
Task Assignment in Tree-Like Hierarchical Structures

Cem Evrendileka, Ismail Hakki Toroslu∗,b, Sasan Hashemib

a İzmir University of Economics
Computer Engineering Department

35330 İzmir, Turkey
bMiddle East Technical University
Computer Engineering Department

06531 Ankara, Turkey

Abstract

Most large organizations, such as corporations, are hierarchical organizations.
In hierarchical organizations each entity in the organization, except the root
entity, is a sub-part of another entity. In this paper we study the task assignment
problem to the entities of tree-like hierarchical organizations. The inherent tree
structure introduces an interesting and challenging constraint to the standard
assignment problem. When a task is assigned to an entity in a hierarchical
organization, the whole entity, including its sub-entities, is responsible from
the execution of that particular task. In other words, if an entity has been
assigned to a task, neither its descendants nor its ancestors can be assigned to a
task. Sub-entities cannot be assigned as they have an ancestor already occupied.
Ancestor entities cannot be assigned since one of their sub-entities has already
been employed in an assignment. In the paper, we formally introduce this
new version of the assignment problem called Maximum Weight Tree Matching
(MWTM), and show its NP-hardness. We also propose an effective heuristic
solution based on an iterative LP-relaxation to it.

Key words: task assignment, hierarchy constraints, NP-hardness, heuristic
solution, integer linear programming, linear programming relaxation

1. Introduction

In the standard assignment problem (or as sometimes referred to linear as-
signment problem) [1], the number of tasks and the number of agents are equal,
and a scalar value is used to represent the cost/performance of assigning a task
to an agent. The objective of the assignment problem is to determine an assign-
ment such that each task is assigned to a different agent and the summation

∗Corresponding author. Tel.: +90 312 210 5585
Email addresses: cem.evrendilek@ieu.edu.tr (Cem Evrendilek),

toroslu@ceng.metu.edu.tr (Ismail Hakki Toroslu), sasan@ceng.metu.edu.tr (Sasan
Hashemi)

Preprint submitted to Elsevier August 31, 2018

ar
X

iv
:1

40
4.

07
83

v1
 [

cs
.D

S]
 3

 A
pr

 2
01

4

of the costs/profits of the assignment is minimized/maximized. Many different
variations of this problem have already been studied including Generalized As-
signment Problem [2, 3, 4, 5]. In this work, we also investigate a new version of
the standard assignment problem which appears in real-life applications.

In real-life, most of the large organizations such as corporations, govern-
ments, military etc., have hierarchical structures. Hierarchical organizations are
nothing but trees where each node corresponds to an entity in the organization,
and entity sub-entity relationships are represented as parent-child relationships.

In the standard assignment problem, agents are flat, and have got no struc-
ture imposed on them one task is assigned to one agent. However, in Maximum
Weight Tree Matching (MWTM) problem, since agents are organized as a tree,
and sub-entities in the tree represent sub-parts of the agents, an additional con-
straint, named hereafter as hierarchy constraint, is introduced to the assignment
problem: When a task is assigned to an agent, no other assignment can be made
to its sub-entities, as they are assumed to be a part of an agent already assigned.
This constraint indirectly implies another constraint. Since an agent should be
assigned to a task as a whole along with its sub-parts, when one of its sub-parts
has already been assigned, then it cannot be assigned itself to any task. In
other words, if an agent is assigned to a task, none of its ancestors in the tree
can be assigned at all. In a more general term, on every path from the root
to a leaf in a tree, there could be at most a single assignment. This, in turn,
is easily seen to lead to the observation that the number of leaves in the tree
should be at least equal to the number of tasks to be executed. Otherwise no
feasible assignment exists.

A simpler version of MWTM problem where each node has the same as-
signment weight for all the tasks to be performed has been introduced in [6].
It is called “tree like weighted set packing” in [6] since the set-subset relation-
ships form a tree, and the weight assigned to each set (or each node in the tree)
can be interpreted as the weight of assigning a task to that node. The same
hierarchy (independence) constraint has been enforced to prevent the selection
of two sets having set-subset relationships (either directly or indirectly), and
finally the number of sets to be packed (selected) is given to maximize the to-
tal weight. That problem effectively becomes a simpler version of the problem
studied in this paper, and an effective dynamic programming solution to it has
been developed in [6].

Although many different versions of assignment problems have been defined
and explored, there are only a very few problems remotely related to MWTM
problem reported in the literature, such as [7], and [8]. Similar to MWTM , both
of these problems introduce different kinds of set constraints on the vertices of
a bipartite graph, and they have both been shown to be NP-hard. Therefore,
heuristic solutions have been proposed, namely a greedy heuristic for [7], and
a genetic algorithm based solution for [8], and these solutions have been shown
to be quite effective.

MWTM problem has already been introduced in [9], and a generic heuristic
(genetic algorithm) has been used to solve it. In [9], it has been shown that
GA works quite effectively in terms of solution quality for randomly generated

2

inputs. Although the number of iterations were not very large, due to the cost
of each genetic operator among the chromosome populations, each iteration
takes a considerably long time to complete, and therefore we have observed
that the execution times are much higher to reach to the level of near-optimal
results obtained with the approach proposed in this paper. Since GA approach
uses a generic heuristic (slightly customized for the problem), it is actually
not fair to compare it with our problem-specific heuristic, which is much more
effective. Moreover, although GA approach has been applied to different sized
inputs, significant input parameters have not been explored in its evaluation in
[9] corresponding to the structure and the distributions of the weights. That
is why we have compared the quality of the solutions of our heuristic proposed
in this paper with that of ILP only which produces the optimal (whenever
possible). This paper has the following additional contributions to [9]:

• The problem is shown to be NP-hard,

• An Integer Linear Programming (ILP) model of the problem is given,

• An iterative Linear Programming (LP) relaxation solution is developed,

• The effectiveness of the proposed iterative LP-relaxation solution is veri-
fied through extensive tests.

Iterative LP-relaxation or rounding algorithms have previously been used. A
factor 2 approximation algorithm is presented in [10] for finding a minimum-cost
subgraph having at least a specified number of edges in each cut. This class of
problems defined in [10] includes the generalized Steiner network problem also
known as the survivable network design problem. The algorithm in [10] first
solves the linear relaxation of ILP formulation of the problem, and then itera-
tively rounds off the solution. The approach taken in [10] has been generalized
and formalized in [11]. In order to exploit the full power of LP, a new technique
called iterative rounding has been introduced in [11]. Iterative rounding is used
in [11] to iteratively recompute the best fractional solution while maintaining
the rounding of the previous phases. Although an iterative rounding based
heuristic solution is developed in this paper for MWTM , the presence of the
hierarchy constraint does not simply lend itself to the consideration of fractional
values from the highest to the smallest.

The rest of the paper has been organized as follows. The next section for-
mally introduces the problem, and proves its NP-hardness. Section 3, describes a
mathematical (integer linear programming) formulation, and Section 4 presents
how its relaxation to LP can be iteratively used as an effective heuristic. Sec-
tion 5 describes the experiments and their results. Finally, the last section
presents concluding remarks.

2. Problem Description and its NP-Hardness

We will now introduce Maximum Weight Tree Matching (MWTM) problem
formally.

3

Definition 1. A tree T with n nodes rooted at a node r, and a separate set of
m tasks are given. Associated with each node i in T is a real valued function
wi,j denoting the weight of assigning node i to task j for all i ∈ {1..n} and
j ∈ {1..m} The problem of finding an assignment of all tasks to nodes in T with
the maximum total weight in such a way that the assignment between nodes
and tasks forms a matching, and no node assigned to a task is allowed to have
any ancestors (or descendants) which have also been assigned to a task is named
MWTM.

It should be noted that the requirement for the weight function to be defined
for all combinations of nodes and tasks in MWTM stems from a deliberate
decision. MWTM is more restricted than its possible variants where some
combinations of nodes and tasks can be forbidden. As MWTM can be reduced
directly to these more general forms, NP-hardness of them would easily follow
once MWTM is shown to be NP-hard.

x1

C1,1

r

x1 xi xi xn xn

1

2 3 2i 2i+1 2n 2n+1

Level 0
root node r

C1,2 C1,3

Level 1
variable nodes

2n+2 2n+3 2n+4

Level 2
literal nodes

clause

C1

Cm,1 Cm,2 Cm,3

2n+3m-1 2n+3m 2n+3m+1

m clausal tasks

clause
Cm

... enforce

x1

enforce

xn

...
n enforcement tasks

...

... ...
parent of each literal node is a variable node

Tasks

t1 tm+n tm tm+1

Figure 1: Transforming an E3-SAT instance to the corresponding instance of MWTM . The
solid lines between the nodes are the tree edges while the dashed lines between the nodes and
the tasks correspond to the weight function wi,j .

The constraint associated with the hierarchical structure of the tree dictates
that no two nodes on the same path from the root r to a leaf node in T can
ever be simultaneously assigned in a solution to an instance of MWTM .

4

Definition 2. Two paths in a tree from the root to any two distinct nodes are
said to be independent paths if and only if none of the two paths is a subset of
the other.

In the light of this definition, the hierarchy constraint can simply be restated
as the requirement that the paths from the assigned nodes to the root are all
pairwise independent.

MWTM can be shown to be NP-hard by a polynomial time reduction from
E3-SAT which is a variant of 3-satisfiability (3-SAT) problem. E3-SAT (resp.
3-SAT) is defined to be the problem of deciding whether a satisfying truth as-
signment is possible for the variables of a given Boolean formula in Conjunctive
Normal Form (CNF) where each clause is a disjunction of exactly (resp. at most)
three literals each of which is either a variable or its negation. 3-SAT is one
of Karp’s 21 NP-complete problems [12]. Any given instance of 3-SAT can be
easily transformed to a corresponding instance of E3-SAT by introducing three
new dummy variables, d1, d2, and d3. While only d1 is inserted into the clauses
with one literal, both d1 and d2 are inserted into the clauses with two literals.
In order to make sure in any satisfying assignment that the dummy variables
can only be set to false, the conjunction of all maxterms of the dummy variables
except d1 + d2 + d3 are finally appended to the clauses each with exactly three
literals now. The NP-completeness of E3-SAT is hence confirmed.

A given instance of E3-SAT problem is transformed to a corresponding in-
stance of MWTM in time polynomial in the size of the input Boolean expres-
sion. Let a given instance of E3-SAT have n variables denoted by xi where
i ∈ [1..n] and a 3-CNF formula C1 ∧ C2 ∧ . . . ∧ Cm where each Ci represented
by Ci,1 ∨ Ci,2 ∨ Ci,3 is a disjunction of three literals corresponding to either a
variable or its negation. The transformation starts by introducing the root node
designated by r to the initially empty tree T of the corresponding MWTM in-
stance at level 0. The root node r is numbered as 1. For each variable xi, two
child nodes to root r are then created numbered 2i for xi, and 2i + 1 for ¬xi
corresponding to assigning true and false respectively to this variable. The
parents of all such nodes are set to point to node r. As there are n distinct
variables in the given E3-SAT instance, the root r of T in the corresponding
MWTM instance becomes populated with a total of 2n children at level 1 of T
after this step. These are called variable nodes (see Figure 1). In the final step
of the construction of T , for each literal Ci,j where i ∈ [1..m], and j ∈ [1..3], a
node numbered 1 + 2n + 3(i − 1) + j is created. The parent of such a node is
set to 2k if Ci,j = xk, and to 2k + 1 otherwise if Ci,j = ¬xk where k ∈ [1..n].
What this step achieves in effect for each node corresponding to assigning true
to xk or to its negation ¬xk at level 1 is the creation of as many children at
the next level 2 under the relevant variable node as there are occurrences of
the corresponding variable in the clauses of the given E3-SAT instance. The
tree T constructed is shown in Figure 1. While parent-child relationships are
indicated by solid lines in this figure, dashed lines depict the weight function
wi,j . It should be noted that the variable nodes at level 1 will have as many
children as there are occurrences of the corresponding literal at level 2 which

5

is implied by the existence of multiple edges emanating from a variable node
while the nodes corresponding to literals in clauses at level 2 will have a single
edge to their parent as shown in the figure. The nodes at level 2 are accordingly
called literal nodes.

Once we obtain the tree T in MWTM instance corresponding to the given
instance of E3-SAT, we also set the number of tasks to m + n. Each task ti
for i ∈ [1..m] corresponds to satisfying a clause Ci. We call these clausal tasks.
Each task ti for i ∈ [m + 1..m + n] among the rest of the tasks , however, are
used to enforce that the corresponding variable xi−m is set to either one of true
or false consistently over all clauses. We call such tasks enforcement tasks.

Apparently, the total number of nodes in T in the corresponding instance of
MWTM is given by 1 + 2n + 3m where n and m are the number of variables
and clauses respectively specified in the given E3-SAT instance. The number of
tasks, on the other hand, is n+m. The concluding step of the transformation is
to appropriately set the corresponding values wi,j for all nodes i ∈ [1..1+2n+3m]
in T , and all tasks j ∈ [1..m+ n] as shown in Equation 1 below:

wi,j =


0, if i = 1 ∧ j ∈ [1..m+ n]
1, if i ∈ [2..2n+ 1] ∧ j = m+ b i2c
1, if i ∈ [2n+ 2..2n+ 3m+ 1] ∧ j = b i−2n−2

3 c+ 1
0, otherwise

(1)

The weights of carrying out any one task by the root node are all initialized
to zero. For a variable node i ∈ [2..2n + 1] at level 1 corresponding to xb i

2 c
or ¬xb i

2 c
depending on whether i is even or odd respectively, however, the

weights of executing tasks are set in such a way that a consistent assignment
of truth values to individual variables can be enforced. The only task whose
execution by node i can have a positive contribution to the solution is therefore
the corresponding enforcement task tm+b i

2 c
. At level 2 are the literal nodes

ranging from 2n+ 2 to 1 + 2n+ 3m corresponding to the literals in the clauses
of the given E3-SAT instance. Since each literal can accordingly be set to
satisfy a clause in which it occurs, the weight wi,j of assigning a level 2 node
i representing a literal Cp,q to clausal task tj corresponding to the clause Cp
itself is appropriately set to 1 to reflect a feasible assignment. Therefore, the
equalities i = 1 + 2n + 3(p − 1) + q, and j = p must hold. Noting that q can
only take on the values 1 through 3 inclusive readily gives p = b i−2n−2

3 c + 1,
and q = (i − 2n − 2) mod 3 + 1. All other combinations of nodes and tasks
have weight 0.

It should be pointed out that an MWTM instance so constructed would
always lend itself to feasible solutions since the number of leaf nodes in T is
greater than or equal to the number of tasks. This last inequality can be seen to
hold by noting that m ≥ (2n−t)/3 where t ∈ [0..n) denotes the number variable
nodes without any children in T based on the assumption that at least one of a
variable or its negation is used in one of m clauses in the given E3-SAT instance.
Asm, n, and t are all non-negative, m ≥ (2n−t)/3 = 2

3n−
1
3 t ≥

1
2n−

1
3 t ≥

1
2n−

1
2 t

is easily obtained. Multiplying both sides of m ≥ 1
2n −

1
2 t by two, and then

6

adding m to both sides, we obtain 3m ≥ m+n− t, and then 3m+ t ≥ m+n by
rearranging. The feasibility of the corresponding MWTM instances obtained
through the transformation described are hence confirmed.

Given the transformation described, we make the following straightforward
observation to be used in a lemma to follow.

Observation 1. In any solution with total weight n + m to the corresponding
MWTM instance obtained from a given E3-SAT instance through the transfor-
mation described, a literal node at level 2 can be assigned to a related clausal
task iff no other literal node corresponding to its negation at the same level has
already been allocated.

Proof. In any solution with total weight n+m to the corresponding MWTM
instance after the transformation depicted, all the enforcement tasks should
have already been assigned to variable nodes at level 1 in T . Only the children
at level 2 of the unassigned variable nodes at level 1 now, by the definition of
MWTM , can be used to fulfill the tasks corresponding to the clauses which
ensure a consistent assignment. �

The following lemma can now be proved easily.

Lemma 1. A given E3-SAT instance with n variables, and m clauses is satisfi-
able iff the corresponding MWTM instance obtained through the transformation
described above has a solution with total weight n+m.

Proof. Let us first prove the sufficiency part: If a given E3-SAT instance is
satisfiable then there exists an assignment of truth values to all n variables which
makes all m clauses evaluate to true. This, in turn, implies that at least one
literal in every clause can be made true. The corresponding MWTM instance
is then easily seen to have an optimal assignment with weight n + m: Each
task corresponding to a clause in this scheme is assigned to one node at level 2
corresponding to one of the literals satisfying this clause while each enforcement
task is assigned to the node at level 1 representing the negation of the literal
evaluating to true in a satisfying truth assignment to the given E3-SAT instance.
This is indeed a matching since each task is matched to a different node and no
node which is a parent of an already assigned literal node is assigned to a task.
The latter is guaranteed by the fact that if a literal node is assigned to a clausal
task, then the node corresponding to the negation of this literal at a higher
level can only be used to accomplish the respective enforcement task. The total
weight is also the maximum possible as no weight value can be greater than 1.

In order to prove the necessity part, let us assume that there exists a solu-
tion with total weight n + m to the corresponding MWTM instance. A truth
assignment for the given E3-SAT instance can be obtained by setting each vari-
able xi to true if the corresponding enforcement task m+ i is assigned to node
2i+ 1, and to false if the assignment is to node 2i. This truth assignment defi-
nitely satisfies 3-CNF expression of the given E3-SAT instance by Observation 1
above. �

7

To illustrate the idea in the reduction process, let us consider the following
example.

Example 1. A 3-CNF formula (p ∨ ¬q ∨ ¬p) ∧ (p ∨ r ∨ ¬s) ∧ (q ∨ r ∨ s) with
4 variables, and 3 clauses is given. While the variables are named p, q, r, and
s, the clauses are denoted by C1 = (p ∨ ¬q ∨ ¬p), C2 = (p ∨ r ∨ ¬s), and C3 =
(q∨r∨s). The corresponding tree structure obtained through the transformation
just described is given in Figure 2, while the accompanying weights of assigning
nodes to tasks are shown in Figure 3. While the nodes are numbered from 1
through 18, tasks are called tC1, tC2, and tC3 corresponding to the clausal tasks,
and tp, tq, tr, and ts corresponding to the enforcement tasks.

(p  q  p)  (p  r  s)  (q  r  s)

1

2 3 4 5 6 7 8 9
p  p q  q r  r s  s

C1 C2 C3

10 11 12 13 14 15 16 17 18

root

Figure 2: The tree for the corresponding MWTM instance obtained from the example E3-SAT
instance.

The given 3-CNF Boolean expression is satisfiable if and only if MWTM
instance identified with the corresponding tree structure given in Figure 2, and
accompanying weight function depicted in Figure 3 has an assignment with a
total weight of 3 + 4 = 7.

It should be noted that the construction constrains the weight values for
variable nodes 2 through 9 in the table to the left of Figure 3 through enforce-
ment tasks in such a way that a node corresponding to a variable and another
node corresponding to its negation can not at the same time contribute to a
solution. An inspection of the weight values for literal nodes 10 through 18 in
the table to the right in Figure 3 reveals similarly that only one of three such
nodes can contribute to a solution through a corresponding clausal task.

If a given 3-CNF formula is satisfiable, any satisfying truth assignment in-
duces a straightforward matching of the nodes to all the available tasks such that
the variable nodes at level 1 evaluating to false with respect to the given truth
assignment are all assigned to their corresponding enforcement tasks leaving
only their negations for a consistent instantiation over the entire set of clauses.
There are several ways to satisfy the above example formula. Let us assume
that we pick an assignment as follows: Variables p and q are both assigned to
true while r and s can be assigned randomly. If we reflect these choices on the

8

tC1 tC2 tC3 tp tq tr ts

1 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0

3 0 0 0 1 0 0 0

4 0 0 0 0 1 0 0

5 0 0 0 0 1 0 0

6 0 0 0 0 0 1 0

7 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1

9 0 0 0 0 0 0 1

tC1 tC2 tC3 tp tq tr ts

10 1 0 0 0 0 0 0

11 1 0 0 0 0 0 0

12 1 0 0 0 0 0 0

13 0 1 0 0 0 0 0

14 0 1 0 0 0 0 0

15 0 1 0 0 0 0 0

16 0 0 1 0 0 0 0

17 0 0 1 0 0 0 0

18 0 0 1 0 0 0 0

Figure 3: wi,j values for the corresponding MWTM instance obtained from the example
E3-SAT instance.

instance of MWTM obtained, tasks tC1 and tC2 are assigned respectively to
nodes 10 and 13 both corresponding to p while task tC3 is assigned to node 16
corresponding to q. Then, we can assign enforcement task tp to node 3 corre-
sponding to ¬p, task tq to node 5 corresponding to ¬q. Finally, we assign task
tr to either one of the nodes 6 or 7, and task ts to either one of the nodes 8 or
9. For the last two, r and s, the choice is not really important, since neither
one of these variables has been used in satisfying the clauses. �

The transformation described in this section is certainly polynomial in the
size of the given E3-SAT instance. This is easily observed by noting that the
number of nodes created to form a tree in the corresponding instance ofMWTM
is 2n+ 3m+ 1, and O(n+m) additional processing is needed in the worst case
for every node as its weight to n + m tasks are all initialized to either 0 or 1
resulting in a total time proportional to O((n+m)2).

Theorem 2. MWTM problem is NP-hard.

Proof. It follows easily from Lemma 1, and the fact that transformation is
polynomial in the size of the given E3-SAT instance. �

MAX-E3-SAT is an optimization problem which generalizes E3-SAT in such
a way that instead of a satisfying assignment, it finds an assignment satisfying
the maximum number of clauses in a given 3-CNF formula. As shown in [13], it
is NP-hard to approximate satisfiable MAX-E3-SAT instances to within a factor
7/8+ε of the optimal for any ε ∈ (0, 1]. It is accordingly noted at this point that
we can slightly modify the illustrated transformation from E3-SAT to MWTM
to obtain a transformation also from MAX-E3-SAT to MWTM . First, the
weights of assigning the variable nodes to the corresponding enforcement tasks
are set to m (the number of clauses). Then, m additional dummy nodes whose
weights of executing any one of the tasks have all been initialized to zero are
introduced as children directly to the root. It is now easily seen that any given

9

instance of MAX-E3-SAT denoted by Π1 has a solution with value k∗ if and
only if the corresponding instance of MWTM denoted by Π2 has a solution
with a value of k∗ + mn. This polynomial time reduction can also be used to
establish that MWTM cannot have a polynomial-time approximation scheme
(PTAS). Otherwise, we could use it to obtain a 7/8+ε approximation algorithm
for MAX-E3-SAT, and hence a contradiction. In order to see this, let us assume
that MWTM has a 1− δ approximation where δ ∈ (0, 1]. For a given instance
of MAX-E3-SAT, the corresponding instance of MWTM is first obtained in
polynomial time using the transformation just depicted. Setting δ = 1

mn (1/8−
ε), the approximation algorithm for MWTM is run next on the transformed
instance to return k +mn ≥ (1− δ)(k∗ +mn) where k and k∗ are the number
of clausal tasks in the approximate and optimal solutions respectively. We can
then write the inequality (k∗+mn)− (k+mn) ≤ (k∗+mn)− (1− δ)(k∗+mn).
Arranging the left and the right hand sides, we obtain k∗ − k ≤ δ(k∗ + mn).
For sufficiently large values of m and n, the inequality can be rewritten as
k∗−k ≤ δmnk∗ which is, in turn, arranged to give (1−δmn)k∗ ≤ k. Substituting
the value for δ, (7/8 + ε)k∗ ≤ k is readily obtained contradicting the fact that
no such approximation is possible unless P = NP . A very trivial result can
hence be stated as in the following corollary.

Corollary 3. There exists no 1−ε approximation algorithm for MWTM prob-
lem where ε ∈ (0, 1] unless P = NP .

3. ILP Formulation of MWTM Problem

In an instance of MWTM , the number of nodes organized as a tree, T ,
and the number of tasks are given by n and m respectively. The weight of
executing each task j by a node i is also denoted by wi,j where i ∈ [1..n] and
j ∈ [1..m]. Let r designate the root of this tree, T . Let us denote by λ ⊆ {1..n}
the leaf nodes of T . Each unique path from the root r to a leaf node k ∈ λ
is represented by a set of nodes on this path which is denoted by Πk. Integer
Linear Programming (ILP) formulation of MWTM problem can thus be given
as:

maximize

n∑
i=1

m∑
j=1

wi,j ∗ xi,j (2)

subject to
m∑
j=1

xi,j ≤ 1,∀i ∈ {1..n} (3)

n∑
i=1

xi,j = 1,∀j ∈ {1..m} (4)

∑
i∈Πk

m∑
j=1

xi,j ≤ 1,∀k ∈ λ (5)

10

xi,j ∈ {0, 1},∀i ∈ {1..n} and ∀j ∈ {1..m} (6)

The inequality in (3) simply means a node can be assigned to at most one
task. The constraint in (4) is used to enforce that every task is executed by
a single node. In order to enforce that on any path leading to a leaf node, at
most one node can be assigned to a task, (5) is used. Finally, (6) is there to
make sure that decision variables xi,j can take on the integer values 0 and 1
only. The given ILP formulation can readily be relaxed to an LP by removing
the last constraint (6) which restricts xi,j values to either 0 or 1.

4. Bottom-Up Assignment Heuristic

In this section, a heuristic solution is developed in an effort to solve MWTM
effectively. When ILP formulation is relaxed by removing the last constraint (6)
to obtain an LP model, xi,j can take on fractional values in the range [0, 1]. To
cope with these fractional values in order to come up with a feasible integer
solution, Bottom-Up-Assignment (BOA) procedure given in Algorithm 1 is
used.

Before giving a detailed explanation of BOA, a high level description of the
heuristic can be presented as follows: First, a call is made to obtain a solution
to LP relaxation of ILP formulation of MWTM . Then, this possibly fractional
solution is converted to a feasible, partial 0-1 solution where leaf nodes with
greater fractional assignments are favored. The remaining nodes and tasks that
are still not allocated at this current episode, if any, form a smaller instance
of MWTM which is simply handed over to a subsequent iteration. At this
successive iteration, a new call to LP relaxation for the smaller instance is
issued. This process is repeated as long as there are tasks not assigned yet.
The entire heuristic hence works its way via making leaf-assignments between
successive calls to LP.

BOA in Algorithm 1 assumes that the number of tasks and nodes are rep-
resented by m and n respectively. The number of tasks, m, is greater than 1 to
address only the non-trivial instances of MWTM . It is also assumed that the
root of the tree is dummy, i.e., it cannot be assigned to a task as the other nodes
would be rendered useless otherwise. The input to this algorithm are a tree T
with n nodes, and weights wi,j for each node-task pair (i, j) of performing task
j by node i.

BOA starts by initializing the set α of assignments at line 1 to be empty. At
line 1, both sets tasksLeft and nodesLeft used to keep track of the remaining
tasks and the remaining nodes respectively are initialized. The call to LP, next
at line 1, takes as parameters the original MWTM instance along with the as-
signments made so far to construct and also solve the LP formulation given by
(2) through (5) of the given MWTM instance with respect to the set of already
made assignments in α. If a feasible solution exists, a 2-dimensional array x of
possibly fractional values are returned by this call. The effect of the parameter
α is to set all xi,j values to 1 in the corresponding LP formulation for all node-
task pairs (i, j) ∈ α. This definitely ensures that neither the ancestors nor the

11

Algorithm 1: Bottom-Up-Assignment(T,w, n,m)
Input: T is a tree modeling the parent-child relationships among n nodes rooted at node r;

w is a 2-dimensional array where wi,j denotes the weight of assigning node i to task
j for all i ∈ {1..n}, and j ∈ {1..m}. The number of tasks, given by m, satisfies
m > 1 as m = 1 case is trivial to handle; The weight function is such that wr,j = 0
for all j ∈ {1..m} since the root can only be assigned when there is only one task in
the problem instance.

Output: A feasible assignment α of m tasks to nodes in T .
α← ∅;1
tasksLeft← {1..m}; nodesLeft← {1..n};2
// a call to LP with substitutions xi,j ← 1 ∀(i, j) ∈ α
xi,j ← LP (T,w, n,m, α) ∀i ∈ {1..n} and j ∈ {1..m}; // check for a feasible solution!3

T ′ ← deleteNodes(T, {i|(i, j) ∈ α}); // delete all nodes assigned4

λ← leaves(T ′);5
// leaves with a non-zero assignment are examined in decreasing order of xi,j values
while (max xi,j 6= 0 where (i ∈ λ ∩ nodesLeft) and (j ∈ tasksLeft) can be found) do6

α← α ∪ {(i, j)}; // record this assignment7
λ← λ− {i};8
tasksLeft← tasksLeft− {j}; nodesLeft← nodesLeft− {i};9

Πi ← set of nodes on the path from i to r in T ′;10

// remove all the nodes from i up to r in T ′ from consideration
foreach k ∈ (Πi − {i}) do nodesLeft← nodesLeft− {k};11

T ′ ← deleteNodes(T ′, {i}); // delete i in T ′12

end13
if (tasksLeft 6= ∅) then14

T ′ ← deleteNodes(T ′, λ); // to give ancestors a chance15

leavesLeft← nodesLeft ∩ leaves(T ′); nodesLeftInT ′ ← nodesLeft ∩ nodes(T ′);16

if (nodesLeftInT ′ has nodes with xi,j 6= 0) and (|leavesLeft| ≥ |tasksLeft|) then17
go to step 1;18

else19
go to step 1;20

end21

end22
return assignment α;23

descendants of already assigned nodes in any feasible solution can have a non-
zero assignment value xi,j associated with them. Line 1 deletes all the nodes
in T assigned so far by BOA to obtain a new tree T ′. This tree T ′ along with
nodesLeft, tasksLeft, and the unmodified weight function w actually identify
a residual MWTM instance obtained by reflecting the current assignments in
α made so far into the original instance. This is achieved simply by pruning the
assigned nodes, and hence their descendants from T to obtain T ′ as well as keep-
ing the set nodesLeft synchronized in the algorithm by removing the ancestors
of these already assigned nodes from it to enforce the hierarchy constraint. It
should be observed at this point that the most recent LP relaxation formulation
at line 1 corresponds exactly to this residual MWTM instance as represented by
the current values of the variables in (T ′, nodesLeft, tasksLeft, w) held at the
time when line 1 gets executed. The first parameter to function deleteNodes()
is immutable, and is not modified in the function. After the set λ is popu-
lated with a copy of the leaf nodes in T ′ at line 1, those leaves with a non-zero
assignment in it are examined in the order of non-increasing xi,j values in the
while-loop between lines 1 through 1. The loop iterates as long as the maximum
value assignment with a non-zero xi,j between the leaf nodes and the tasks not
assigned yet can be found. Among the leaves in λ which have not been assigned

12

to a task yet, only the ones not removed due to the hierarchy constraint are
considered eligible as reflected by the expression (i ∈ λ ∩ nodesLeft) where
nodesLeft keeps track of the remaining nodes in the original tree T which have
yet been neither assigned nor left in a non-assignable state as a result of the
hierarchy constraint. Existence of such an xi,j value requires that an assign-
ment between node i and task j gets recorded as illustrated at line 1. This line
amounts effectively to setting xi,j to 1. The following two lines 1 and 1 updates
accordingly the set of leaves not considered yet and the sets of remaining tasks
and nodes after the assignment just made. Since this recent assignment of node
i also necessitates that the nodes on the path from node i up to the root r are
removed from any further consideration for a possible assignment, such nodes
computed at line 1 are accordingly deleted from nodesLeft at line 1, and get
the right treatment. As the final statement at line 1 in the body of the while-
loop, node i is pruned from T ′ by the respective call. The thread of control
is transferred to line 1 to test whether any tasks have been left not assigned,
as soon as it breaks out of the loop. If all tasks have already been assigned,
the set of assignments constructed so far is returned at line 1 as the solution.
Otherwise, the remaining leaf nodes are first deleted from T ′ at line 1 to give
their ancestors a chance before a new call to LP is made. Then at line 1, a set of
leaves in T ′ that are also in nodesLeft denoted by leavesLeft, and a set of all
the nodes in T ′ that are also in nodesLeft represented by nodesLeftInT ′ are
computed. Finally, at line 1, a conditional check consisting of the conjunction
of two expressions is performed. The former expression evaluates to true if the
nodes in T ′ that can still be used for further assignments have non-zero xi,j
values with j ∈ tasksLeft. The latter expression called the feasibility invariant
is maintained throughout the entire execution of the algorithm. It basically en-
sures that the number of the leaf nodes still assignable are always greater than
the number of the remaining tasks. If both expressions evaluate to true, execu-
tion continues by setting λ to the leaf nodes in the updated T ′ at line 1 to get
ready for the subsequent execution of the while-loop once more, and otherwise
a jump to line 1 occurs where a new invocation to LP occurs. All the deletions
performed at line 1 in T ′ are effectively rolled back at line 1.

Both deleteNodes() and leaves() which are based on post-order traversal
run in time proportional to the number of nodes in the tree they operate on.
An implementation making an efficient evaluation at the start of every iteration
of the while-loop possible employs max-heaps one for every task not assigned yet
whose roots are also organized as a max-heap. Overall running time complexity
of the heuristic is, however, dominated by the calls to LP at line 1. As after each
call, if a feasible solution exists, BOA assigns at least one task before the next
call to LP, the total number of LP calls made is equal to the number of tasks, m,
in the worst case. Since LP lends itself to polynomial solutions [14, 15], BOA
is easily demonstrated to be also polynomial in its worst case running time.
The overhead originating from the repetitive nature of the heuristic is discussed
also in the next section, and it is shown through experiments that the actual
observed value for the number of times the call at line 1 to LP gets executed is
almost constant on the average.

13

If there is a 0-1 assignment to ILP formulation of a given MWTM instance,
its LP relaxation has certainly a fractional assignment with total weight at least
that of ILP. In such a case, this fractional assignment can always be converted
to a feasible 0-1 assignment by BOA in Algorithm 1. In an effort to prove
this, a series of lemmas will be presented and some observations regarding the
algorithm will be made.

A trivial observation could be made at this point by simply noting that a
condition which ensures that the number of leaf nodes is greater than or equal
to the number of tasks in a given instance of MWTM is both necessary and
sufficient for the existence of a solution.

Lemma 4. A given instance of MWTM represented by (T,w,m, n) where T
is a tree, and w(i, j) is the weight of assigning node i in T to task j for all
combinations of i ∈ {1..n} and j ∈ {1..m} has a solution if and only if |λ| ≥ m
where λ denotes the set of leaf nodes in T .

Proof. Let us prove the sufficiency part first. If a given MWTM instance
(T,w,m, n) has a solution, then there exists an assignment of m nodes in T to
m tasks. The hierarchy constraint in the definition ofMWTM problem requires,
in turn, that no two among these m nodes has a parent-child relationship, and
they are, hence, on m mutually independent paths (see Definition 2). Therefore,
the number of leaves in T denoted by |λ| cannot be less than the number of
available independent paths from these m nodes to the root.

In order to prove the necessity part, we proceed as follows: As there are as
many as |λ| ≥ m leaf nodes, any subset of m leaves out of λ can be freely picked,
and assigned to available tasks in a random order. Since each node that gets
picked is on an independent path ensuring that the hierarchy constraint is not
violated, a feasible solution is hence obtained. �

Definition 3. In a feasible solution to LP relaxation of a given MWTM in-
stance, a node i in tree T associated with at least one non-zero xi,j , and yet,
not having any such descendants in T is defined to be an effective leaf with
respect to the corresponding LP relaxation solution. The set of all such nodes
is termed effective leaves.

In the light of this definition, the following lemma can now be stated regard-
ing an LP relaxation formulation corresponding to a given MWTM instance.

Lemma 5. If LP relaxation to a given MWTM instance has a solution, then
the number of effective leaf nodes in the corresponding LP relaxation is greater
than or equal to the number of tasks in the given problem instance.

Proof. If a given MWTM instance’s LP relaxation has a solution, then the
constraints (3) through (5) must hold. Therefore, we obtain by summing Equa-
tion (4) over all possible j values:

m∑
j=1

n∑
i=1

xi,j = m (7)

14

Let λe denote the set of effective leaves in T with respect to the particular LP
relaxation solution. Since no nodes other than those in λe and their ancestors
can have a non-zero xi,j value associated with them, we next sum Inequality (5)
over all the effective leaf nodes to obtain:∑

k∈λe

∑
i∈Πk

m∑
j=1

xi,j ≤ |λe| (8)

As the sum of individual xi,j values in (7) is less than or equal to the sum in
(8) over all paths leading to effective leaf nodes, we conclude:

m ≤ |λe| (9)

�

We can now establish the following lemma by noting that the number of
effective leaves with respect to the corresponding LP relaxation solution of a
given MWTM instance actually forms a lower bound for the number of leaf
nodes in T .

Lemma 6. The corresponding LP relaxation of a given MWTM instance,
(T,w,m, n), has a solution if and only if |λ| ≥ m where λ denotes the set
of leaf nodes in T .

Proof. As to the sufficiency; if LP relaxation has a solution, then, by Lemma 5,
|λe| ≥ m where λe is the set of effective leaves. As it is known that |λ| ≥ |λe|,
|λ| ≥ m follows easily.

In order to prove the necessity, on the other hand, we observe by Lemma 4
that if |λ| ≥ m, then the given MWTM instance has a solution. This latter
result definitely implies the existence of a solution to the corresponding LP
relaxation formulation. �

Definition 4. An execution of BOA between successive calls to LP at line 1 is
called an iteration.

Theorem 7. BOA heuristic in Algorithm 1 returns a feasible solution whenever
there exists one.

Proof. The algorithm will keep repeatedly performing iterations until all tasks
in tasksLeft are exhausted, and finally an assignment is obtained. Every single
iteration of BOA is launched at line 1 in an attempt to discover an assignment
for a smaller residual MWTM instance which is identified by the values that
the tree T ′, nodesLeft, tasksLeft, and the unmodified weight function w have
right after the statement at line 1 gets executed. The most recent LP relaxation
formulation at line 1 corresponds exactly to this instance whose full recognition
is achieved interestingly enough later at the next statement.

It is known by Lemma 6 that when the number of leaf nodes in nodesLeft
(given by leaves(T ′) ∩ nodesLeft as would be computed at line 1) is greater

15

than or equal to the number of remaining tasks in tasksLeft in the residual
MWTM instance at the start of an iteration i before a call to LP, there must
exist a feasible solution to the corresponding LP relaxation formulation at line 1.
The existence of a feasible solution to the corresponding LP relaxation, in turn,
implies by Lemma 5 that the number of effective leaf nodes in T ′ computed at
line 1 is greater than or equal to the number of tasks in tasksLeft. Therefore,
at least one assignment between an effective leaf and an available task will be
performed in the while-loop between lines 1 through 1 in every iteration of the
algorithm, and BOA will eventually terminate.

An additional observation can be made by noting that the feasibility variant
cannot be violated so long as the while-loop iterates since it holds at the start,
and the only type of modification allowed in the body of the loop is the as-
signment of an effective leaf to an available task. Such an assignment, however,
removes exactly one leaf node and one task from consideration ensuring that
the feasibility invariant is still maintained.

Once the control breaks out of the while-loop, either a feasible solution by
BOA is returned if there are no more tasks left, or otherwise all the useless leaf
nodes which survived the previous while-loop are deleted at line 1. These leaf
node deletions are the only deletions that can possibly violate the feasibility
invariant. Hence, once such a violation is detected at line 1, a jump at line 1
initiates the next iteration where all such deletions are effectively rolled back
by reconstructing T ′ from scratch. In case there are no such violations, control
goes once more to the while-loop. Consequently, the feasibility invariant is
maintained from one iteration to the next throughout the entire execution of
the algorithm.

BOA will then always find a feasible solution as long as the feasibility con-
straint holds at the start of the first iteration. But this is already guaranteed
by Lemma 4, hence completing the proof. �

It is clearly not easy, if not impossible, to generate a feasible 0-1 assignment
at once using only possibly fractional non-zero assignments obtained from the
corresponding LP relaxation solution for all MWTM instances. The difficulty
stems from the fact that the distribution of fractional assignment values re-
turned by the corresponding LP relaxation solution may not easily lend itself to
an integer valued assignment for all tasks without violating the hierarchy con-
straint. Therefore, as it is done in BOA, LP might need to be called iteratively
in order to cover the tasks that have not been already assigned in the previous
iterations. In an attempt to reduce the number of iterations, however, as many
fractional assignment values as allowed by the feasibility invariant is checked at
each iteration in BOA as to their eligibility to contribute to a feasible solution.
Moreover, some zero valued assignments in previous iterations may come out
non-zero in subsequent iterations leading to solutions with smaller total weights.
Thus, we prefer to use the earliest LP results with non-zero assignments as much
as possible.

An example is provided below for a better understanding of how BOA op-
erates.

16

Example 2. An MWTM instance is depicted in Figure 4. The corresponding
tree representing the hierarchical structure of an organization has 6 nodes num-
bered in level order as shown in the figure where the root node is denoted by
1. It is assumed in this particular example that the organization has 3 tasks to
be executed not explicitly shown in the figure. The weights of executing these
tasks, namely t1, t2, and t3 are given in this order as a triple inside each node.
In this example, the corresponding ILP formulation will produce the optimal so-
lution with the following assignments highlighted with the corresponding weight
values in red in Figure 4:

• Task t1 is assigned to node 4 with weight 6,

• Task t2 is assigned to node 5 with weight 4,

• Task t3 is assigned to node 3 with weight 8.

1

2 3

4 5 6

Figure 4: A sample tree structure with 6 nodes, and 3 tasks not explicitly shown. Weights
of executing each task t1, t2, and t3 are given in this order inside each node as triples. Red
values correspond to node-task assignments obtained from ILP solution.

The next figure, Figure 5, presents a solution obtained by the corresponding
LP relaxation on the same problem instance (assignments are shown in green).
The solution is as follows:

• Task t1 is assigned to nodes 3 and 4 both with the same fractional value
0.5, contributing to the total weight by 7(= 8/2 + 6/2),

• Task t2 is assigned to nodes 5 and 6 both with the same value 0.5 again,
contributing to the total weight by 4(= 4/2 + 4/2),

• Finally, Task t3 is assigned to nodes 2 and 3 both with the same value 0.5,
causing this time an increase of 8(= 8/2 + 8/2) in the total weight.

Since LP is allowed to make fractional assignments, the weight 19 of the
solution achieved by LP is even higher than the optimal 18 found by ILP. The
direct application of LP unfortunately cannot produce an integer assignment
for the given MWTM instance. BOA in Algorithm 1, however, will work its
way to a feasible solution as follows on this example:

17

1

2 3

4 5 6

Figure 5: Green values correspond to fractional node-task assignments obtained from the
corresponding LP relaxation solution where task t1 is assigned to both nodes 3 and 4, task
t2 is assigned to nodes 5 and 6, and finally task t3 is assigned to nodes 2 and 3 all with the
same value 1

2
.

• After a call to LP is made at line 1 in the first iteration, potentially
fractional assignment values with non-zero xi,j will be processed from the
largest to the smallest for the leaf nodes of the tree. In this example, all
the assignment values happen to be the same, namely 0.5. Such leaves
may, therefore, be processed in any order. Although different heuristics
may also be developed for breaking ties such as considering the depths of
nodes or favoring nodes with higher wi,j values, we assume for the sake
of this example that the assignments with the same value are processed
in increasing order of node identifiers and then in increasing order of task
numbers. As a result, first, task t1 is assigned to node 3 with weight 8.
Then, task t2 gets assigned to node 5 with weight 4. This assignments in
the first iteration are shown in green as depicted in Figure 6. At this point,
there is obviously no leaf node left with a non-zero assignment that can be
used to make any further assignments, leaving task t3 hence unassigned. It
should noted that while these assignments are made, all the nodes violating
the hierarchy constraint are also removed from consideration. This is
evidently reflected by leaving only the nodes 4 and 6 in nodesLeft.

• Once it is realized that no more assignments are possible, the remaining
leaves, namely 4 and 6, are deleted at line 1 from the tree T ′ leaving only
the nodes 1 and 2 in it. As there are no nodes in the tree that are also in
nodesLeft, a jump to line 1 initiates the second iteration of the algorithm.

• With tasksLeft = {t3} and nodesLeft = {4, 6} at the start of the second
iteration, the only remaining task is t3, and the remaining nodes that are
eligible for assignments are 4 and 6. Now a call is made to LP formulated
with the assignments made in the first iteration in mind. This formulation
corresponds exactly to an MWTM instance where the tree denoted by
T ′ is obtained at line 1 by pruning nodes 3 and 5 from the original tree
denoted by T , and the set of eligible nodes and target tasks to be matched
are as dictated by the values of nodesLeft and tasksLeft at the moment.
The algorithm, hence, terminates by assigning the only remaining task t3

18

to either node 4 or node 6 with weight 4. Figure 6 shows this assignment
in the second iteration in orange. The total weight achieved by BOA is
hence 8 + 4 + 4 = 16, which is slightly less than the optimal ILP solution.

1

2 3

4 5 6

Figure 6: The assignments obtained by two LP calls. The first call generates assignments
for the tasks t1 and t2 (green), and the second call generates the assignment for the task t3
(orange).

�

Another example is presented now to demonstrate the feasibility invariant
at line 1 of BOA in Algorithm 1.

Example 3. Figure 7 is an example to an MWTM instance where deletions
by BOA at line 1 of many leaves rooted at the same node renders this parent
as an effective leaf, and the subsequent assignment of this parent to a new task
runs the risk of an unanticipated decrease in the number of leafs leading to
unfeasibility.

a

b

c d f

h1 h2 h9

e

g

h10 h16 h17 … …

Figure 7: An instance illustrating the need for the invariant at line 1 of the algorithm.

Let us assume that there does exist a weight function wi,j such that xi,j
values obtained by an LP call are as given in Figure 8. Then, the sum of

19

t1 t2 t3 t4 t5

a 0 0 0 0 0

b 0.5 0 0 0 0

c 0 0.4 0.1 0 0

d 0 0.4 0 0.1 0

e 0.5 0.2 0 0 0.2

f 0 0 0 0 0.8

g 0 0 0 0.1 0

t1 t2 t3 t4 t5

h1
0 0 0.1 0 0

h2
0 0 0.1 0 0

h3
0 0 0.1 0 0

h4
0 0 0.1 0 0

h5
0 0 0.1 0 0

h6
0 0 0.1 0 0

h7
0 0 0.1 0 0

h8
0 0 0.1 0 0

h9
0 0 0.1 0 0

t1 t2 t3 t4 t5

h10
0 0 0 0.1 0

h11
0 0 0 0.1 0

h12
0 0 0 0.1 0

h13
0 0 0 0.1 0

h14
0 0 0 0.1 0

h15
0 0 0 0.1 0

h16
0 0 0 0.1 0

h17
0 0 0 0.1 0

Figure 8: Assignments obtained by the first call to LP for the same instance in Figure 7.

assignments to each of the five tasks is 1, and each path from a leaf node to the
root denoted by a has total weight less than or equal to 1. If the algorithm is
run, after the first call to LP, leaf node d with the maximum assignment value
0.4 (breaking ties arbitrarily) gets assigned to task t2. This assignment makes
the next highest assignment value 0.4 for node c unusable leaving us with the
only option of 0.1 as to the next largest assignment value. Assuming that node c
is now picked to be assigned to task t3, followed by the same valued assignment
of node g to task t4, all leafs h1 through h17 are also rendered useless. As a
result, they are all deleted at line 1. This, in turn, would give way through a
jump at line 1 to assigning node f to task t5 within the body of while-loop, if it
were not for the invariant at line 1 in the algorithm. Such an assignment clearly
would have left no nodes that can be assigned to task t1.

The feasibility invariant at line 1 of the algorithm ensures that a sufficient
number of leaves to a possible next iteration is always maintained. �

5. Experiments

In order to measure the performance of LP-relaxation based heuristic BOA
in Algorithm 1, several experiments have been performed for varying problem
parameters. The parameters employed, and their values are as follows:

1. #Nodes: It represents the number of nodes in the tree in a given MWTM
instance. In order to generate a variety of tree sizes, the following values
are employed in the experiments: 16 (small tree), 32, 64, and 128 (large
tree).

2. Average Degree: This parameter is defined to be the average degree of a
node in the tree in a given instance of MWTM . It is tuned throughout
the experiments to control the type of trees generated in a scale ranging
from deep to shallow for fixed values of #Nodes parameter. The values
used in the experiments are 1.5 (deep tree), 2.0, and 2.5 (shallow tree).

3. #Tasks/#Nodes: It is defined to be the ratio of the number of the tasks
to the number of the nodes in the tree associated with a given MWTM

20

instance. This parameter is used to generate a range of MWTM instances
changing from those with a very few tasks called sparse to those with a
large number of tasks called dense in proportion to the tree size. The val-
ues used are 0.125 (sparse), 0.25, and 0.5 (dense). As this ratio increases,
the flexibility to use non-leaf nodes for assignments decreases.

4. Weight Distribution: The weight of assigning a node to a task has a value
chosen from the range [1..#Nodes2]. The following 3 weight distributions
are used: i) the weights are increasing from the root to the leaves, ii) the
weights are decreasing from the root to the leaves, and iii) the weights are
assigned randomly without regard to the respective depths of the nodes.

For each combination of these four parameters, a total of 4 ∗ 3 ∗ 3 ∗ 3 = 108
different test cases are formed. For each test case, 20 instances of the problem
are then randomly generated, and their averages are taken in the experiments.
We record the total number of LP calls made at line 1 in BOA for every instance.
Corresponding to each instance, both the execution time and the solution ob-
tained are also recorded once for the corresponding ILP formulation which gives
the optimal solution, and once for BOA expected to return a suboptimal solu-
tion.

All the tests were run on a machine with a 4 GB of RAM and an Intel Core
2 Duo T9550 2.66 Ghz mobile processor. Microsoft Solver Foundation 3.0 was
employed as LP/ILP solver library, and the code was developed in C#5.0.

The results of the experiments are presented through a series of seven tables
in this section. These tables all share a common structure. As the topmost
two rows are used to set the values for the parameters Average Degree and
#Tasks/#Nodes, the leftmost two columns display the values for the parameters
Weight Distribution and #Nodes. The last six tables, on the other hand, can
be logically grouped into three each with two tables. While the first table in
a group presents a comparison between the execution times of ILP and BOA,
the second evaluates the quality of the solutions by BOA against the optimal.
These three groups correspond to the three distinct values that the Average
Degree parameter can take on, namely 2.5, 2.0, 1.5, and are presented in this
order. Of the four parameters only one, namely the Average Degree, is fixed, and
the average results are given for all combinations of the other three parameters
in these groups of tables. Finally, an additional row labeled Method is inserted
as the third from the top to allow us to specify either ILP or BOA in these
tables. It should be noted that the cells at the same position in both tables in
the same group correspond to the exact same combination of parameter values.

The colors yellow and green are used consistently to highlight the cells con-
taining NaN and ∞ respectively in all the tables. The cells in yellow marked
with NaN in a table mean that there exists no feasible solution. For some
combinations of parameters no feasible solution was possible. Especially when
the instances get dense, and the trees associated with them become deep, as
would be expected, it becomes more difficult to find a feasible solution satisfy-
ing the hierarchy constraint. Such configurations are characterized with high
#Tasks/#Nodes values, and with the low values of the Average Degree parame-

21

ter. The results in the tables to follow confirm this expectation. All such cases
leading to infeasibility are shown in yellow. Moreover, when the weight distribu-
tion is such that it is decreasing from the root to the leaves, finding an optimal
solution becomes even more difficult using ILP. Under these circumstances, the
execution time for ILP grows very quickly after the number of nodes become
larger than 16. We do not include these extremely large execution times in the
tables, and indeed we have canceled those solutions without finding the optimal
values. All such cells are displayed in green marked with an ∞ symbol. The
existence of feasible solutions by BOA in the corresponding cells, on the other
hand, is an evidence for the existence of the optimal solutions for those cases
as well. In order to verify, therefore, the quality of a solution by BOA in these
situations, we make use of the corresponding possibly fractional LP relaxation
solution as a potential upper bound. A quick inspection of the relevant cells
reveals that the difference is very small even in these cases which definitely
guarantees an even smaller distance to the actual optimal. It is hence suspected
that BOA might even have achieved it.

Weight

Distribution

Average Degree 1.5 2 2.5

#Tasks/#Nodes 1/8 1/4 1/2 1/8 1/4 1/2 1/8 1/4 1/2

#Nodes

Weights are

increasing

from root

to leaves

16 1 1 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1 1 1

64 1 1 NaN 1 1 1 1 1 1

128 1 1 NaN 1 1 1 1 1 1

Weights are

decreasing

from root

to leaves

16 1 1 1 1 1 1.06 1 1 1.1

32 1.05 1.05 NaN 1.1 1.15 1 1 1.2 1.05

64 1.15 1.15 1 1.15 1.2 1.1 1.05 1.3 1.2

128 1 1.45 NaN 1.2 1.3 1.35 1.2 1.35 1.45

Weights are

random

from root

to leaves

16 1 1 1 1 1 1 1 1 1.05

32 1 1 1 1 1 1.14 1 1.05 1.1

64 1.1 1.2 NaN 1 1 1.11 1 1 1.1

128 1.1 1.15 NaN 1 1.2 1.18 1 1.15 1.3

Figure 9: The average number of times LP is called at line 1 in BOA in Algorithm 1 for all
test cases. The cells in yellow are marked with the symbol NaN to mean that there exists no
feasible solution.

The table in Figure 9 displays the average number of LP invocations per-
formed at line 1 in BOA in Algorithm 1 for each of 108 different test cases.
As the table clearly reflects, the number of times the call to the corresponding
LP relaxation gets executed is very close to 1. The cells marked with NaN all
correspond to the test cases for which no feasible solutions exist as explained
above.

The two tables in Figure 10 and Figure 11 display the execution times, and
the solutions respectively when the parameter representing the average degree
of a node in the tree is set to 2.5 which corresponds to shallow trees. There are
only 3 out of 36 test cases where BOA is slightly slower in Figure 10. These

22

correspond to the test cases where: i) #Tasks/#Nodes = 1/8, Weight Distribution =

random, #Nodes = 128, ii) #Tasks/#Nodes = 1/4, Weight Distribution = increasing,
#Nodes = 64, and iii) #Tasks/#Nodes = 1/4, Weight Distribution = random, #Nodes

= 64. BOA, on the other hand, achieves optimal or almost optimal solutions
as seen in Figure 11 for these test cases. Also an examination of the cells
corresponding to these test cases in the table in Figure 9 reveals that they all
have the value one.

Weight

Distribution

Average Degree 2.5

#Tasks/#Nodes 1/8 1/4 1/2

Method ILP BOA ILP BOA ILP BOA

#Nodes

Weights are

increasing

from root

to leaves

16 5.46875 0.78125 7.03125 0.78125 5.46875 2.34375

32 8.59375 5.46875 12.5 7.03125 22.65625 17.96875

64 27.34375 18.75 49.21875 50.78125 126.5625 111.71875

128 135.9375 118.70118 275.78125 246.875 695.3125 624.4629

Weights are

decreasing

from root

to leaves

16 ∞ 2.34375 ∞ 3.125 ∞ 5.46875

32 ∞ 10.9375 ∞ 14.84375 ∞ 50

64 ∞ 81.25 ∞ 194.53125 ∞ 596.875

128 ∞ 565.625 ∞ 2003.125 ∞ 6573.0957

Weights are

random

from root

to leaves

16 11.551465 4.55059 14.05167 5.0755 17.6022 7.3

32 23.802615 8.225945 32.6041 19.927 59.732 44.605

64 44.30491 39.1046 121.09 126.666 980.199 608.2272

128 220.126 435.179 1699.978 1500.96 19688.367 3722.5981

Figure 10: The execution times when the average degree of a tree node parameter is set to
2.5 corresponding to shallow trees. The symbol ∞ in a blue cell indicates a very large value.

Weight

Distribution

Average Degree 2.5

#Tasks/#Nodes 1/8 1/4 1/2

Method ILP BOA ILP BOA ILP BOA

#Nodes

Weights are

increasing

from root

to leaves

16 47.2 47.2 93.3 93.3 171.5 171.5

32 243.55 243.55 465.8 465.8 881.3 881.3

64 1175.6 1175.6 2238.15 2238.15 4409.8 4409.8

128 5379.8 5379.8 10930.95 10930.95 21637.4 21637.4

Weights are

decreasing

from root

to leaves

16 1792.3 1792.05 3571.65 3569.65 7100.8 7097.4

32 3531.3 3528.35 7018.25 7009.7 13757.45 13749.65

64 6850.6792 6824.85 13298.025 13264.9 25818.322 25791.2

128 12295.824 12250.2 22864.054 22811.95 43858.147 43799.2

Weights are

random

from root

to leaves

16 15.6 15.55 31.3 31.2 60 59.95

32 63.45 63.45 125.35 125.3 246.9 246.5

64 254.7 254.65 507 506.85 1009.05 1008.25

128 1020.95 1020.9 2037.7 2037.2 4059.25 4058.4

Figure 11: The solutions obtained when the average degree of a tree node parameter is set to
2.5. The values in the blue cells are the estimated upper bounds obtained by the corresponding
possibly fractional LP relaxation solutions.

These execution time anomalies observed to occur when BOA finds an almost
optimal solution in only one iteration can therefore be explained by the overhead
introduced by BOA. When BOA obtains an almost optimal solution with a single

23

LP call, it would be natural to also expect ILP itself to discover the optimal
integer assignments quickly. As BOA has some additional computations, its
running time for such cases would be slightly more than that of ILP.

Even when it takes forever to compute the optimal by ILP, the values in the
corresponding blue cells in Figure 10 are all available for BOA as an indication of
its running time performance. In terms of solution quality, BOA always achieves
optimal solutions when Weight Distribution is such that it is increasing from the
root to the leaves. Otherwise, the solutions obtained as shown in Figure 11 are so
close to the corresponding optimal values that it is easily seen to perform within
1% of even the upper bounds obtained via the corresponding LP relaxation
solution.

Weight

Distribution

Average Degree 2.0

#Tasks/#Nodes 1/8 1/4 1/2

Method ILP BOA ILP BOA ILP BOA

#Nodes

Weights are

increasing

from root

to leaves

16 4.6875 1.5625 6.25 2.34375 4.3402778 5.2083333

32 8.59375 3.90625 10.15625 8.59375 20.833333 15.625

64 25 18.75 53.90625 42.96875 136.36364 113.63636

128 144.38477 114.0625 290.625 255.46875 652.64423 621.39423

Weights are

decreasing

from root

to leaves

16 ∞ 0.78125 ∞ 3.90625 ∞ 5.5803571

32 ∞ 8.59375 ∞ 17.96875 ∞ 24.147727

64 ∞ 70.3125 ∞ 186.71875 ∞ 294.03409

128 ∞ 675 ∞ 1981.25 ∞ 4321.0227

Weights are

random

from root

to leaves

16 10.50115 2.85 12.17652 4.22551 19.302387 7.3009267

32 18.877 8.601 41.45527 21.577755 32.276818 26.730682

64 58.682465 66.808455 142.84314 155.81968 1610.3582 540.5999

128 272.5094 399.55046 2003.8215 1224.0517 24866.999 8480.4036

Figure 12: The execution times when the average degree of a tree node parameter is set to
2.0. The symbol ∞ in a blue cell indicates a very large value.

The tables in Figure 12 and Figure 13 display the execution times, and the
solutions respectively when the Average Degree parameter is set to 2.0. There
are this time 4 out of 36 test cases where BOA turns out to be slower than
the ILP solver library, and these correspond to the cells in Figure 12 char-
acterized by: i) #Tasks/#Nodes = 1/8, Weight Distribution = random, #Nodes

= 64, ii) #Tasks/#Nodes = 1/8, Weight Distribution = random, #Nodes = 128,
iii) #Tasks/#Nodes = 1/4, Weight Distribution = random, #Nodes = 64, and iv)
#Tasks/#Nodes = 1/2, Weight Distribution = increasing, #Nodes = 16. An inspec-
tion of the respective cells corresponding to these test cases in both Figure 9 and
Figure 13 confirms once more that BOA finds solutions with optimal or almost
optimal values in exactly one iteration making a single LP call. As a result, the
previous analysis stating that ILP performs very fast for the instances whose
LP formulations also return integer assignments still holds.

BOA always achieves optimal or very close to optimal solutions as shown in
Figure 13. For example, when #Tasks/#Nodes = 1/2 for a 128-node tree, and
the weights are randomly distributed among all nodes, the ILP produces the
optimal goal value as 4047.9167 and BOA heuristic generates 4036.5. This is

24

Weight

Distribution

Average Degree 2.0

#Tasks/#Nodes 1/8 1/4 1/2

Method ILP BOA ILP BOA ILP BOA

#Nodes

Weights are

increasing

from root

to leaves

16 55.15 55.15 119.15 119.15 209.83333 209.83333

32 292.8 292.8 575.65 575.65 1053.75 1053.75

64 1439.5 1439.5 2796.5 2796.5 5004.1818 5004.1818

128 6768.4 6768.4 13728 13728 23750.462 23750.462

Weights are

decreasing

from root

to leaves

16 1786.65 1785.6 3554.5 3551.9 7082.7857 7079.0714

32 3510.05 3504.85 6895.35 6885.9 13679.364 13678.909

64 6594.1538 6572.65 12790.208 12748.6 24993.333 24975.909

128 11110.642 11051.7 20462.263 20355.1 36935.409 36903.909

Weights are

random

from root

to leaves

16 15.55 15.55 31.35 31.3 59.533333 59.533333

32 62.85 62.85 125.2 125.05 246.09091 246.09091

64 254 253.9 506.05 505.75 998.0625 997.125

128 1020.2 1020.15 2037.3 2036.85 4047.9167 4036.5

Figure 13: The solutions obtained when the average degree of a tree node parameter is set to
2.0. The values in the blue cells are the estimated upper bounds obtained by the corresponding
possibly fractional LP relaxation solutions.

one of the cases with the largest difference between the optimal solution and our
heuristic solution. Even in this case, the difference between the two solutions is
much less than 1%. For some cases where we have used LP relaxation solutions
as upper bounds instead of ILP, the differences are slightly higher. For example,
when #Tasks/#Nodes = 1/4 for a 128-node tree, and the weights are decreasing
from the root to the leaves, the upper bound to the optimal is 20462.263, and
BOA achieves 20355.1. Even for this upper bound the difference is very small.
Potentially, BOA might even have the same solution as the actual optimal, or
else would have definitely achieved a closer value to the actual optimal.

Weight

Distribution

Average Degree 1.5

#Tasks/#Nodes 1/8 1/4 1/2

Method ILP BOA ILP BOA ILP BOA

#Nodes

Weights are

increasing

from root

to leaves

16 3.90625 0.78125 3.125 4.6875 21.484375 5.859375

32 4.6875 3.90625 11.71875 8.59375 46.875 15.625

64 24.21875 16.40625 43.75 45.3125 NaN NaN

128 150.78125 120.3125 298.4375 245.3125 NaN NaN

Weights are

decreasing

from root

to leaves

16 ∞ 3.125 ∞ 5.7565789 ∞ 3.125

32 ∞ 7.03125 ∞ 17.96875 NaN NaN

64 ∞ 39.0625 ∞ 108.59375 ∞ 109.375

128 ∞ 560.15625 ∞ 1403.125 NaN NaN

Weights are

random

from root

to leaves

16 11.0514 3.4 15.2019 5.7506 13.12665 8.501

32 17.8772 8.8261 50.5064 38.02982 51.006 23.003

64 87.93 89.761395 619.223 152.217 NaN NaN

128 467.584 527.416 2981.5173 1508.0479 NaN NaN

Figure 14: The execution times when the average degree of a tree node parameter is set to 1.5
corresponding to deep trees. While the cells in yellow marked with the symbol NaN represent
the parameter combinations for which there are no feasible solutions, the symbol ∞ in a blue
cell indicates a very large value.

25

Figure 14 and Figure 15 display the execution times, and the solutions re-
spectively when the parameter representing the average degree of a tree node is
set to 1.5 which corresponds to deep trees. In 4 out of the 36 test cases presented
in Figure 14, BOA executes longer in figuring out a solution. The first two of
these correspond to the cases where the parameter #Nodes is set to either 64
or 128 when #Tasks/#Nodes = 1/8 and Weight Distribution is random. The
cells corresponding to these two test cases in Figure 9 have both the value 1.1.
Furthermore, it is seen from the corresponding cells in Figure 15 that BOA finds
solutions very close to optimal. The last two test cases correspond, however,
to the combinations of parameters when #Nodes is set to either 16 or 64 when
#Tasks/#Nodes = 1/4 and Weight Distribution is such that it is increasing from
the root to the leaves. A quick inspection of the corresponding cells for the last
two test cases in the corresponding tables reveals that BOA found the optimal
solutions after a single LP invocation. So the prior justification is still valid.

Weight

Distribution

Average Degree 1.5

#Tasks/#Nodes 1/8 1/4 1/2

Method ILP BOA ILP BOA ILP BOA

#Nodes

Weights are

increasing

from root

to leaves

16 71.5 71.5 154.2 154.2 212.875 212.875

32 415.3 415.3 698.95 698.95 510 510

64 2035.35 2035.35 3861.45 3861.45 NaN NaN

128 9762.8 9762.8 19354.3 19354.3 NaN NaN

Weights are

decreasing

from root

to leaves

16 1786.3 1784.4 3545.4211 3542.6316 7073.2 7071.8

32 3444.8 3431.6 6847.4 6833.4 NaN NaN

64 6297.7083 6273.2 11957.885 11934.85 25421.6 25403

128 9810.1167 9734.15 15903.15 15859.6 NaN NaN

Weights are

random

from root

to leaves

16 15.55 15.55 30.3 30.2 58.5 58.5

32 63.25 63.2 125.1 124.6 242 242

64 253.7 253.65 503.45 502.95 NaN NaN

128 1019.6 1019.35 2032.4 2030.85 NaN NaN

Figure 15: The solutions obtained when the average degree of a tree node parameter is set to
1.5. While the cells in yellow marked with the symbol NaN represent the parameter combi-
nations for which there are no feasible solutions, the values in the blue cells are the estimated
upper bounds obtained by the corresponding possibly fractional LP relaxation solutions.

The results of the experiments show that for all cases BOA generates goal
values very close to the optimal obtained by ILP. The results are either exactly
the same, or there is a very small difference. Besides, in the latter case, the
distance to the optimal is always much less than 1%. Moreover with Weight
Distribution increasing from the root to the leaves, BOA always finds optimal
solutions.

When the parameter Weight Distribution is such that it decreasing from the
root to the leaves, it takes forever to compute the optimal by ILP as shown by the
corresponding cells marked ∞ throughout the tables. Under the same setting,
BOA, on the other hand, returns in polynomial time almost optimal solutions
that are within 1% of even the upper bounds obtained via the corresponding
LP relaxation solution.

26

In only 11 out of a total of 108 different test cases, ILP runs faster than ILP.
All 11 of these execution time anomalies are seen occur when BOA discovers an
almost optimal solution after at most 1 or 1.1 LP calls on the average. These
test cases are therefore thought to correspond most probably to the instances
that can be solved efficiently by ILP. In such a case ILP can essentially find a
solution by making only a very few LP relaxation calls via a branch and bound
algorithm. It is then easily anticipated that the additional overhead posed by
BOA leaves it behind ILP.

6. Conclusion

In this paper we have introduced a new version of the assignment problem,
called as MWTM problem. In MWTM , as is the case with the standard as-
signment problem, a one-to-one assignment is sought between a set of tasks and
a set of agents (nodes) to maximize the total profit (weight) value. Moreover,
there is an additional constraint in MWTM preventing some combinations of
the assignments. Since agents are organized in a tree structure representing
hierarchical (agent - sub-agent) relationships, when an agent is assigned to a
task, none of its sub-agents or super-agents can be assigned to any other task.
This problem is shown to be NP-hard. Therefore, we proposed an iterative LP-
relaxation solution to it. Through experiments we have shown that our heuristic
solution is very effective, and produces either the optimal solution, or a solu-
tion very close to the optimal in a very reasonable time performing only a few
iterations. In most cases the solution is achieved within a single iteration.

References

[1] R. E. Burkard, M. Dell’Amico, S. Martello, Assignment Problems, SIAM,
2009.

[2] R. Cohen, L. Katzir, D. Raz, An efficient approximation for the generalized
assignment problem, Information Processing Letters 100 (4) (2006) 162–
166.

[3] L. Fleischer, M. X. Goemans, V. S. Mirrokni, M. Sviridenko, Tight ap-
proximation algorithms for maximum general assignment problems, in:
SODA’06, ACM, 2006, pp. 611–620.

[4] S. Geetha, K. P. K. Nair, A variation of the assignment problem, European
Journal of Operational Research 68 (3) (1993) 422–426.

[5] R. D. Armstrong, Z. Jin, On solving a variation of the assignment problem,
European Journal of Operational Research 87 (1) (1995) 142–147.

[6] M. Gulek, I. H. Toroslu, A dynamic programming algorithm for tree-like
weighted set packing problem, Information Sciences 180 (20) (2010) 3974–
3979.

27

[7] F. Wang, S. Zhou, N. Shi, Group-to-group reviewer assignment problem,
Computers & Operations Research 40 (5) (2013) 1351–1362.

[8] T. Shima, S. J. Rasmussen, A. G. Sparks, K. M. Passino, Multiple task
assignments for cooperating uninhabited aerial vehicles using genetic algo-
rithms, Computers & Operations Research 33 (11) (2006) 3252–3269.

[9] M. Gulek, I. H. Toroslu, A genetic algorithm for maximum-weighted tree
matching problem, Applied Soft Computing 10 (4) (2010) 1127–1131.

[10] K. Jain, A factor 2 approximation algorithm for the generalized steiner
network problem, Combinatorica 21 (1) (2001) 39–60.

[11] K. Jain, Enhancing techniques in LP based approximation algorithms,
Ph.D. thesis, Georgia Institute of Technology (August 2000).

[12] R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,
J. W. Thatcher (Eds.), Complexity of Computer Computations, The IBM
Research Symposia Series, Plenum Press, New York, 1972, pp. 85–103.

[13] J. H̊astad, Some optimal inapproximability results, Journal of ACM 48 (4)
(2001) 798–859.

[14] L. Khachiyan, A polynomial algorithm in linear programming, Soviet Math.
Dokl. 20 (1) (1979) 191–194.

[15] N. Karmarkar, A new polynomial-time algorithm for linear programming,
Combinatorica 4 (4) (1984) 373–395.

28

	1 Introduction
	2 Problem Description and its NP-Hardness
	3 ILP Formulation of MWTM Problem
	4 Bottom-Up Assignment Heuristic
	5 Experiments
	6 Conclusion

