m− 1,m)qm+1

Proof. As two substructures with m-1 components in common, we use pivotial

decomposition on the last component which is included only in the second sub-

structure to generate two mutually exclusive events whose reliabilities can be

added. The random variable Ym+1 would be removed from the survival event of

the second substructure as the lemma of pivotial decomposition describes:

P (
m∑
i=1

Yi < k ∩
m+1∑
i=2

Yi < k) = P (Ym+1 = 0,
m∑
i=1

Yi < k,
m∑
i=2

Yi < k)

+ P (Ym+1 = wm+1,
m∑
i=1

Yi < k,
m∑
i=2

Yi < k − wm+1)

Since the events Ym+1 = wm+1 and Ym+1 = 0 are independent from the rest of the

events their probabilities can be multiplied. The event
∑m

i=2 Yi < k is absorbed

by the event
∑m

i=1 Yi < k since the latter event’s occurrence would imply that the

former has occurred. Also the sequence of events
∑m

i=j Yi < k for j = 1, · · · ,m is

monotone decreasing therefore the second event is the subset of the first event.

Thus we can omit the event
∑m

i=2 Yi < k.

Now we have to decompose the intersection of two events
∑m

i=1 Yi < k ∩∑m
i=2 Yi < k − wm+1 into independent terms. These two structures have m-1
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components in common and the only random variable not included in the event∑m
i=2 Yi < k − wm+1 is Y1. After using pivotial decomposition component 1 and

removing Y1 from
∑m

i=1 Yi < k, we have:

P (
m∑
i=1

Yi < k,

m∑
i=2

Yi < k − wm+1) = P (Y1 = 0,
m∑
i=2

Yi < k,

m∑
i=2

Yi < k − wm+1)

+ P (Y1 = w1,

m∑
i=2

Yi < k − w1,

m∑
i=2

Yi < k − wm+1)

(4.1)

Since Y1 = 0 and Y1 = w1 are independent from the rest of the events, we can

multiply their probabilities. The event
∑m

i=2 Yi < k − wm+1 is absorbed by the

event
∑m

i=2 Yi < k since the occurrence of first event implies that the second

one has occurred. Also, sequence of events
∑m

i=2 Yi < j for 0 ≤ j is monotone

increasing thus the second event is subset of the first event.

The events
∑m

i=2 Yi < k − w1 and
∑m

i=2 Yi < k − wm+1 are inequalities with

same functions of random variables. Since the sequence of events
∑m

i=2 Yi < j for

0 ≤ j is monotone increasing, the event with larger j would be absorbed. The

event with smaller of the weights k − w1, k − wm+1, hence the larger of weights

w1, wm+1 would absorb the other event. Now we have:

P (
m∑
i=2

Yi < k − w1,
m∑
i=2

Yi < k − wm+1) = P (
m∑
i=2

Yi < k −max(w1, wm+1)) (4.2)

After equation (4.2) is substituted into equation (4.1), we have:

P (
m∑
i=1

Yi < k ∩
m+1∑
i=2

Yi < k) = P (Ym+1 = 0)P (
m∑
i=1

Yi < k)

+ P (Ym+1 = wm+1)[P (Y1 = 0)P (
m∑
i=2

Yi < k − wm+1)

+ P (Y1 = w1)P (
m∑
i=2

Yi < k −max(w1, wm+1))]

Now we have decomposed two dependent events into independent events. The

probability of every individual event can be solved by reliability formulas we

already know.
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Theorem 4.2 The first lower bound of weighted k-within-consecutive-m-out-of-n

system with independent components is calculated recursively as:

RW (k,m, i) ≥ piRW (k,m, i− 1) + qiRW (k,m, i− 2)[(pi−mR(k − wi,m− 1, i− 1)

+ qi−mR(k −max(wi−m, wi),m− 1, i− 1))]

≥ piR
LB1
i−1 + qiR

LB1
i−2 [(pi−mR(k − wi,m− 1, i− 1)

+ qi−mR(k −max(wi−m, wi),m− 1, i− 1)]

= RLB
i

and the first lower bound of a usual k-within-consecutive- m-out-of-n system with

all component weights 1 and independent and nonidentical components is reduced

to:

RW (k,m, i) ≥ piRW (k,m, i− 1) + qiRW (k,m, i− 2)R(k − 1,m− 1, i− 1)

≥ piR
LB1
i−1 + qiR

LB1
i−2 R(k − 1,m− 1, i− 1)

= RLB
i

for i = m+ 2, . . . , n.

and LB1 = RLB1
n

where we substitute the exact reliabilities for RLB1
m and RLB1

m+1 as provided in lemma

4.1.

Proof. We will find the joint probability of the survival of third substructure

and the survival of the existing structure φm+1 = 1. Every structure adds one

component to the existing system which will grow and eventually reach φn All

of the remaining substructures will be added with the same method. By pivotial

decomposition on component m+2:

P (φm+1 = 1 ∧
m+2∑
i=3

Yi < k) = P (Ym+2 = 0, φm+1 = 1)

+ P (Ym+2 = wm+2, φm+1 = 1,
m+1∑
i=3

Yi < k − wm+2) (4.3)

Since events Ym+2 = wm+2 and Ym+2 = 0 are independent from the rest

of the events, we can multiply their probabilities. Now we have to decompose
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φm+1 = 1 ∩
∑m+1

i=3 Yi < k − wm+2. The survival of first m+1 component system

φm+1 = 1 can be decomposed into φm = 1∩
∑m+1

i=2 Yi < k. Since the event φm = 1

is
∑m

i=1 Yi < k, we have:

P (φm+1 = 1 ∩
m+2∑
i=3

Yi < k − wm+2) = P (
m∑
i=1

Yi < k ∩
m+1∑
i=2

Yi < k ∩
m+2∑
i=3

Yi < k − wm+2))

On the right hand side, the event
∑m

i=1 Yi < k is dependent on the other two

events since they have m-1 and m-2 random variables or components in common.

They will not be decomposed further not to complicate the formula, therefore the

dependency will remain. The events
∑m

i=1 Yi < k and
∑m+1

i=2 Yi < k ∩
∑m+2

i=3 Yi <

k−wm+2 are associated since the random variables
∑m

i=1 Yi and
∑m+1

i=2 Yi,
∑m+1

i=3 Yi

are associated but not independent. This means that occurrence of one event

increases the probability of the other. This makes sense since if random variable∑m
i=1 Yi increases, then random variables

∑m+1
i=2 Yi and

∑m+1
i=3 Yi are more likely

to increase. The product of probabilities of two associated but not independent

events underestimates their joint probability therefore,

P (
m∑
i=1

Yi < k
⋂

(
m+1∑
i=2

Yi < k ∩
m+2∑
i=3

Yi < k − wm+2))

≥ P (
m∑
i=1

Yi < k) · P (
m+1∑
i=2

Yi < k ∩
m+2∑
i=3

Yi < k − wm+2) (4.4)

The joint probability of events
∑m+1

i=2 Yi < k and
∑m+2

i=3 Yi < k − wm+2 will be

solved by using the same method in Lemma 4.1 i.e. by pivotial decomposition on

the component 2 and absorption by subsets of events.

P (
m∑
i=1

Yi < k) · P (
m+1∑
i=2

Yi < k ∩
m+2∑
i=3

Yi < k − wm+2)

= P (
m∑
i=1

Yi < k) · [P (Y2 = 0)P (
m+1∑
i=2

Yi < k − wm+2)

+ P (Y2 = w2)P (
m+1∑
i=3

Yi < k −max(w2, wm+2))]

= R(k,m,m) · [p2R(k − wm+2,m+ 1,m− 1)

+ q2R(k −max(w2, wm+2),m− 1,m+ 1)] (4.5)
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Then equation (4.5) is substituted into equations (4.4) and (4.3), and if we

repeat this operation until RLB
n , it will yield LB.

The exact reliability of weighted k-within-consecutive-m-out-of-m+2 system

with independent components can also be derived with the same method in

Lemma 4.1. However the formula would be too long for arbitrary weights there-

fore the exact reliability of this system will be given for the case wj = 1 for

j = 1, . . . , n with independent and nonidentical components:

Lemma 4.3 The exact reliability of a usual k-within-consecutive-m-out-of-m+2

system with independent and nonidentical components is:

P (φm+2(x) = 1) = P (
m∑
i=1

Xi < k ∩
m+1∑
i=2

Xi < k ∩
m+2∑
i=3

Xi < k)

= pm+2[R(k,m,m)pm+1 +R(k,m− 1,m)qm+1]

+ qm+2[R(k − 2,m− 2,m)(q1(qm+1 + q2pm+1))

+R(k − 1,m− 2,m)(q1p2pm+1) +R(k − 1,m− 1,m+ 1)p1]

Sfakianakis et al. (1992) have also provided reliability formulas for k-within-

consecutive-m-out-of-m+2 systems with i.i.d. components. The Lemma 4.3 can

also be used with undientical components and can be adapted to weighted versions

of this model.

A sharper lower bound can be obtained for the case wj = 1 for j = 1, . . . , n

using Theorem 4.2 and Lemma 4.3. The results of the second lower bound will be

compared to 4.2 and exact reliability for usual systems nonidentical components.

Theorem 4.4 The second lower bound of usual k-within-m-out-of-n system with
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independent and nonidentical components is calculated recursively as:

RW (k,m, i) ≥ piRW (k,m, i− 1) + qiRW (k,m, i− 3)[R(k − 2,m− 2, i− 2)

(qi−m−1(qi−1 + qi−mpi−1)) +R(k − 1,m− 2, i− 2)(qi−m−1pi−mpi−1)

+R(k − 1,m− 1, i− 1)pi−m−1]

≥ piR
LB2
i−1 + qiR

LB2
i−3 [R(k − 2,m− 2, i− 2)(qi−m−1

· (qi−1 + qi−mpi−1)) +R(k − 1,m− 2, i− 2)(qi−m−1pi−mpi−1)

+R(k − 1,m− 1, i− 1)pi−m−1]

= RLB2
i

for i = m+ 3, . . . , n.

and LB2 = RLB2
n

where we substitute the exact reliabilities for RLB2
m , RLB2

m+1 and RLB2
m+2 which are

provided in lemmas 4.1 and 4.3.

The computational complexity of both lower bounds is O(n ·m · k) which is

considerably smaller than the complexity of exact reliability formula for large n

and m.

4.4 Upper bound

The upper bound is adjusted to weighted models from Papastavridis and Koutras

(1993) which uses conditional probability. When all component weights are 1, it

reduces to the upper bound in Papastavridis and Koutras (1993).

4.4.1 Definition of Symbols

pj: Survival probability of component j.

Yj: Yj = wj if component j fails and Yj = 0 if component j works.

Ai: Event that weighted k-within-m-out-of-i system consisting of components

1, . . . , i works for i = m, . . . , n.



CHAPTER 4. THE K-WITHIN-CONSECUTIVE-M-OUT-OF-N:F SYSTEM41

Ei: Event that component i fails and total weight of failed components in sub-

sytem consisting of components i-m+1,..,i-1 is less than k

but more than or equal to k − wi for i = m, . . . , n.

Gi: Event that total weight of failed components in subsystem consisting of com-

ponents i-m+1,..,i-1 is less than k for i = m, . . . , n.

I1
i : The set consisting of components max(1, i−2m+2), . . . , i−m for i=m+1,...,n.

I2
i : The set consisting of components i-m+1,...,i-1 for i = m+ 1, . . . , n.

MC i
m: The minimal cut set containing components from both sets of I1

i and I2
i

for m=1,...,r and i = m+ 1, . . . , n.

SCi: The set of components in I1
i with the highest weight (and highest index if

more than one components have highest weight)

in each set MCi
m for m = 1, . . . , r and i = m+ 1, . . . , n.

Ci: The event that all components in the set SCi work for i = m+ 1, . . . , n.

R(k,m, i : F ): The reliability of weighted k-out-of-m:F system consisting of com-

ponents i-m+1,...,i for i = m, . . . , n.

UB: The upper bound of reliability of weighted k-within-m-out-of-n:F system.

4.4.2 Reliability Evaluation

The sequence of events Ai is monotone decreasing hence it has the following

property for every i: Ai ⊇ Ai+1. It is clear that events in this sequence are highly

associated. To remove this dependence, each event in the sequence has to be

conditioned on the preceding event.

Lemma 4.5 By the chain rule of the conditional probability we can write,

P (An) = P (Am) · P (Am+1|Am) · . . . · P (An|An−1) (4.6)

Since P (Ai) = 1 − P (A′i) it is also true that P (Ai|Ai−1) = 1 − P (A′i|Ai−1).

Therefore the equation (4.6) can be rewritten as:

P (An) = P (Am) · (1− P (A′m+1|Am)) · . . . · (1− P (A′n|An−1)) (4.7)

To find P (A′n|An−1) we need to express joint probability of A′i+1 and Ai in

terms of independent events. The joint probability of these two events can be
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expressed as the probability of survival of i-m substructures and failure of the

last one:

P (A′i|Ai−1) = P (
m∑
j=1

Yj < k ∩ . . . ∩
i−1∑

j=i−m

Yj < k ∩
i∑

j=i−m+1

Yj ≥ k)

∑i−1
j=i−m Yj < k represents the survival event of i−mth substructure (may also

be referred as minimal cut structure). Thus all substructures up to component

i-1 have to survive and the last substructure has to fail. For this to happen, the

last component i has to fail and the event k − wi ≤
∑i−1

j=i−m+1 Yj < k i.e. Ei has

to occur. So we have,

P (A′i|Ai−1) = P (
m∑
j=1

Yj < k ∩ . . . ∩
i−1∑

j=i−m

Yj < k

∩ (k − wi ≤
i−1∑

j=i−m+1

Yj < k) ∩ Yi = wn)

The event Ei is dependent on survival of m-1 preceding substructures from

i − 2m + 2 to i −m since they share common Yj’s. To remove this dependency

between events, some components between max(1, i−2m+2) and i-m (inclusive)

may need to be turned on so when two independent events Ai−m and Ei occur,

the event A′i ∩ Ai−1 occurs.

P (A′i|Ai−1) = P (Ai−m ∩
i−m+1∑

j=i−2m+2

Yj < k ∩ . . . ∩
i−1∑

j=i−m

Yj < k ∩ Ei)

Since the system up to component i-m works, the total weight of failed com-

ponents between max(1, i−2m+2) and i-m, i.e. in the set I1
i , is less than k. Due

to Ei, the total weight of failed components between 1-m+1 and i-1, i.e. in the

set I2
i is also less than k. However the total weight of failed components within m

consecutive components from both sets can still be more than k, if this is the case

some of the substructures from i-2m+2 to i-m would fail. For all substructures

up to component i-1 to work, some components in I1
i have to be turned on so

that no substructures including components from both sets of I1
i and I2

i fail.

Let MCi
1, . . .MCi

r be all minimal cut sets including including components

from both sets of I1
i and I2

i . The component with the largest weight from I1
i
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would be turned on in each set MCi
m for m=1,...r. If there is more than one

such components with largest weight, then the one with largest index would be

turned on so that none of the minimal cut structures of these sets fail by turning

on as few components as possible. By taking exactly one component from every

minimal cut set, we obtain the set SCi which consists of all components which

should be set as working so that events Ai−m and Ei imply that the system up

to component i-1 survives and fails at i.

SCi = {j ∈ I1
i ∩MCi

m : wj ≥ ws and if wj = ws then j > s

∀s ∈MCm ∩ I1
i − {j} for m = 1, . . . , r}

Let Ci be the event that all components in set SCi are working. Intersection

of events Ei, Ai−m and Ci implies that the system up to component i-1 survives

and fails at component i. Since Ei is independent from Ai−m and Ci:

P (A′i|Ai−1Ci) =
P (Ai−m ∩ Ci ∩ Ei)

P (Ai−1Ci)
=
P (Ai−m ∩ Ci)P (Ei)

P (Ai−1Ci)

and

P (Ai−1) = P (Ai−m ∩
i−m+1∑

j=i−2m+2

Yj < k ∩ . . .
i−1∑

j=i−m

Yj < k ∩Gi)

If two independent events Gi, i.e.
∑i−1

j=i−m+1 Yj < k, and Ai−m occur and some

substructures from i-2m+2 to i-m may still fail. The event Ci implies that no

minimal cut structures containing components from both I1
i and I2

i fail thus all

substructures from i-2m+2 to i-m survive. Therefore,

P (Ai−1 ∩ Ci) = P (Ai−m ∩ Ci ∩Gi)

Since Gi is independent from Ci and Ai−m,

P (A′i|Ai−1Ci) =
P (Ai−m ∩ Ci)P (Ei)

P (Ai−m ∩ Ci)P (Gi)
=
P (Ei)

P (Gi)

We also need following properties described and proved in the paper of Pa-

pastavrdis and Koudras(1993) to prove the next theorem,

Lemma 4.6 Let A, B, C be any events.

P (A|B) ≥ P (A|BC)P (C|B)
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Lemma 4.7

P (Ci|Ai−1) ≥ P (Ci)

Theorem 4.8 The upper bound of reliability of weighted k-within-m-out-of-n:F

system is:

UB =R(m,m, k : F ) ·
n∏

i=m+1

(1− (1− pi)

· [R(k,m− 1, i− 1 : F )−R(k − wi,m− 1, i− 1 : F )] · P (Ci)

P (Gi)
)

Proof. By using the lemmas 4.6 and 4.7, we can write,

P (A′i|Ai−1) ≥ P (A′i|Ai−1Ci)P (Ci|Ai−1) ≥
P (Ei)P (Ci)

P (Gi)

and

P (Ei) = (1− pi) [R(k,m− 1, i− 1 : F )−R(k − wi,m− 1, i− 1 : F )]

If we substitute these equations into equation (4.7), the result follows.

The complexity of the upper bound algorithm is O(n ·m ·k) which is much less

than computing time required for large n and m in exact reliability algorithm.

4.5 Statement of Results

The analytical solutions found in this chapter are computed with Student Ver-

sion of MATLAB 7.7 and the values are compared. The results are obtained

for different values of n, m and k in the following tables. In Table 4.1, each

element of probability vector is given as p
(1)
i = 1 − 2−i . The component

weight vectors are (1, 1, 2, 3, 2) for n = 5, (2, 1, 2, 2, 3, 2, 3, 1, 2, 1) for n = 10

and (2, 1, 3, 4, 2, 1, 3, 4, 2, 3, 1, 3, 2, 3, 1) for n = 15.
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TABLE 4.1

Lower and Upper Bounds for Reliability of

weighted k-within-consecutive-m-out-of-n:F System for p(1)

n m k LB1 Exact R UB

5 2 2 0.6953 0.6953 0.7450

5 3 3 0.8609 0.8629 0.8918

5 4 3 0.8565 0.8565 0.8599

10 3 3 0.7707 0.7709 0.7895

10 5 3 0.7489 0.7492 0.7534

10 7 4 0.8747 0.8750 0.8750

10 8 5 0.9482 0.9482 0.9482

15 5 3 0.6955 0.6956 0.7012

15 7 5 0.8875 0.8878 0.8883

15 10 8 0.9920 0.9920 0.9920

15 12 10 0.9985 0.9985 0.9985

The elements of probability vector for the Table 4.2 are

p
(2)
i =

{
0.7 if i is odd

0.75 if i is even

The next table uses the same weight vectors in Table 4.1.
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TABLE 4.2

Lower and Upper Bounds for Reliability of weighted

k-within-consecutive-m-out-of-n:F System for p(2)

n m k LB1 Exact UB

5 2 2 0.3399 0.3399 0.3836

5 3 3 0.5852 0.6077 0.6740

5 4 3 0.5683 0.5683 0.5847

10 3 3 0.2325 0.2860 0.4495

10 5 3 0.1708 0.2352 0.3384

10 7 4 0.2570 0.3176 0.3512

10 8 7 0.7065 0.7065 0.7134

15 5 3 0.0362 0.0611 0.1459

15 7 5 0.1088 0.2028 0.3618

15 10 8 0.3133 0.4308 0.4986

15 12 10 0.4867 0.5645 0.5934

The next table compares usual systems so all component weights are 1. It

uses the same probability vectors in Table 4.2.

TABLE 4.3

Lower Bounds for Reliability of usual k-within-consecutive-m-out-of-n:F System

for p(2)

n m k LB1 LB2 Exact

5 2 2 0.7639 0.7639 0.7639

5 3 2 0.6413 0.6602 0.6602

10 3 2 0.3581 0.3758 0.3980

10 5 3 0.6135 0.6363 0.6689

10 7 4 0.7903 0.8064 0.8202

10 8 5 0.9242 0.9312 0.9312

15 5 3 0.4241 0.4539 0.5122

15 6 2 0.0621 0.0715 0.1086

15 7 4 0.6167 0.6447 0.7022

15 10 6 0.8993 0.9076 0.9224

15 12 7 0.9452 0.9494 0.9545
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In Table 4.4, our second lower bound is compared to the upper bound UBB

for unreliability of usual k-within-consecutive-m-out-of-n:F systems found by

Sfakianakis et al. (1992) based on Bonferroni inequalities since an upper bound

for unreliability is actually a lower bound for reliability. The Bonferroni upper

bound for unreliability is the sharpest bound found by Sfakianakis et al. (1992)

in most cases.

TABLE 4.4

Upper Bounds for Unreliability of usual k-within-consecutive-m-out-of-n:F

System with i.i.d. components

n m k p Exact 1− LB2 UBB

10 7 2 0.25 0.999 0.999 0.1000

10 7 5 0.5 0.379 0.428 0.393

10 7 2 0.75 0.718 0.737 0.728

15 12 8 0.25 0.916 0.963 0.926

15 12 9 0.25 0.772 0.868 0.781

15 7 3 0.5 0.976 0.993 1.000

15 10 7 0.5 0.333 0.420 0.421

15 10 8 0.5 0.131 0.163 0.156

15 7 3 0.75 0.559 0.640 0.736

15 7 5 0.75 0.580 0.656 0.680

15 10 3 0.75 0.679 0.744 0.755

15 10 5 0.75 0.196 0.200 0.196

15 12 2 0.75 0.911 0.918 0.924

15 12 3 0.75 0.728 0.754 0.747

20 10 8 0.5 0.204 0.271 0.279

20 10 9 0.5 0.049 0.066 0.058

20 12 10 0.5 0.067 0.089 0.086

The first lower bound and the upper bound perform very well in case of high

component and system reliabilities. Both bounds can be used as approximations

in case of high reliabilities. But in Table 4.2, when component and system relia-

bilities drop, the error of both bounds increase considerably. Especially the first

lower bound deviates more from the exact reliability compared to the Table 4.1.
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In the Table 4.3, the second lower bound is superior to the first lower bound in

all systems except the first one. The second lower bound is sharper when system’s

reliability is high. The percentage difference between the first and second lower

bounds increase in low system reliabilities. Thus, the second lower bound is a

good approximator in all cases.

There is no direct way to compare our second lower bound to Bonferroni

lower bound of Sfakianakis et al. (1992). Our bound tends to perform better

in low system reliabilities whereas Bonferroni lower bound outperforms in high

reliabilities.



Chapter 5

Conclusions

The exact reliability in Chapter 3 and bounds in Chapter 4 are efficient methods

for evaluating the reliability of such complex weighted systems introduced in this

thesis. The assumptions are also few, components can have arbitrary weights

and reliabilities. The exact reliabilities in Chapter 3 are efficient and can be

used for usual models as well. Conversion of weighted combined systems to

usual combined systems is useful for conserving time and space. The first lower

bound in Chapter 4 performs well in high reliabilities for both weighted and usual

models. The upper bound adjusted to the weighted models also preserved its good

performance as in usual systems. The second lower bound outperforms the first

one in usual models and tends to be sharper than the Bonferroni lower bound in

low reliabilities. The methods described in this thesis can also be extended to

more complicated structures. All programs needed for computation of formulas

presented in this thesis are available upon request.
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