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Dept. of Industrial Engineering, Yaşar University
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ABSTRACT

RELIABILITY OF SYSTEMS WITH A COLD
STANDBY COMPONENT

CEKİ FRANKO

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Assoc. Prof. Dr. G. Yazgı Tütüncü

May 2016

In this thesis, the influence of a cold standby component to a coherent system

and weighted k-out-of-n:G systems consisting of two different types of component

are studied. A general method for computing the system reliability of coherent

systems having a cold standby component is proposed. Moreover system reliabil-

ity calculations of weighted k-out-of-n:G systems consisting of two different types

of component and a cold standby is presented. Reliability and mean time to

failure of different structured systems have been computed. Numerical examples

and different optimal system design problems are solved to show the applicability

of the proposed method in real life.

Keywords: reliability; cold standby component; coherent system; weighted-k-out-

of-n:G system.
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ÖZ

SOĞUK YEDEK BİLEŞENE SAHİP SİSTEMLERİN
GÜVENİRLİLİĞİ

CEKİ FRANKO

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Danışmanı: Doç. Dr. G. Yazgı Tütüncü

Mayıs 2016

Bu tezde, soğuk yedek bileşenin, uyumlu sistemler ve iki farklı tip bileşenden

oluşan ağırlıklı n'den-k'lı sistemler üzerine etkisi çalışıldı. Uyumlu sistemlerde

güvenirliliğin hesaplanması için genel bir yöntem önerildi. Buna ek olarak, iki

farklı tip komponentten oluşan ve bir soğuk yedek komponente sahip ağırlıklı

n'den-k'lı sistemlerde güvenilirlik hesapları yapıldı. Farklı yapıya sahip sistem-

ler için güvenilirlik ve ortalama yaşam süresi hesaplandı. Önerilen yöntemlerin

gerçek hayatta uygulanabilirliğini göstermek için sayısal örnekler ve farklı optimal

sistem tasarım problemleri çözüldü.

Anahtar Kelimeler : güvenilirlik; soğuk yedek bileşen; uyumlu sistem; ağırlıklı

n'den-k'lı sistem.
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Yazgı Tütüncü. She was the one who encouraged me to start my academic

career. She has been always beside me, helping and guiding, from the moment I

graduated from university. She has always respected my ideas, therefore she set

me free for what I wish to study while helping me throughout all the process.

Her insightful remarks and suggestions have helped me to think through and

overcome my problems. I could not finish my thesis without her. Moreover,

I want to thank her for the days she spent on reading and commenting on the

thesis. I would like to thank Prof. Dr. İsmihan Bayramoğlu and Prof. Dr. Serkan
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Chapter 1

Introduction

Survival or lifetime analysis is a branch of statistics which mainly interested in

the expected lifetime of living organism or non living systems. In engineering

when the main focus of the analysis is lifetime of a system or components it is

often called as reliability analysis. Reliability can be defined as the ability to

perform a task satisfactorily in a specific time or time interval. At the same time

it is the probability that the task will be performed in a given time. Reliability

analysis has been widely performed in different areas of engineering for a variety

of system structures. Coherent and weighted k-out-of-n systems are of special

importance in engineering due to their applicability in real life. The main goal

of analyzing coherent and weighted k-out-of-n systems is to reduce the cost of

system setup as well as to increase system reliability. There are different ways

to increase system reliability. One of them is to improve the reliability of each

component in the system and the other one is to change the system design which

may lead to increase in the system reliability. Both of these methods are effective

in improving the system reliability however they have may have high application

costs or impossible to implement. In order to improve each component’s reli-

ability they should be renewed or repaired which is the costly part. Moreover

changing the system design may not be possible for many cases because of the

area limitations and several system regulations. In this case the only solution

that makes sense is to use redundant components. There are two different types

1



CHAPTER 1. INTRODUCTION 2

of redundancy in system design. One of them is to equip a functioning system

with more components than needed to prevent the system from failing because of

the unexpected failures of the components. The main downside of this precaution

is again the rise in the cost of the system setup. Another disadvantage is that

the efficiency of each individual component in the system will decrease. Because

of these reasons standby redundancy can be effectively used to increase reliabil-

ity without increasing the system cost and decreasing component performance.

Standby components do not become active until the failure of a component will

lead to system failure hence they do not affect the performance of the active

components. There are three different type of standby components which are

hot,warm and cold standby component and they will be discussed in more de-

tails in Chapter 5. In this thesis the effect of a single cold standby component,

to reliability of coherent systems with identical components and to weighted k-

out-of-n systems containing two different type of components, is investigated. In

the literature reliability and reliability properties of systems with a cold standby

component is investigated for only k-out-of-n systems having independent and

identical components. The contribution of this thesis is to propose the general-

ization of the reliability analysis for all types of coherent systems with a single

cold standby component. Thus a method has been proposed to calculate the

reliability for all coherent systems having independent and identical components.

Moreover this is the first study in the literature in which optimum system design

has been made by finding the reliability of systems having independent but non

identical components and a cold standby component. The rest of the thesis is or-

ganized as follows. Order statistics and their properties are presented in Chapter

2. The definition of reliability, coherent systems and their connection with system

signature is given in Chapter 3. Weighted k-out-of-n systems and their working

principle is pointed out in Chapter 4. Finally in Chapter 5 standby systems

and main findings of this thesis which are reliability analysis of coherent systems

with a cold standby component and weighted k-out-of-n systems containing two

different types of components and a cold standby component are presented.



Chapter 2

Order Statistics

The random variables which can be interpreted as results of an experiment mea-

suring values of a certain random variable arranged in order of magnitude, are

called order statistics. Order statistics have been extensively used in statistical

inference, reliability theory and statistical process control. Order statistics have

wide applications in many areas where the use of an ordered sample is important.

Order statistics are sufficient statistics, hence they contain all the information

about the sample. Moreover since most statistics derived from order statistics

have the distribution-free property, it is widely used in non-parametric statistical

methods. Another important aspect is that order statistics can be used in several

applications of reliability theory. For example, lifetime of a component or the

whole system can be represented by order statistics. Therefore the concept of

order statistics takes a major place in life-time analysis.

Let X1, X2, . . . , Xn denote a random sample from a population with cumula-

tive distribution function (cdf) F (x) = P (X 6 x). Suppose that the elements of

this sample are arranged in order of magnitude and X1:n denotes the smallest;

X2:n denotes the second smallest; etc. and Xn:n denotes the largest of the set

X1, X2, . . . , Xn. Then X1:n ≤ X2:n ≤ . . . ≤ Xn:n denotes the original random

sample arranged in increasing order of magnitude, and these are called the order

statistics of the sample X1, X2, . . . , Xn. We call Xi:n for 1 ≤ . . . ≤ n the ith order

statistic. The subject of order statistics deals with the distributional properties

3
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of Xi:n itself, and some functions of the subset of the n order statistics and their

applications is well known from classical statistical theory, that the natural esti-

mate of an unknown distribution function is the empirical distribution function,

which is a function of order statistics. Therefore, many important statistics in es-

timation theory and hypothesis testing appear to be an integral functional of the

empirical distribution function, and can be expressed in terms of order statistics.

Order statistics do not change their order under probability integral transforma-

tion, namely if Ui:n = F (Xi:n) i = 1, 2, ..., n then U1 ≤ U2 ≤ . . . ≤ Un Due to

distribution free properties, they are widely used in nonparametric interval esti-

mation and hypothesis testing. Order statistics and their properties have been

extensively studied since early part of the last century, and recent years have seen

a particularly rapid growth of studies. For more detailed information one can see

the books [1], [2], [3], [13], [14].

2.1 Distribution of Order Statistics From I.I.D

Random Variables

Let X1, X2, ..., Xn be a sample of size n from the population with c.d.f. F .

The order statistics obtained by arranging the random sample X1, X2, ..., Xn in

increasing order of magnitude are represented either

X1:n ≤ X2:n ≤ ... ≤ Xn:n

or

X(1) ≤ X(2) ≤ ... ≤ X(n).

The distribution function of rth order statistic is

Fr(x) = P {Xr:n ≤ x} =
n∑
i=r

(
n

i

)
F i(x) (1− F (x))n−i . (2.1)
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If F is absolutely continuous with pdf f , then (2.1) can be written also as follows

Fr:n(x) =
1

B(r, n− r + 1)

∫ F (x)

0

ur−1(1− u)n−rdu

=
1

B(r, n− r + 1)
IF (x)(r, n− r + 1), (2.2)

where

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt,

Ip(a, b) =
1

B(a, b)

∫ p

0

ta−1(1− t)b−1dt,

and 1
B(r,n−r+1)

= n!
(r−1)!(n−r)! .

Formula (2.1) yields true for discrete, absolutely continuous and continuous ex-

cept countable number of points (having countable number points of discontinu-

ity). Formula (2.2) is true only for absolutely continuous distribution. Given the

realizations of the n order statistics to be X1:n < X2:n < ... < Xn:n, the origi-

nal random variables Xi are restrained to take on the values Xi:n (i = 1, 2, .., n)

which by symmetry assigns equal probability to each of the n! permutations of

(1,2,...,n). Therefore, the joint density function of all n order statistics is

f1,2,...,n(x1, x2, ..., xn) =


n!
∏n

i=1 f(xi) if x1 < x2 < ... < xn

0 otherwise

(2.3)

The joint pdf of two or more order statistics can be obtained by integrating from

(2.3) as well as by using continuous total probability formula.

The joint pdf of Xr:n and Xs:n, 1 ≤ r < s ≤ n is
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fr,s(x, y) =


n!

(r−1)!(s−r−1)!(n−s)!F
r−1(x)

×(F (y)− F (x))s−r−1(1− F (y))f(x)f(y) if x < y

0 otherwise

(2.4)

The joint pdf of order statistics Xr1:n, Xr2:n, ..., Xrk:n is

fr1,r2,...,rk(x1, x2, ..., xn)

=



n!
r1!r2!...rk!

F r1(x1) [F (x2)− F (x1)]r2−r1−1

× [F (x3)− F (x2)]r3−r2−1 ... [1− F (xk)]
n−rk

×f(x1)...f(xk) if x1 < x2 < ... < xn

0 otherwise

(2.5)

If F is a discrete distribution function, then the joint c.d.f. of Xr:n and Xs:n

is

Fr,s(x, y) =



∑n
i=r

∑n−i
max(0,s−i)

n!
i!j!(n−i−j)!F

i(x)

×[F (y)− F (x)]j[1− F (y)]n−i−j if x < y

Fs(y) otherwise

(2.6)

and the pmf of Xr:n and Xs:n is

fr,s(x, y) = Fr,s(x, y)−Fr,s(x−1, y)−Fr,s(x, y−1)+Fr,s(x−1, y−1), x ≤ y. (2.7)

Definition. Let X1:n, ..., Xn:n be order statistics based on the sample X1, X2, ...,
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Xn. Then

Y1 = X1:n, Y2 = X2:n −X1:n, , ..., Yn = Xn:n −Xn−1:n

are called spacings.

Suppose that X1:n, ..., Xn:n are order statistics based on the sample X1, X2, ...,

Xn with d.f.F (x) = 1− exp(−λx), x ≥ 0. Then the spacings

Y1 = X1:n, Y2 = X2:n −X1:n, , ..., Yn = Xn:n −Xn−1:n

are independent, furthermore the random variables

Z1 = nλX1:n, Z2 = (n− 1)λ(X2:n −X1:n) , ...,

Zr = (n− r + 1)λ(Xr:n −Xr−1:n), ..., Zn = λ(Xn:n −Xn−1:n)

are i.i.d. with the common c.d.f F (x) = 1− exp(−x), x ≥ 0.

If n units are placed under test of solidity and X1, X2, ..., Xn represent the life

lengths these units, then the lengths of time intervals Xr:n−Xr−1:n ,r = 1, 2, ..., n

between two failures are independent and identically distributed random variables

when the common distribution of X1, X2, ..., Xn is exponential.

Theorem 2.1 Let X1:n, X2:n, ..., Xn:n be order statistics of the sample

X1, X2, ..., Xn with absolutely continuous c.d.f F and p.d.f f. Then

{(Xr+1:n, Xr+1:n, ..., Xn:n) | Xr:n = x} d
= (Y1:n−r, Y2:n−r, ..., Yn−r:n−r),

where Y1:n−r, Y2:n−r, ..., Yn−r:n−r are order statistics from the sample Y1, Y2, ..., Yn−r

size n− r, and

Y
d
= X | X > x

the p.d.f of Y is fY (u) =

{
0 if u ≤ x
f(u)

1−F (x)
otherwise
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For more detailed information on ordered statisitcs one can see the books [1],

[13] and [14].

2.2 Distribution Of Order Statistics From

Mixed Random Variables

Let T
(1)
1 , . . . , T

(1)
n1 be independent and identically distributed (i.i.d) random

variables with cumulative distribution function (c.d.f) F (t). Furthermore let

T
(2)
1 , . . . , T

(2)
n2 be i.i.d random variables with cdf G(t). Assume that these two col-

lections of random variables are independent of each other and they represent

lifetimes of two different types of components. Let us denote by {T1, . . . , Tn}
the n = n1 + n2 lifetimes of components in a system combined from n1T

(1)s and

n2T
(2)s. Denote by Tr:n r = 1, . . . , n the rth order statistics of the combined

sample. Bairamov and Parsi [6] derived the distribution of Tr:n as follows

H(r)(x) =P (Tr:n ≤ x)

=
n∑
i=r

min(i,n1)∑
j=max(0,n1+i−n)

(
n1

j

)(
n2

i− j

)
F (x)j(1− F (x))n1−jG(x)i−j(1−G(x))n2−i+j .

The p.d.f of Tr:n is given by

h(r)(x) =

min(r−1,n1−1)∑
i=max(0,n1+r−1−n)

(
n1

1

)(
n1 − 1

i

)(
n2

r − 1− i

)
F (x)i(1− F (x))n1−1−i

×G(x)r−1−i(1−G(x))n2−r+i+1f(x)+

min(r−1,n1)∑
i=max(0,n1+r−n)

(
n2

1

)(
n1

i

)(
n2 − 1

r − 1− i

)
F (x)i(1− F (x))n1−i

×G(x)r−1−i(1−G(x))n2−r+ig(x).
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2.3 Residual Lifetimes of Remaining Compo-

nents From I.I.D Random Variables

Bairamov and Arnold [5] defined the residual lifelengths of the remaining func-

tioning components following the kth failure in the system. In addition they dis-

cuss the joint distribution of these exchangeable random variables and identify

the sufficient conditions that guarantee independence of the residual lifelengths.

Consider an (n − k + 1)-out-of-n system which will function successfully until k

of the components have failed. Consequently, if we denote the lifetimes of the

individual components by T1, T2, . . . Tn then the lifetime of the n − k + 1 out of

n system will be represented by the kth order statistic Tk:n After an n − k + 1

out of n system fails (i.e. after the kth failure has been observed), it is often

reasonable to stop the system and rescue the functioning components to use in

other systems. On the other hand if the system must function without a break

the common procedure is to use standby components to prevent the failure of the

system hence the system will continue to function with the remaining components

together with the standby components. In the modeling of failure times for com-

ponents of the system with i.i.d components, we assume that the failure of one

component does not affect the functioning of the remaining ones. The classical

theory of n− k+ 1 out of n systems assumes that the n lifetimes T1, T2, . . . , Tn of

the components of the system are independent and identically distributed (i.i.d.)

with common absolutely continuous distribution function F and corresponding

density f . With this setup, the time of the first failure will be the first order

statistic T1:n and the subsequent times between failures can be identified with the

spacings Ti:n−Ti−1:n, i = 2, 3, . . . , n.Note that even under the classical assumption

that the original lifetimes were i.i.d., it will turn out that the residual lifetimes

of the unfailed components will be exchangeable, but typically not independent.

They will be conditionally independent given the time of the k’th failure, but we

are not assuming that the time of that failure is known, or equivalently we do not

know the time at which the system was switched on, we just know it has stopped

functioning because k failures have occurred. Note that if we put the rescued

components into a new system, we will need to consider that the lifetime of the
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components in this new system are identically distributed but this time they are

dependent.

For any k ∈ {1, 2, ..., n} we will use the notation T
(k)
1 , T

(k)
2 , ..., T

(k)
n−k to denote the

residual lifetimes of the n− k components still functioning at the time of the kth

failure. For each k, we may define

T
(k)
1:n−k = min{T (k)

1 , T
(k)
2 , . . . , T

(k)
n−k}.

Upon reflection, it is evident that these T
(k)
1:n−k’s simply represent an alternative de-

scription of the spacings of the order statistics of the original sample T1, T2, . . . , Tn.

Thus

Tk+1:n − Tk:n = T
(k)
1:n−k

and

Tk−1:n = T1:n + T
(1)
1:n−1 + T

(2)
1:n−2 + . . .+ T

(k)
1:n−k.

If we are given Tk:n = x, then the conditional distribution of the subsequent

order statistics Tk+1:n, . . . , Tn:n is the same as the distribution of order statistics

of a sample of size n − k from the distribution F truncated below at x. If we

denote by Y
(k)
i , i = 1, 2, . . . , n−k the randomly ordered values of Tk+1:n, . . . , Tn:n,

then given Tk:n = x, these Y
(k)
i ’s will be i.i.d. with common survival function

F̄ (x + y)/F̄ (x). The residual lifetimes after k failures, T
(k)
1 , . . . , T

(k)
n−k, may be

represented as

T
(k)
i = Y

(k)
i − Tk:n, i = 1, 2, . . . , n− k

2.4 Residual Lifetimes of Remaining Compo-

nents From Mixed Random Variables

In this section we will define the residual lifetimes of the remaining components

from two different independent sets combined together. Let T
(1)
1 , . . . , T

(1)
n1 be

independent and identically distributed (i.i.d) random variables with cumulative
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distribution function (c.d.f) F (t). Furthermore let T
(2)
1 , . . . , T

(2)
n2 be i.i.d random

variables with cdf G(t). Assume that these two collections of random variables

are independent of each other and they represent lifetimes of two different types

of components. Let us denote by {T1, . . . , Tn} the n = n1 + n2 lifetimes of

components in a system combined from n1 of T (1)s and n2 of T (2)s. Denote by

Tr:n r = 1, . . . , n the rth order statistics of the combined sample. Let M be a

random variable showing the number of failed components of type 1 at the time of

rth failure. If we are given Tr:n = x and M = m then the conditional distribution

of the subsequent order statistics from the first sample T
(1)
m+1:n1

, . . . , T
(1)
n1:n1 is the

same as the distribution of order statistics of a sample of size n1 −m from the

distribution F truncated below at x. Similarly the conditional distribution of the

subsequent order statistics from the second sample T
(2)
r−m+1:n2

, . . . , T
(2)
n2:n2 is the

same as the distribution of order statistics of a sample of size n2 − r + m from

the distribution G truncated below at x. If we denote respectively the remaining

lifetimes of the remaining components from the first sample and second sample

as T
(1),r
i i = 1, . . . n1 − m and T

(2),r
j j = 1, . . . , n2 − r + m and the randomly

ordered values as T
(1)
m+1:n1

, . . . , T
(1)
n1:n1 and T

(2)
r−m+1:n2

, . . . , T
(2)
n2:n2 then given Tr:n = x

and M = m, T
(1),r
i will be i.i.d with common survival function F (x+t)

F (x)
and T

(2),r
j

will again be i.i.d with common survival function G(x+t)

G(x)
.



Chapter 3

Reliability and System Signature

Reliability is defined as the probability that the system will perform satisfactorily

for at least a given period of time under stated conditions. One can define the

reliability of a single component, as well as, a system which consists of multiple

components.

Reliability evaluation has been done in many areas of engineering such as

chemical engineering, electrical engineering, computer engineering and mechanics.

It is generally used for maintenance and controlling of engineering systems so it

is a vital tool for system engineers. In order to evaluate the reliability of a system

correctly one should determine the structure of the system that is, to specify the

rules which keep the system functioning and the relationship between the system

components. Most of the works that have been done on system reliability have

focused on binary system modeling.

In a binary system modeling, the system and all its components may either

work or fail. Hence the state of each component and the system itself can be

defined as a discrete random variable with two possible outcomes. For series sys-

tems all components must function for the system to operate. However for other

systems, it may be sufficient for some components to function. These relationship

between components and systems are investigated by coherent systems.

12
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Let a system consist of n components. If xi denotes the state of the ith

component in the system. Then

xi =

{
1 if ith component functions,

0 if ith component fails.
(3.1)

for i = 1, 2, ..., n Let φ denote the state of system, then it can be defined as

φ(x1, x2, ..., xn) =

{
1 if system functions,

0 if system fails.
(3.2)

The function φ(~x), which is called the structure function of system, is a function

of states of components.

In real life due to engineering problems some systems may have irrelevant

components, in which functioning or failure of these components have no effect

to the state of the system.

Definition. Let a system consist of n components. The component i = 1, 2, . . . , n

is said to be irrelevant if and only if

φ(1i, ~x) = φ(0i, ~x) for all (.i, ~x) = (x1, x2, ..., xi−1, ., xi+1, ..., xn).

If there exists at least one ~x satisfying φ(1i, ~x) = 1 and φ(0i, ~x) = 0 it can be said

that component i is relevant.

Using the definition of the structure function we can define coherent systems.

For more detailed information on coherent systems one can see [7] and [36].

Definition. A system of components is coherent, if its structure function is in-

creasing and there is no irrelevant component in the system.

In other words a system is coherent if the following conditions are satisfied.

1. φ(0) = 0 that is system is failed when all components are failed.

2. φ(1) = 1 that is system is functioning when all components function.
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3. x < y ⇒ φ(x) ≤ φ(y) that is improvement of any component does not

decrease the performance of the system.

4. For every component i, there exists a component state vector such that the

state of component i dictates the state of the system.

Similarly, the reliability of a coherent system consisting of n components can

be defined as the probability that the system functions

R = P (φ(~x) = 1).

Reliability of the ith component of this system is defined as the probability that

ith component functions

P (xi = 1) = pi for i = 1, 2, ..., n.

In the literature, different system structures have been defined and their re-

liability are studied stating different assumptions on components. Series and

parallel models are the core of these structures. A series system with n compo-

nents functions if all components function.On the other hand a parallel system

of n components functions if at least one component function. A k-out-of-n:F

system which is a generalization of series and parallel system, consists of n com-

ponents, fails iff at least k of n components fail. Another important system

structure that is widely used in the literature is consecutive k-out-of-n:F system.

Consecutive systems have been used in modeling in various engineering areas

such as telecommunication oil pipeline and vacuum systems in accelerators. It

consists of n linearly ordered components such that the system fails iff at least k

consecutive components fail. New findings on consecutive k-out-of-n systems can

be seen in [15], [16], [17] [45], [61], [62]. An overview of these systems and their

generalizations are presented in [19], [36].

In Table 3.1 one can see the structure functions of different coherent systems
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consisting of n components.

System Structure Function

Series φ( ~X) =
n∏
i=1

xi = min(x1, x2, ..., xn)

Parallel φ(~x) =
n∐
i=1

xi = max(x1, x2, ..., xn)

k-out-of-n:F φ(~x) =


1,

n∑
i=1

xi > n− k

0,
n∑
i=1

xi ≤ n− k

Consecutive

k-out-of-n:F

φ(~x) =
n−k+1∏
i=1

(1−
i+k−1∏
j=i

(1− xj))

Table 3.1 Structure functions of different coherent systems

For more information on the structure of coherent systems one can see [7], [36]. .

3.1 The Signature of Coherent Systems

The reliability of a coherent system is defined as the probability that the system

will perform satisfactorily for at least a given period of time t.Let T denotes the

lifetime of a coherent system. Then the reliability or survival function of the

system is defined by

R(t) = P (T > t), t ≥ 0

Reliability or survival function is one of the most important lifetime characteristic

of a system since it gives us the information about how long may the system will

continue functioning. Moreover it allows us to evaluate other important lifetime

characteristics of the system such as mean time to failure, mean residual life and

hazard rate.

Let Ti denote the lifetime of the ith component in a coherent system with the
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structure function φ and lifetime T. Then

T = φ(T1, T2, ..., Tn).

If we define the binary stochastic process that represents the state of the ith

component at time t as follows

Xi(t) =

{
1 if Ti > t

0 if Ti ≤ t
, i = 1, 2, ..., n

The survival function R(t) can be investigated by the help of Xi(t)s. For example,

the survival function of a k-out-of-n:F system can be written as

R(t) = P (
n∑
i=1

Xi(t) > n− k).

Another representation for the survival function of coherent systems was given

in terms of system signature. In 1985, Samaniego [55] introduced the concept of

system signature, which is a very practical tool for representing the lifetime distri-

bution of a coherent system. For a coherent system having lifetime T consisting

of n components with independent and identically distributed (i.i.d.) lifetimes

T1, . . . , Tn, the system signature is an n-dimensional vector p whose ith element

is given by

pi = P {T = Ti:n} ,

where Ti:n is the ith order statistic corresponding to the lifetimes T1, . . . , Tn,

i = 1, . . . , n.

pi =
# of orderings for which the ith failure causes system failure

n!
(3.3)

for i = 1, ..., n.The ith element of p can also be computed as

pi = an−i+1 (n)− an−i (n) , (3.4)
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where

ai (n) =
ri (n)(
n

i

) (3.5)

and ri (n) is the number of path sets of the system with exactly i working com-

ponents [8]. Using (3.4) and (3.5), we have

ri (n) =

(
n

i

) n∑
j=n−i+1

pj. (3.6)

That is, the signature of a system which can be obtained by computing ri(n).and

ri(n) can be obtained from system signature. The problem of finding ri(n) and

hence system signature is combinatorial one depending on the structure of a

system

The reliability of a coherent system with signature vector p and lifetime T can

be represented as a positive mixture of reliability of T1:n, . . . , Tn:n with respective

weights p1, . . . , pn as

P {T > t} =
n∑
i=1

piP {Ti:n > t} . (3.7)

The representation (3.7) was used to compare systems with different structures,

evaluation of reliability characteristics and system signature [12], [21], [34], [40],

[41], [42], [43], [44], [46], [50], [51], [52], [58] and also ordering properties of

coherent systems [53], [63], [64]. For an extensive review of system signature and

its applications see the books of Samaniego [56] and Lisnianski and Frenkel [39].

Example 3.1. Let us find the signature of the following consecutive 2-out-of-3:F

system. The consecutive 2-out-of-3:F system is a system that consists of n = 3

linearly ordered components and fails if and only if at least k = 2 consecutive

components fail.

We can define the system lifetime T as follows

T = min(max(T1, T2),max(T2, T3))
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There are totally 3! = 6 ordering of the component lifetimes which can be given

as follows.

Ordering T

T1 < T2 < T3 T2:3

T1 < T3 < T2 T3:3

T2 < T1 < T3 T2:3

T2 < T3 < T1 T2:3

T3 < T1 < T2 T3:3

T3 < T2 < T1 T2:3

Then we have

p1 = 0

p2 =
4

6

p3 =
2

6

and the signature p = (0, 2
3
, 1

3
).

Another representation for the reliability of a coherent system with lifetime

T was proposed by Navarro et al [47].

P {T > t} =
n∑
i=1

αiP {X1:i > t} ,

where X1:i = min (X1, . . . , Xi) and αi is the ith element of the minimal signature

vector α, satisfying
n∑
i=1

αi = 1, i = 1, . . . , n. Eryilmaz [20] has derived the

following formula to compute αi

αi =


n−kmin∑
j=n−i

(−1)i+j−n
(

j

n− i

)
rn−j (n) if i ≥ kmin,

0 otherwise,

(3.8)

where kmin is the minimum number of working components required for the func-

tioning of the system.
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An alternative concept to the system signature, the survival signature, was

introduced by Coolen and Coolen-Maturi [10] and is closely related to the system

signature. Let Φ (l), for l = 1, . . . ,m, denote the probability that a system

functions given that exactly l of its components function. For coherent systems,

Φ (l) is an increasing function of l, Φ(0) = 0, and Φ(m) = 1. When the failure

times of the components in a coherent system are i.i.d.

Φ (l) =

(
m

l

)−1 ∑
x∈Sl

φ (x) ,

where x is the state vector, Sl is the set of state vectors which have exactly l

functioning components, and φ is the structure function of the system. Coolen

and Coolen-Maturi [10] showed that the survival signature of a coherent system

consisting m components can be written in terms of the system signature of that

system:

Φ (l) =
m∑

j=m−l+1

pj. (3.9)



Chapter 4

Weighted k-out-of-n:G Systems

In order to raise operational availability and productivity or to reduce the loss

in industrial systems, it is important to consider process design and reliability.

System design for reliability is generally subject to several uncertainties, such

as type, working time, failure rate, repair time etc. of the components. If it

is difficult to improve the reliability of an individual component in the system,

redundancy can be used as an alternative approach in the system design. The k-

out-of-n:G system and its variants are widely used in redundant design in order

to improve the system reliability. Reliability properties of such systems have

been studied widely in the literature [22], [23], [24], [31], [32]. According to

the configuration of real life instance, a system’s operational availability and

productivity depends not only on the availability of the components, but also on

their distinct endowments. This type of systems are called weighted k-out-of-n:G

systems. In a traditional setup of system reliability problems, components of

a system are assumed to have equal weights. However, this assumption is not

valid for most of real-life problems. For instance, a factory might have different

machines which have different production capacities. In this example, weight of

a component is the production capacity of each machine. More real life examples

can be found, in heating, cooling and lightning systems. In those systems there

can be components with distinct wattage where wattage of a component can be

represented as the weights of components. In order to analyze such cases in 1994,

20
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Wu and Chen [60] proposed a more general model than k−out-of−n : G system

and called it as weighted k−out-of−n : G system. In this system components

may have different positive integer weights and the system works if the total

weight of working components is at least a predefined threshold k. This system

turns into ordinary k−out-of−n : G system if each component has weight unity.

The reliability of weighted k−out-of−n : G systems can be computed by using

recursive formula [9], [18], [33], [37]. There are several studies that have been

proposed about the dynamic analysis of weighted k−out-of−n : G systems [22]

and [57]. Due to the structure of weighted k−out-of−n : G systems, components

have different reliability which makes computation even harder. Other studies

that have been done in this area are [11], [23], [35], [38], [54]. Recent works on

weighted k-out-of-n : G systems can be found in [25], [28], [29], [30]. Eryilmaz

and Sarikaya [27] considered a special type of weighted k−out-of−n : G system

which has only two types of components having different weights and reliabilities.

One group of components has weight w and common failure time distribution F

and the other group has weight w∗ and another common failure time distribution

G. For this system they have obtained closed form equations for the survival

function and mean time to failure (MTTF). This special system arises in real

life when factories decide to improve or modify their existing machines. For

example, a company may have n1 machines with common failure time distribution

and production capacity w. After a while company may decide to enlarge or

improve its production line by adding n2 new machines with common failure time

distribution and production capacity w∗ or they can simply replace some of the

existing machines with new ones. The underlying cause for the company to take

these actions is to improve production capacity, increase reliability and MTTF of

the whole system. As well as the advantages there are some downsides of adding

or replacing new machines to the system. One and maybe the most important

one is cost, which increases as well as the reliability and MTTF. Moreover if the

capacities of the new machines (w∗) are greater than the existing ones this will

cause an extra increase in the production costs. To overcome this problem, rather

than only adding new components to increase reliability and MTTF, companies

can use standby components or along with the new components.
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Eryilmaz and Sarıkaya [27] derived the following exact reliability of this special

weighted k−out-of−n : G system without using a recursive formula .

P (T
{n1,n2}
k > t) =

∑∑
wi+w∗j≥k

0≤i≤n1,0≤j≤n2

(
n1

i

)
F (t)iF (t)n1−i

(
n2

j

)
G(t)jG(t)n2−j, (4.1)

where F is the common lifetime distribution of the components of one group and

G is the common lifetime distribution of the components of another group.

In this study we will investigate the reliability properties of this special weighted

k−out-of−n : G equipped with a single cold standby component.



Chapter 5

Standby Systems

A parallel system having n components works successfully even with a single

component. However all the components in the system are used simultaneously

in the process. Instead of having n−1 redundant components another redundancy

called standby redundancy can be used in order to increase the reliability of the

system. In this case some of the active components may be replaced or additional

components may be added as standby components. To do this a sensing and

switching mechanism is used to control the operation of the active components.

Whenever an active component fails a standby component is put on the operation

and becomes active.

There are different types of standby such as hot standby, warm standby and

cold standby. Hot standby components have the same failure rate as the active

components so they are also called active redundant components. On the contrary

cold standby components have zero failure rate which means that they do not

fail while they are in standby. Warm standby redundancy is a mixture of these

cases. Warm standby components have a failure rate between 0 and failure rate

of the active component so warm standby may contain both cold and hot standby

cases.

In this study we are solely interested in systems having a single cold standby

component and perfect sensing and switching mechanism. In a cold standby

23
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system, cold standby component does not fail when it is inactive hence we only

need to concentrate on the active components whose failure cause the failure

of the system. When the sensing and switching mechanism is perfect, the cold

standby component becomes active, as soon as the failure of the active component

which causes system failure.

In order to clarify the concept let us consider a system with an active compo-

nent and a cold standby component. Let T, T1, T2 denote respectively the lifetime

of the system, lifetime of the active component and lifetime of the cold standby

component. Let F (t) and G(t), t ≥ 0 denote the failure rate distribution of the

active and standby component respectively. Denote f(t) as the probability den-

sity function of the active component with lifetime T1. There are two cases for

the system to survive until the time t The first one is, active component survives

until the time t. The second case is active component fails at time x (0 ≤ x < t)

and cold standby component is put on operation and survives between time x

and t. Hence the reliability of the system is

P (T > t) = P (T1 > t) +

t∫
0

P (T2 > t− x)f(x)dx

= 1− F (t) +

t∫
0

(1−G(t− x)) f(x)dx



Chapter 6

Coherent Systems with a Cold

Standby

There are different methods in order to increase system reliability. One of them

is to equip the system with standby units such as warm, hot and cold. Compared

to others, cold standby redundancy can be preferred when switching times are

sufficiently short, since cold standby component is inactive which means it does

not fail in standby. Van Gemund and Reijns [59] studied k-out-of-n system with

a single standby and found an analytical way to compute the mean time to failure

of the system. Eryilmaz [23] investigated various mean residual life functions for

the same system. Recently, Eryilmaz [24] studied k-out-of-n system equipped

with a single warm standby component.

In this study, using system signature, conditioning on the index of the cold

standby component and indices of the components failed before cold standby

component is put into operation, the reliability of coherent systems having a cold

standby component are derived.

In a coherent system with a single cold standby, the index of the standby

component as well as the indices of failed components have significant importance

which makes the computation of the reliability more difficult. A method for

computing the reliability of coherent systems is presented. Moreover, comparison

25
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of the reliability and mean time to failure of some systems with and without cold

standby component have been illustrated.
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Notation

Below the notation that will be used throughout this chapter are provided.

n, number of components in the system;

Y, lifetime of the cold standby component;

Ti, lifetime of the component i, 1 ≤ i ≤ n;

Ts:n, sth smallest among Ti, 1 ≤ i ≤ n;

T
(s)
l , remaining lifetime of the components after Ts:n fails: T

(s)
l

st
= (Tl−Ts:n|Tl >

Ts:n), 1 ≤ l ≤ n− s;

φ, structure function of the system;

T = φ(T1, . . . , Tn), lifetime of the system without cold standby component;

Tw, lifetime of the system with a cold standby component;

Vs, discrete random variable representing the index of the cold standby com-

ponent when Ts:n fails: Vs = c⇔ (Tc = Ts:n|T = Ts:n), c = 1, 2, . . . , n;

Bs,c|Vs = c, a discrete multivariate random variable representing the indices

of the failed components given Vs = c, s = 1, . . . , n and c = 1, . . . , n :

(Bs,c|Vs = c) = (B1 = b1, B2 = b2, . . . , Bs−1 = bs−1|Vs = c) ⇔
(0B1 = 0b1 , 0B2 = 0b2 , . . . , 0Bs−1 = 0bs−1|Tc = Ts:n, T = Ts:n) where

0 = (0B1 , 0B2 , . . . , 0Bs−1) are the components which have failed before Ts:n;

Rs,c|Vs = c, a discrete multivariate random variable representing the indices

of the remaining components given Vs = c, s = 1, . . . , n and c = 1, . . . , n :

Rs,c = (R1 = r1, R2 = r2, . . . , Rn−s = rn−s|Vs = c) ⇔ (T
(s)
R1

= T
(s)
r1 , T

(s)
R2

=

T
(s)
r2 , . . . , T

(s)
Rn−s

= T
(s)
rn−s|Tc = Ts:n, T = Ts:n).

Consider a binary coherent system with structure function φ. Let T =

φ(T1, . . . , Tn) denote the lifetime of a coherent system without a cold standby
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component and Tw denote the lifetime of the same system with a cold standby

component whose lifetime is Y . Moreover, T1, . . . , Tn have a common continuous

cumulative distribution function (c.d.f); F and Y has a continuous c.d.f G.

Eryilmaz [26] studied on coherent systems equipped with a cold standby compo-

nent which may put into operation at the time of the first component failure in

the system. In this paper, we consider the general case in which standby compo-

nent may get involved at the time of the sth component failure s = kφ, ..., zφ + 1

where kφ is the minimum number of failed components that cause the system

failure whereas zφ is the maximum number of failed components that system can

still operate. It is clear that P (T = Ts:n) > 0 for s = kφ, ..., zφ + 1.

After replacing the standby component with sth failed component which causes

the system failure at the same time, the remaining lifetime of the system consist-

ing of s−1 failed components (0′s), n−s functioning components, and a standby

component (Y ) can be represented as

φs(0B1 , 0B2 , . . . , 0Bs−1 , YVs , T
(s)
R1
, T

(s)
R2
, . . . , T

(s)
Rn−s

),

When sth failure occurs which causes system failure at the same time, cold

standby component gets involved to the system. At this time, there are to-

tally n − s + 1 functioning components in the system. The reliability of the

remaining lifetime of the system is computed based on these n−s+1 functioning

components. However, places of the s − 1 failed components should be taken

into consideration (not their lifetimes since they failed already) in the structure

function of the system to calculate the main lifetime random variable Tw.

It is well known that the random variables T
(s)
1 , . . . , T

(s)
n−s are conditionally

independent given Ts:n = x, and

P{T (s)
1 > t1, . . . , T

(s)
n−s > tn−s|Ts:n = x} =

n−s∏
l=1

F̄ (tl + x)

F̄ (x)
,

The main goal is to find the reliability characteristics of Tw, i.e.

Tw = T +

zφ+1∑
s=kφ

φs(0B1 , 0B2 , . . . , 0Bs−1 , YVs , T
(s)
R1
, T

(s)
R2
, . . . , T

(s)
Rn−s

).
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Lemma 6.1 For t > 0 and s = kφ, ..., zφ + 1;

P{φs(0b1 , 0b2 , . . . , 0bs−1 , Yc, T
(s)
r1
, T (s)

r2
, . . . , T (s)

rn−s
) > t|Xs:n = x}

=
1

F̄ n−s(x)

∫
· · ·
∫

φs(0b1 ,0b2 ,...,0bs−1
,yc,tr1 ,tr2 ,...,trn−s )>t

g(yc)
n−s∏
m=1

f(trm + x)dtr1dtr2 . . . dtrn−sdyc.

Proof. Due to the fact that Y and T1, . . . , Tn are independent for s = kφ, ..., zφ+1

P{φs(0b1 , 0b2 , . . . , 0bs−1 , Yc, T
(s)
r1
, T (s)

r2
, . . . , T (s)

rn−s) > t|Ts:n = x}

=

∫
· · ·
∫

φs(0b1 ,0b2 ,...,0bs−1
,yc,tr1 ,tr2 ,...,trn−s )>t

g(yc)f(tr1 , tr2 , . . . , trn−s |ts:n = x)dtr1dtr2 . . . dtrn−sdyc,

Since the joint p.d.f. of T
(s)
r1 , T

(s)
r2 , . . . , T

(s)
rn−s given Ts:n = x is

f(tr1 , tr2 , . . . , trn−s|ts:n = x) =
1

F̄ n−s(x)

n−s∏
m=1

f(trm + x).

The proof is complete.

Remark. Due to the fact that given Ts:n = x, the random variables T
(s)
1 , . . . , T

(s)

n−s

are independent for s = kφ, ..., zφ + 1. So, the conditional probability given in

Lemma 1 is indeed the survival function of the coherent system φs consisting of

s− 1 failed components, n− s independent component having the same marginal

survival function F̄ (t+x)

F̄ (x)
and the vsth component has the survival function Ḡ(t).

Moreover given Ts:n = x if we order the residual lifetime of the remaining n − s
components such that

T
(s)
1:n−s ≤ T

(s)
2:n−s ≤ . . . ≤ T

(s)
n−s:n−s,

The survival function of the kth order statistics of the residual lifetime of the

remaining n− s components for k = 1, 2, . . . n− s, can be found as

P (T
(s)
k:n−s > t|Ts:n = x) =

k−1∑
i=0

(
n− s
i

)(
1− F̄ (t+ x)

F̄ (x)

)i(
F̄ (t+ x)

F̄ (x)

)n−s−i
.



CHAPTER 6. COHERENT SYSTEMS WITH A COLD STANDBY 30

Theorem 6.2 Let p be the signature of a coherent system T = φ(X1, . . . , Xn)

which has a cold standby component with lifetime distribution G. Then

P (Tw > t) =

zφ+1∑
s=kφ

psP (Ts:n > t) + ps

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n
P (Bs,c = (b1, ..., bs−1))×

t∫
0

P{φs(0b1 , 0b2 , . . . , 0bs−1 , Yc, T
(s)
r1 , T

(s)
r2 , . . . , T

(s)
rn−s) > t− x|Ts:n = x}dFs:n(x)

 .

Proof. For a coherent system P (T = Ts:n) > 0 for s = kφ, ..., zφ+1. Any coherent

system operating with n components may fail at the time of sth component

failure. If the system failure caused by the failure of the sth component then the

standby component gets involved to the system. Therefore the survival function

of the coherent system with a standby component can be written as follows

P (Tw > t) =P{T + φkφ (0B1
, 0B2

, . . . , 0Bkφ−1
, YVkφ

, T
(kφ)

R1
, T

(kφ)

R2
, . . . , T

(kφ)

Rn−kφ
) > t, T = Tkφ:n}

+P (T > t, T > Tkφ:n)

=pkφP{T + φ
kφ

(0B1
, 0B2

, . . . , 0Bkφ−1
, YVkφ

, T
(kφ)

R1
, T

(kφ)

R2
, . . . , T

(kφ)

Rn−kφ
) > t|T = Tkφ:n}

+P (T > t, T > Tkφ:n)

= pkφP{T + φ
kφ

(0B1
, 0B2

, . . . , 0Bkφ−1
, YVkφ

, T
(kφ)

R1
, T

(kφ)

R2
, . . . , T

(kφ)

Rn−kφ
) > t|T = Tkφ:n}+

pkφ+1P{T + φ
kφ+1

(0B1
, 0B2

, . . . , 0Bkφ
, YVkφ+1

, T
(kφ+1)

R1
, T

(kφ+1)

R2
, . . . , T

(kφ+1)

Rn−kφ−1
) > t|T = Tkφ+1:n}+

P (T > t, T > Tkφ+1:n)

= pkφP{T + φ
kφ

(0B1
, 0B2

, . . . , 0Bkφ−1
, YVkφ

, T
(kφ)

R1
, T

(kφ)

R2
, . . . , T

(kφ)

Rn−kφ
) > t|T = Tkφ:n}+

pkφ+1P{T + φ
kφ+1

(0B1
, 0B2

, . . . , 0Bkφ
, YVkφ+1

, T
(kφ+1)

R1
, T

(kφ+1)

R2
, . . . , T

(kφ+1)

Rn−kφ−1
) > t|T = Tkφ+1:n}+ · · ·+

pzφ+1P{T + φ
zφ+1

(0B1
, 0B2

, . . . , 0Bzφ
, YVzφ+1

, T
(zφ+1)

R1
, T

(zφ+1)

R2
, . . . , T

(zφ+1)

Rn−zφ−1
) > t|T = Tzφ+1:n}+

P (T > t, T > Tzφ+1:n),

It is obvious that P (T > t, T > Tzφ+1:n) = 0.

Now, for s = kφ, ..., zφ + 1 consider the conditional probability
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P{T + φs(0B1
, 0B2

, . . . , 0Bs−1
, YVs , T

(s)
R1

, T
(s)
R2

, . . . , T
(s)
Rn−s

) > t|T = Ts:n}

=
n∑
c=1

P{Tc + φs(0B1
, 0B2

, . . . , 0Bs−1
, Yc, T

(s)
R1

, T
(s)
R2

, . . . , T
(s)
Rn−s

) > t, Ts:n = Tc, T = Ts:n}

P (T = Ts:n)

=
n∑
c=1

P{Tc + φs(0B1
, 0B2

, . . . , 0Bs−1
, Yc, T

(s)
R1

, T
(s)
R2

, . . . , T
(s)
Rn−s

) > t|Ts:n = Tc, T = Ts:n}×

P (Ts:n = Tc|T = Ts:n)

=

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n
P{Tc + φs(0b1 , . . . , 0bs−1

, Yc, T
(s)
r1

, . . . , T
(s)
rn−s ) > t|0B1

= 0
b1
, . . . ,0Bs−1

= 0
bs−1

, Ts:n = Tc, T = Ts:n}

P (Ts:n = Tc, T = Ts:n)

× P (0B1
= 0

b1
, . . . ,0Bs−1

= 0
bs−1

, Ts:n = Tc, T = Ts:n)

=

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n
P (0B1

= 0
b1
, . . . ,0Bs−1

= 0
bs−1

|Ts:n = Tc, T = Ts:n)×

P{Tc + φs(0b1 , . . . , 0bs−1
, Yc, T

(s)
r1

, . . . , T
(s)
rn−s

) > t|0B1
= 0

b1
, . . . ,0Bs−1

= 0
bs−1

, Ts:n = Tc, T = Ts:n}

=

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n
P
(
Bs,c = (b1, ..., bs−1)

)
×

∫
P{φs(0b1 , . . . , 0bs−1

, Yc, T
(s)
r1

, . . . , T
(s)
rn−s

) > t− x|Ts:n = x}dFs:n(x),

=

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n
P
(
Bs,c = (b1, ..., bs−1)

)
×

∞∫
t

dFs:n(x) +

t∫
0

P{φs(0b1 , . . . , 0bs−1
, Yc, T

(s)
r1

, . . . , T
(s)
rn−s

) > t− x|Ts:n = x}dFs:n(x)


=

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n
P
(
Bs,c = (b1, ..., bs−1)

)
×

 t∫
0

P{φs(0b1 , . . . , 0bs−1
, Yc, T

(s)
r1

, . . . , T
(s)
rn−s

) > t− x|Ts:n = x}dFs:n(x) + P (Ts:n > t)



Hence,

P (Tw > t) =

zφ+1∑
s=kφ

psP (Ts:n > t) + ps

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n

P (Bs,c = (b1, ..., bs−1))×

t∫
0

P{φs(0b1 , . . . , 0bs−1 , Yc, T
(s)
r1
, . . . , T (s)

rn−s) > t− x|Ts:n = x}dFs:n(x)

 .

Theorem 6.3 Consider a coherent system having a signature vector p, with a

cold standby component having distribution function G while other components

have common distribution function F. Then system reliability can be computed as
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follows

P (Tw > t) =

zφ+1∑
s=kφ

psP (Ts:n > t) + ps

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n
P (Bs,c = (b1, ..., bs−1))×

t∫
0

[
Ḡ(t− x)

n−s∑
k=1

p̄
c,(b1,b2,...,bs−1)

k P (T
(s)
k:n−s > t− x|Ts:n = x) + Ḡ(t− x)p̄

c,(b1,b2,...,bs−1)
n−s+1

]
dFs:n(x)

 ,

where p̄
c,(b1,b2,...,bs−1)
k is the number of orderings for which kth failure among the

(n − s) remaining components and a cold standby component cause the system

to fail where cth component (cold standby) assumed to be functioning and com-

ponents having indices b1, b2, . . . , bs−1 have already failed. Moreover T
(s)
k:n−s is the

kth order statistics of the residual lifetime of the remaining (n − s) functioning

components.

p̄
c,(b1,b2,...,bs−1)

k

=
The number of orderings for which the kth failure of the remaining components cause the system to fail

n− s!
k = 1, . . . , n− s,

and

p̄
c,(b1,b2,...,bs−1)
n−s+1 =

{
1, if the failure of the system can be caused by only the failure of the cold standby

0, if the failure of the system can be caused by the remaining components

Proof. When cold standby component is put into operation at time x for the

system to survive up to time t, the cold standby component must function between

the time x and t since the failure of the cold standby component will lead to

system failure with probability 1. Assuming cold standby component functions

between the time t and x system failure can be caused by the failure of the

remaining components. Given Ts:n = x residual lifetime of the remaining (n− s)
components are independent and identically distributed. Therefore the survival

function of the coherent system φs(0b1 , . . . , 0bs−1 , Yc, T
(s)
r1 , . . . , T

(s)
rn−s) having s− 1
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failed components at places b1, b2, . . . , bs−1 and a cold standby component at place

c can be computed by its signature function p̄
c,(b1,b2,...,bs−1)
k for k = 1, . . . , n −

s and p̄
c,(b1,b2,...,bs−1)
n−s+1 = 0. If the failure of the system does not depend on the

failure of the remaining components which means system survives until the cold

standby component fails in that case p̄
c,(b1,b2,...,bs−1)
k = 0 for k = 1, . . . , n − s and

p̄
c,(b1,b2,...,bs−1)
n−s+1 = 1.

It is known that when both active and standby components have common

exponential distribution, the random variables T
(s)
R1
, T

(s)
R2
, . . . , T

(s)
Rn−s

, YVs are inde-

pendent and have the same exponential distribution. Therefore, the structure

function can be written as

φs(0B1 , . . . , 0Bs−1 , YVs , T
(s)
R1
, . . . , T

(s)
Rn−s

)
st
= φs(0B1 , . . . , 0Bs−1 , YVs , TR1 , . . . , TRn−s).

Corollary 6.4 Under the assumption of all components, including the cold

standby component, have common exponential distribution F (x) = 1−e−λx, x > 0

the reliability of coherent systems with a cold standby component turns into

P (Tw > t) =

zφ+1∑
s=kφ

psP (Ts:n > t) + ps

n∑
c=1

P (Vs = c)
∑

1≤b1<...<bs−1≤n

P (Bs,c = (b1, ..., bs−1))×

t∫
0

[
F̄ (t− x)

n−s∑
k=1

p̄
c,(b1,b2,...,bs−1)
k P (Tk:n−s > t− x) + F̄ (t− x)p̄

c,(b1,b2,...,bs−1)
n−s+1

]
dFs:n(x).

Example 6.1. Consider the coherent system with lifetime

T = min(T1,max(T2, T3)).

The signature of this system is p = (1
3
, 2

3
, 0). In this system, kφ = zφ = 1. For

s = 1, there are no failed components (0′s). P (V1 = 1) = 1, P (V1 = 2) =

P (V1 = 3) = 0 which means only component 1 can be replaced by the cold

standby component. The remaining lifetime of the components after the first

failure are X
(1)
2 and X

(1)
3 . p̄1,− can be found as (0, 1, 0) since when the cold

standby component functions, the system works until both component 2 and 3

fail. For s = 2, all components can be cold standby component with probabilities
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P (V2 = 1) = 1
2
, and P (V2 = 2) = P (V2 = 3) = 1

4
. Suppose component 1 is

replaced with the cold standby component. Previously failed component can be

2 or 3 (02 or 03). Moreover, let component 2 (3) replaced by the cold standby

component. In this case, previously failed component is 03 (02).

p̄1,(2) = p̄1,(3) = p̄2,(3) = p̄3,(2) is (1, 0) because for each case the failure of the

remaining component will lead to system failure.

s = 1 c

V1 1

B1,c −
R1,c (2, 3)

P (V1 = c) 1

p̄c,B1,c (0, 1, 0)

s = 2 c

V2 1 2 3

B2,c (2) (3) (3) (2)

R2,c (3) (2) (1) (1)

P (V2 = c) 1
2

1
4

1
4

p̄c,B2,c (1, 0) (1, 0) (1, 0) (1, 0)

Using Theorem 2

P (Tw > t) =
1

3
P (T1:3 > t) +

2

3
P (T2:3 > t)+

1

3

t∫
0

Ḡ(t− x)

[(
F̄ (t)

F̄ (x)

)2

+ 2
F (t)− F (x)

F̄ (x)

F̄ (t)

F̄ (x)

]
dF1:3(x)

+
2

3

t∫
0

Ḡ(t− x)
F̄ (t)

F̄ (x)
dF2:3(x).

Example 6.2. Consider the coherent system with lifetime

T = max(min(T1, T2, T3),min(T2, T3, T4)).

The signature of this system is p = (1
2
, 1

2
, 0, 0) In this system kφ = zφ = 1.
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s = 1 c

V1 2 3

B1,c − −
R1,c (1, 3, 4) (1, 2, 4)

P (v1 = c) 1
2

1
2

p̄c,B1,c (1
3
, 2

3
, 0, 0) (1

3
, 2

3
, 0, 0)

s = 2 c

V2 1 2 3 4

B2,c (4) (1) (4) (1) (4) (1)

R2,c (2, 3) (3, 4) (1, 3) (2, 4) (1, 2) (2, 3)

P (V2 = c) 1
6

2
6

2
6

1
6

p̄c,B2,c (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)

P (Tw > t) =
1

2
P (T1:4 > t) +

1

2
P (T2:4 > t)+

1

2

t∫
0

Ḡ(t− x)

[
1

3

(
F̄ (t)

F̄ (x)

)3

+
2

3

((
F̄ (t)

F̄ (x)

)3

+ 3
F (t)− F (x)

F̄ (x)

(
F̄ (t)

F̄ (x)

)2
)]

dF1:4(x)

+
1

2

t∫
0

Ḡ(t− x)

(
F̄ (t)

F̄ (x)

)2

dF2:4(x).

Example 6.3. Consider the linear consecutive 3-out-of-5:F system whose lifetime

is

T = min(max(T1, T2, T3),max(T2, T3, T4),max(T3, T4, T5)).

The signature of this system is p = (0, 0, 3
10
, 1

2
, 2

10
). In this system kφ = 3 and

zφ = 4.

s = 3 c

V3 1 2 3 4 5

B3,c (2, 3) (1, 3) (3, 4) (1, 2) (2, 4) (4, 5) (3, 5) (2, 3) (3, 4)

R3,c (4, 5) (4, 5) (1, 5) (4, 5) (1, 5) (1, 2) (1, 2) (1, 5) (1, 2)

P (V3 = c) 1
9

2
9

3
9

2
9

1
9

p̄c,B3,c ( 1
2
, 1
2
, 0) ( 1

2
, 1
2
, 0) ( 1

2
, 1
2
, 0) (0, 0, 1) (0, 0, 1) (0, 0, 1) ( 1

2
, 1
2
, 0) ( 1

2
, 1
2
, 0) ( 1

2
, 1
2
, 0)
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s = 4 c

V4 1 2 3 4 5

B4,c (2, 3, 5) (1, 3, 4) (1, 3, 5) (1, 2, 4) (1, 2, 5) (1, 4, 5) (2, 4, 5) (2, 3, 5) (1, 3, 5) (1, 3, 4)

R4,c (4) (5) (4) (5) (4) (2) (1) (1) (2) (2)

P (V4 = c) 1
10

2
10

4
10

2
10

1
10

p̄c,B4,c (1, 0) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0)

s = 5 c

V5 3

B5,c (1, 2, 4, 5)

R5,c −
P (V5 = c) 1

p̄c,B5,c (1)

P (Tw > t) =
3

10
P (T3:5 > t) +

1

2
P (T4:5 > t) +

2

10
P (T5:5 > t)+

3

10

4

9

t∫
0

Ḡ(t− x)

[
1

2

(
F̄ (t)

F̄ (x)

)2

+
1

2

[(
F̄ (t)

F̄ (x)

)2

+ 2
F (t)− F (x)

F̄ (x)

F̄ (t)

F̄ (x)

]]
dF3:5(x)+

3

10

2

9

t∫
0

Ḡ(t− x)

[(
F̄ (t)

F̄ (x)

)2

+ 2
F (t)− F (x)

F̄ (x)

F̄ (t)

F̄ (x)

]
dF3:5(x) +

3

10

3

9

t∫
0

Ḡ(t− x)dF3:5(x)+

1

2

6

10

t∫
0

Ḡ(t− x)
F̄ (t)

F̄ (x)
dF4:5(x) +

1

2

4

10

t∫
0

Ḡ(t− x)dF4:5(x)+

2

10

t∫
0

Ḡ(t− x)dF5:5(x).

Example 6.4. Consider the coherent system with lifetime

T = min(T1,max(T2, T3),max(T3, T4)).

The signature of this system is p = (1
4
, 7

12
, 1

6
, 0) In this system kφ = 1 and zφ = 2.

s = 1 c

V1 1

B1,c −
R1,c (2, 3, 4)

P (V1 = c) 1

p̄c,B1,c (0, 2
3
, 1

3
, 0)
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s = 2 c

V2 1 2 3 4

B2,c (2) (3) (4) (3) (2) (4) (3)

R2,c (3, 4) (2, 4) (2, 3) (1, 4) (1, 4) (1, 2) (1, 2)

P (V2 = c) 3
7

1
7

2
7

1
7

p̄c,B2,c (1
2
, 1

2
, 0) (1, 0, 0) (1

2
, 1

2
, 0) (1, 0, 0) (1

2
, 1

2
, 0) (1

2
, 1

2
, 0) (1, 0, 0)

s = 3 c

V3 1 3

B3,c (2, 4) (2, 4)

R3,c (3) (1)

P (V3 = c) 1
2

1
2

p̄c,B3,c (1, 0) (1, 0)

P (Tw > t) =
1

4
P (T1:4 > t) +

7

12
P (T2:4 > t) +

1

6
P (T3:4 > t)+

1

4

t∫
0

Ḡ(t− x)


2
3

[(
F̄ (t)

F̄ (x)

)3

+ 3F (t)−F (x)

F̄ (x)

(
F̄ (t)

F̄ (x)

)2
]

+

1
3

[(
F̄ (t)

F̄ (x)

)3

+ 3F (t)−F (x)

F̄ (x)

(
F̄ (t)

F̄ (x)

)2

+ 3
(
F (t)−F (x)

F̄ (x)

)2
F̄ (t)

F̄ (x)

]
 dF1:4(x)+

7

12

3

7

t∫
0

Ḡ(t− x)

(
F̄ (t)

F̄ (x)

)2

dF2:4(x)+

7

12

4

7

t∫
0

Ḡ(t− x)

[
1

2

(
F̄ (t)

F̄ (x)

)2

+
1

2

[(
F̄ (t)

F̄ (x)

)2

+

(
F (t)− F (x)

F̄ (x)

)
F̄ (t)

F̄ (x)

]]
dF2:4(x)+

1

6

t∫
0

Ḡ(t− x)
F̄ (t)

F̄ (x)
dF3:4(x)

As it can be seen from the examples it is hard to compute P (Tw > t) for

systems having complex structures even they have few components. However for

some particular systems of order n it can be computed easily.
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Example 6.5. Consider the coherent system with lifetime

T = min(T1,max(T2, T3, . . . , Tn)).

The signature of this system is p = ( 1
n
, 1
n
, . . . , 1

n
, 2
n
, 0) In this system kφ = 1

and zφ = n − 2. For s = 1, 2, . . . , n − 2, P (Vs = 1) = 1 and P (Vs = c) = 0,

c = 2, . . . , n. For s = n − 1 P (Vn−1 = 1) = 1
2

and P (Vn−1 = c) = 1
2(n−1)

c = 2, 3 . . . , n. Furthermore p̄c,Bs,c = (0, 0, . . . , 0,︸ ︷︷ ︸
n−s−1

1, 0) for all s and c. Therefore

P (Tw > t) =
n−1∑
s=1

psP (Ts:n > t) + ps

t∫
0

Ḡ(t− x)P (T
(s)
n−s:n−s > t− x|Ts:n = x)dFs:n(x)

 ,

In general, the computation of P (Tw > t) is not easy even when components

have exponential lifetime distributions. In figure 1 one can see the reliability

function of the four examples given above with and without a standby when

F (t) = G(t) = 1− e−2t, t > 0.

Below graphs of reliability functions of the examples 5.1 to 5.4 given respectively.
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Fig.1 Reliability function of systems with and without standby

In the following table, the mean time to failure of different coherent systems with a

standby unit (E(Tw)) and without a standby unit (E(T )) having independent and

identical exponentially distributed components with mean 1, have been computed.

T p E(T ) E(Tw)

1 min(T1,max(T2, T3)) ( 1
3
, 2
3
, 0) 0.6667 1.2222

2 max(min(T1, T2, T3),min(T2, T3, T4)) ( 1
2
, 1
2
, 0, 0) 0.4167 0.7917

3 min(max(T1, T2, T3),max(T2, T3, T4),max(T3, T4, T5)) (0, 0, 3
10
, 1
2
, 2
10

) 1.3333 2.0944

4 min(T1,max(T2, T3),max(T2, T4)) ( 1
4
, 7
12
, 1
6
, 0) 0.5833 1.0625

5 min(max(T1, T2),max(T2, T3),max(T3, T4)) (0, 1
2
, 1
2
, 0) 0.8333 1.3611

6 min(max(T1, T2),max(T1, T3),max(T1, T4)) (0, 1
2
, 1
4
, 1
4

) 1.0833 1.9167

7 min(max(T1, T2),max(T2, T3),max(T3, T4),max(T4, T5)) (0, 4
10
, 5
10
, 1
10
, 0) 0.7000 1.1417

Table 1 Mean time to failure of systems with and without standby

It can be seen clearly from the Table 1 that the mean time to failure of

coherent systems are nearly doubled by adding a cold standby component which

shows the effect of the cold standby to coherent systems.



Chapter 7

Weighted Systems with a Cold

Standby

Notation

We will use the following notation throughout this chapter:

n : Number of active components in the system.

C = {1, 2, . . . , n} : The index set of the active components in the system.

C1 : the set of components with weight w

C2 : the set of components with weight w∗

wc : the weight of the cold standby component

n1 : the number of components in C1

n2 : the number of components in C2

k : minimum required weight/capacity for the functioning system

T
(1)
i : lifetime of the component i, i ∈ C1

40
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T
(2)
i : lifetime of the component i, i ∈ C2

Tr:n : rth order statistics r ∈ C

M : random variable showing the number of failed components from C1 at

the time of rth failure

F : survival function of the components in C1

F : cumulative distribution function of the components in C1

f : probability density function of the components in C1

G : survival function of the components in C2

G : cumulative distribution function of the components in C2

g : probability density function of the components in C2

S : survival function of the cold standby component

T
{n1,n2}
k : lifetime of the system without cold standby

T
c,{n1,n2}
k :lifetime of the system with a cold standby

T
{n1,n2}
k |Tr:n,M : remaining lifetime of the system given Tr:n and M

In this study, weighted k−out-of−n : G systems consisting of two type of

components and a cold standby component have been considered. The main

difference of this system from regular k−out-of−n : G systems is that k−out-

of−n : G system fails when (n − k + 1)th component fails. However weighted

k−out-of−n : G systems may fail upon the failure of the rth component (r =

1, 2, . . . , n) in the system depending on the weights of the components and the

threshold k. Another difference is in the lifetime distribution of the components.

In this study, the proposed system consists of two types of components. In this

setup, when system failure caused by the rth failure (failed component can be

either first type or second) r = 1, 2, . . . , n, cold standby component is put into

operation and system continues to function with remaining n−r components and
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a standby component. Therefore reliability calculations of the proposed system

is more complex than the reliability calculations of usual k−out-of−n : G system

with a cold standby.

Now, main assumptions which are used for modeling a weighted k−out-of−n :

G system consisting of two types of components and a cold standby component

are given. These assumptions are:

1. The system consists of n independent binary state components and an in-

dependent binary state cold standby component.

2. The components are categorized into two groups with respect to their ca-

pacity/weights. In addition, there exist a single cold standby component

with distinct capacity/weight and reliability

3. The system works if the total weight of the operating components exceeds

a predefined threshold.

This modeling and assumptions yield the system reliability calculation which

will be given throughout this section.

Eryilmaz and Sarıkaya [27] derived the following equation for the survival

function of the system without a standby unit.

P (T
{n1,n2}
k > t) =

∑∑
wi+w∗j≥k

0≤i≤n1,0≤j≤n2

(
n1

i

)
F (t)iF (t)n1−i

(
n2

j

)
G(t)jG(t)n2−j (7.1)

If the system is equipped with a cold standby component it is obvious that the

computation of the system’s survival function gets more complicated. Because

if there exists a cold standby component, the system has a chance to continue

its functioning with the remaining unfailed components and the cold standby

component. In order to find the reliability of the system one should consider

how many of type 1 and type 2 components are still functioning as well as their

remaining lifetimes when the cold standby component becomes active.
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Now assume that when the rth failure causes system failure r = 1, 2, . . . , n

at time x (x < t) (Tr:n = x) cold standby component starts functioning. In this

case, for the system to continue its operation the cold standby component must

function between time points t and x, since failure of the cold standby component

will lead to system failure. Therefore after the rth failure, the system will have a

total of n− r remaining components and a cold standby component. When cold

standby component enters the system the total weight of the remaining n − r

components should exceed the threshold k − wc. Thus the remaining life of the

system can be defined through weighted (k − wc)-out-of-(n − r) : G system. By

defining a discrete random variable M, which shows the number of failed type

1 components at the time of rth failure, the reliability of the remaining lifetime

can be found. Given Tr:n = x and M = m, since the residual lifetimes of the

remaining components are independent, the reliability of the remaining lifetime

of the system consisting of n1 −m from C1 and n2 − r +m components from C2

can be computed as follows

P (T
{n1−m,n2−r+m}
k−wc > t− x|Tr:n = x,M = m)

=
∑∑

wl+w∗s≥k−wc
0≤l≤n1−m,0≤s≤n2−r+m

(
n1 −m

l

)(
F (t)

F (x)

)l(
1− F (t)

F (x)

)n1−m−l

×
(
n2 − r +m

s

)(
G(t)

G(x)

)s(
1− G(t)

G(x)

)n2−r+m−s

(7.2)

In general the reliability of the system with cold standby component can be found
as follows

P (T
c,{n1,n2}
k > t) = P (T

{n1,n2}
k > t)

+

n∑
r=1

min(n1−1,b1)∑
m=max(0,a)

 ∞∫
0

n1f(x)
(n1 − 1

m

)
F (x)m

( n2

r − 1−m

)
G(x)r−1−mF (x)n1−1−mG(x)n2−r+m+1dx

×
t∫

0

S(t− x)P (T
{n1−m−1,n2−r+m+1}
k−wc > t− x|Tr:n = x,M = m+ 1)h(r)(x)dx


+

n∑
r=1

min(n1,b2)∑
m=max(0,a)

 ∞∫
0

n2g(x)
(n1

m

)
F (x)m

( n2 − 1

r − 1−m

)
G(x)r−1−mF (x)n1−mG(x)n2−r+mdx

×
t∫

0

S(t− x)P (T
{n1−m,n2−r+m}
k−wc > t− x|Tr:n = x,M = m)h(r)(x)dx

 (7.3)
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where a =
⌈
k−n1w−(n2+1−r)w∗

w∗−w

⌉
, b1 =

⌈
k−(n1−1)w−(n2+1−r)w∗

w∗−w − 1
⌉
,and b2 =⌈

k−n1w−(n2−r)w∗
w∗−w − 1

⌉
In equation (5.3) the first term in the summation, P (T

{n1,n2}
k > t), indicates the

probability that system survives up to time t without the cold standby compo-

nent. The second(third) term in the summation is the probability that the system

fails before time t due to the failure of type 1(2) components and survived up to

time t after the cold standby component becomes active. It should be noted this

formula generalizes the formula in Eryilmaz [23] if all components have the same

weight of one.

Proof of Equation 5.3. Eryilmaz [25] defined the weight of the component which

has the shortest lifetime as w[1]. w[1] is a random variable rather than a fixed

number and we have the following relation

{w[1] = wi} iff {T1:n = Ti}.

In general if w[r] denotes the weight associated with the component which has

rth smallest lifetime then

{w[r] = wi} iff {Tr:n = Ti}

By the law of total probability

P (T
{n1,n2}
k = Tr:n) = P (T

{n1,n2}
k = Tr:n, w[r] = w) + P (T

{n1,n2}
k = Tr:n, w[r] = w∗)

The event, (T
{n1,n2}
k = Tr:n, w[r] = w) implies that there are totally r−1 failed

components which do not cause system failure and the system fails upon the

failure of the component which has the rth smallest lifetime and weight w. The

event (T
{n1,n2}
k = Tr:n, w[r] = w∗) can be defined similarly.

Without loss of generality let w∗ > w, and assume that M = m of r − 1 failed

components have weight w. So for the first probability P (T
{n1,n2}
k = Tr:n, w[r] =

w),
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(n1 − 1)w + n2w
∗ − k < mw + (r − 1−m)w∗ ≤ n1w + n2w

∗ − k and 0 ≤ m ≤ n1 − 1

max(0,

⌈
k − n1w − (n2 + 1− r)w∗

w∗ − w

⌉
≤ m ≤ min(n1 − 1,

⌈
k − (n1 − 1)w − (n2 + 1− r)w∗

w∗ − w
− 1

⌉
)

Similarly for the second probability P (T
{n1,n2}
k = Tr:n, w[r] = w∗),

max(0,

⌈
k − n1w − (n2 + 1− r)w∗

w∗ − w

⌉
≤ m ≤ min(n1,

⌈
k − n1w − (n2 − r)w∗

w∗ − w
− 1

⌉
) and 0 ≤ m ≤ n1

By conditioning on M, we have

P (T
{n1,n2}
k

= Tr:n, w[r] = w) =

min(n1−1,b1)∑
m=max(0,a)

∞∫
0

n1f(x)

(
n1 − 1

m

)
F (x)

m
(

n2

r − 1−m

)
G(x)

r−1−m
F (x)

n1−1−m
G(x)

n2−r+m+1
dx

P (T
{n1,n2}
k

= Tr:n, w[r] = w
∗
) =

min(n1,b2)∑
m=max(0,a)

∞∫
0

n2g(x)

(
n1

m

)
F (x)

m
(

n2 − 1

r − 1−m

)
G(x)

r−1−m
F (x)

n1−mG(x)
n2−r+mdx

where a =
⌈
k−n1w−(n2+1−r)w∗

w∗−w

⌉
, b1 =

⌈
k−(n1−1)w−(n2+1−r)w∗

w∗−w − 1
⌉

and b2 =⌈
k−n1w−(n2−r)w∗

w∗−w − 1
⌉
.

Therefore the reliability of the system with cold standby is

P (T
c,{n1,n2}
k > t) = P (T

{n1,n2}
k > t)

+

n∑
r=1

min(n1−1,b1)∑
m=max(0,a)

 ∞∫
0

n1f(x)
(n1 − 1

m

)
F (x)m

( n2

r − 1−m

)
G(x)r−1−mF (x)n1−1−mG(x)n2−r+m+1dx

×
t∫

0

S(t− x)P (T
{n1−m−1,n2−r+m+1}
k−wc > t− x|Tr:n = x,M = m+ 1)h(r)(x)dx


+

n∑
r=1

min(n1,b2)∑
m=max(0,a)

 ∞∫
0

n2g(x)
(n1

m

)
F (x)m

( n2 − 1

r − 1−m

)
G(x)r−1−mF (x)n1−mG(x)n2−r+mdx

×
t∫

0

S(t− x)P (T
{n1−m,n2−r+m}
k−wc > t− x|Tr:n = x,M = m)h(r)(x)dx
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Example 7.1. Let n = 3, n1 = 2, n2 = 1, w = 1 w∗ = 2, wc = 1 and k = 3.

Remaining Components and total weight

Ordering System failure M Type 1 Type 2 RemainingTotal Weight

1 T
(1)
1 < T

(1)
2 < T

(2)
1 T

{2,1}
3 = T2:3 2 − 1 2

2 T
(2)
1 < T

(1)
1 < T

(1)
2 T

{2,1}
3 = T1:3 0 2 − 2

3 T
(1)
1 < T

(2)
1 < T

(1)
2 T

{2,1}
3 = T2:3 1 1 − 1

4 T
(1)
2 < T

(1)
1 < T

(2)
1 T

{2,1}
3 = T2:3 2 − 1 2

5 T
(2)
1 < T

(1)
2 < T

(1)
1 T

{2,1}
3 = T1:3 0 2 − 2

6 T
(1)
2 < T

(2)
1 < T

(1)
1 T

{2,1}
3 = T2:3 1 1 − 1

Since the weight of the cold standby component is 1, for the cases 1, 2, 4 and

5 total weight of the remaining components and cold standby components is

3. Therefore after the system failure in these two cases the system continue to

function with the remaining components and cold standby. However in the cases

3 and 6 total weight of the remaining components and cold standby is 2 which

is less than k so in this case cold standby component can not prevent system

failure. Using equation 2 the reliability of the remaining life of the system for the

first and second case are given as

P (T
{0,1}
3−1 > t− x|T2:3 = x,M = 2) =

G(t)

G(x)

P (T
{2,0}
3−1 > t− x|T1:3 = x,M = 0) =

(
F (t)

F (x)

)2
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Example 7.2. Let n = 4, n1 = 2, n2 = 2, w = 2 w∗ = 1, wc = 3 and k = 5.

P (T
c,{2,2}
5 > t) = P (T

{2,2}
5 > t)

+

∞∫
0

2f(x)F (x)G(x)2dx×
t∫

0

S(t− x)P (T
{1,2}
2 > t− x|T1:4 = x,M = 1)h(1)(x)dx

+

∞∫
0

2g(x)G(x)F (x)2dx

t∫
0

S(t− x)P (T
{2,0}
2 > t− x|T2:4 = x,M = 0)h(2)(x)dx

+

∞∫
0

4f(x)G(x)F (x)G(x)dx

t∫
0

S(t− x)P (T
{1,1}
2 > t− x|T2:4 = x,M = 1)h(2)(x)dx

= F (t)2G(t)
(
2G(t) +G(t)

)
+

∞∫
0

2f(x)F (x)G(x)2dx

t∫
0

S(t− x)

(
F (t)

F (x)
+

(
1− F (t)

F (x)

)(
G(t)

G(x)

)2
)
h(1)(x)dx

+

∞∫
0

2g(x)G(x)F (x)2dx

t∫
0

S(t− x)

(
1−

(
1− F (t)

F (x)

)2
)
h(2)(x)dx

+

∞∫
0

4f(x)G(x)F (x)G(x)dx

t∫
0

S(t− x)
F (t)

F (x)
h(2)(x)dx

Below reliability function of different weighted k-out-of-n:G systems for F (t) =

e−0.1t, G(t) = e−0.2t, S(t) = e−0.3t, w = 1, w∗ = 2 and wc = 3 are provided.
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T
{3,5}
6 and T

c,{3,5}
6 T

{7,3}
9 and T

c,{7,3}
9

T
{5,7}
12 and T

c,{5,7}
12 T

{9,6}
13 and T

c,{9,6}
13

Figure 1 Reliability function of weighted k-out-of-n:G systems with and without cold standby

The mean time to failure (MTTF) is one of the most important reliability char-

acteristics of the systems. MTTF of a system with lifetime T can be computed

with the following equation

MTTF = E (T ) =

∞∫
0

P {T > t} dt.

For a weighted k-out-of-n:G system consisting of two types components and a

cold standby component, MTTF of the system is

E(T
c,{n1,n2}
k ) = E(T

{n1,n2}
k ) + E(T

{n1,n2}
k,wc

)
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where E(T
{n1,n2}
k ) is the MTTF of the system when the cold standby component

is inactive and E(T
{n1,n2}
k,wc

) is the MTTF of the system when the cold standby

component is active. They can be computed from

E(T
{n1,n2}
k ) =

∑∑
wi+w∗j≥k

0≤i≤n1,0≤j≤n2

(
n1

i

)(
n2

j

) ∞∫
0

F (t)iF (t)n1−iG(t)jG(t)n2−jdt

and

E(T
{n1,n2}
k,wc

) =

n∑
r=1

min(n1−1,b1)∑
m=max(0,a)

∞∫
0

n1f(x)
(n1 − 1

m

)
F (x)m

( n2

r − 1−m

)
G(x)r−1−mF (x)n1−1−mG(x)n2−r+m+1dx

×
∞∫
0

t∫
0

S(t− x)P (T
{n1−1−m,n2−r+m+1}
k−wc > t− x|Tr:n = x,M = m+ 1)h(r)(x)dxdt


+

n∑
r=1

 min(n1,b2)∑
m=max(0,a)

∞∫
0

n2g(x)
(n1

m

)
F (x)m

( n2 − 1

r − 1−m

)
G(x)r−1−mF (x)n1−mG(x)n2−r+mdx

×
∞∫
0

t∫
0

S(t− x)P (T
{n1−m,n2−r+m}
k−wc > t− x|Tr:n = x,M = m)h(r)(x)dxdt



In Table 5.1 exact and simulated MTTF of weighted k-out-of-n:G system with

and without a cold standby are presented for F (t) = e−0.2t, G(t) = e−0.1t, S(t) =

e−0.15t, w = 1, w∗ = 2 and wc = 3 for different values of n1, n2 and k. Monte

Carlo estimates of MTTF of weighted k-out-of-n:G system with (E(T
{n1,n2}
k )sim)

and without (E(T
c,{n1,n2}
k )sim) a cold standby are obtained. All simulation results

are based on 50000 repetitions.

n1 n2 k E(T
{n1,n2}
k ) E(T

c,{n1,n2}
k ) E(T

{n1,n2}
k )sim E(T

c,{n1,n2}
k )sim

3 5 6 8.2771 11.5271 8.2472 11.5134
6 2 6 4.3765 7.6977 4.3635 7.6937
5 5 7 7.1507 10.5112 7.1565 10.5245
8 2 7 4.1650 6.9918 4.1659 6.9943
7 5 10 4.6792 6.8926 4.6868 6.9090
9 3 10 3.2347 5.2468 3.2366 5.2678

Table 7.1: Simulated and exact MTTF of weighted k-out-of-n:G systems with
and without a cold standby
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As a special case when all components including the cold standby component are

i.i.d and have weight 1 the system turns into ordinary k-out-of-n : G system with

a cold standby component. Let F = G = S = e−0.1t and w = w∗ = wc = 1.

n k E(T nk ) E(T c,nk )
3 2 8.3333 13.3333
5 2 12.8333 17.8333
5 3 7.8333 11.1667
10 3 14.2897 17.6230
10 5 8.4563 10.4563
15 7 8.6823 10.1109

Table 7.2: MTTF of k-out-of-n:G systems with and without a cold standby

The results in Table 5.2 coincides with the ones given in [23].

A way to increase the reliability of the system is to use one of the existing

components as a cold standby component. Below the MTTF values of different

weighted k-out-of-n:G systems are computed for F (t) = e−0.2t, G(t) = e−0.1t, w =

1 and w∗ = 2. It can be seen from Table 5.3 that using one of the components

n1 n2 k E(T
{n1,n2}
k ) E(T

c,{n1−1,n2}
k ) E(T

c,{n1,n2−1}
k )

3 5 6 8.2771 8.7195 9.6865
6 2 6 4.3765 4.9060 4.8820
5 5 7 7.1507 7.9209 8.1108
8 2 7 4.1650 4.6059 4.6026
7 5 10 4.6792 5.0657 5.1304
9 3 10 3.2347 3.5014 3.4863

Table 7.3: MTTF of weighted k-out-of-n:G systems with cold standby replace-
ment

as a cold standby component without changing the total number of components

in the systems increases the MTTF of the systems dramatically. However the

selection of the component type to be used as a cold standby component heavily

depends on the number of components in the system (n1,n2) and the threshold k.
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7.1 Optimizing System Configuration of Weighted

k-out-of-n:G systems

Weighted k-out-of-n : G systems arise in many real life problems such as logis-

tics, lightning systems, heating and ventilation, and load and capacity problems.

Engineers usually tries to decrease system cost subject to several constraints such

as reliability, capacity and weight. Improvement can be done in different ways;

by using more reliable components, adding redundant components to the system

and using standby components. If all these options are available, then engineer

faces an optimization problem which can be formulated as a nonlinear mixed in-

teger programming problem. In this paper, for given number of components (n)

we decide optimal allocation of two types of components n1, n2 and whether to

use a cold standby component to minimize system cost by satisfying mean time

to failure requirement. Let c1 and c2 denote the cost of one element in the first

and second group, respectively. Moreover, cs denotes the cost of cold standby

component. If e0 is the minimum required mean time to failure of the system

and y1 is a binary variable such that

y1 =

{
1, if cold standby having weight wc is used in the system.

0, otherwise

then the reliability optimization problem can be formulated as

minn1c1 + n2c2 + y1cs

s.t

E(T
c,{n1,n2}
k ) =

(
E(T

{n1,n2}
k ) + y1E(T

{n1,n2}
k,wc

)
)
≥ e0

n1, n2 ≥ 0 and integers

y1 is binary variable

Example 7.3. Let n = 10 k = 7 w = 1, w∗ = 2, wc = 3, c1 = 2, c2 = 5, cs = 6

F (t) = e−0.2t, G(t) = e−0.1t and S(t) = e−0.15t. The minimum required MTTF

is e0 = 5.5. Since c1 < c2 < cs it seems reasonable to use component of type 1
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as many as possible to minimize the system cost. If the manager decides not to

use a cold standby component in order to satisfy the minimum required MTTF

n1 = 6 and n2 = 4. Because

E(T
{10,0}
7 ) = 2.3948

E(T
{9,1}
7 ) = 3.2333

E(T
{8,2}
7 ) = 4.165

E(T
{7,3}
7 ) = 5.1649

E(T
{6,4}
7 ) = 6.1769

In this case, total cost of the system is (6×2) + (5×4) = 32. Now if the manager

uses cold standby component then

E(T
c,{10,0}
7 ) = 4.7221

E(T
c,{9,1}
7 ) = 5.8364

In this case total cost of the system is (9 × 2) + (5 × 1) + 6 = 29. The cost is

minimized by using cold standby component, 9 components of weight w = 1 and

one component of weight w∗ = 2.

If the decision maker has several cold standby components with different

weights costs and lifetime distributions and if one has to decide whether to use

one of them or not, in this case another optimization problem occurs. Let there

exist m cold standby components with cost csj , weights wcj and survival functions

Sj, j = 1, 2, . . . ,m. Denote yj as binary variables j = 1, 2, . . . ,m such that

yj =

{
1, if cold standby having weight wcj is used in the system.

0, otherwise
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then the problem can be formulated as follows

minn1c1 + n2c2 +
m∑
j=1

yjcsj

s.t

E(T
c,{n1,n2}
k ) =

(
E(T

{n1,n2}
k ) +

m∑
j=1

yjE(T
{n1,n2}
k,wcj

)

)
≥ e0

m∑
j=1

yj ≤ 1

n1, n2 ≥ 0 and n1, n2 are integers

y1, y2, . . . , ym are binary variables

where

E(T
{n1,n2}
k,wcj

) =

n∑
r=1

min(n1−1,b)∑
m=max(0,a)

∞∫
0

n1f(x)
(n1 − 1

m

)
F (x)m

( n2

r − 1−m

)
G(x)r−1−mF (x)n1−1−mG(x)n2−r+m+1dx

×
∞∫
0

t∫
0

Sj(t− x)P (T
{n1−1−m,n2−r+1+m}
k−wcj

> t− x|Tr:n = x,M = m+ 1)h(r)(x)dx


+

n∑
r=1

 min(n1,d)∑
m=max(0,a)

∞∫
0

n2g(x)
(n1

m

)
F (x)m

( n2 − 1

r − 1−m

)
G(x)r−1−mF (x)n1−mG(x)n2−r+mdx

×
∞∫
0

t∫
0

Sj(t− x)P (T
{n1−m,n2−r+m}
k−wcj

> t− x|Tr:n = x,M = m)h(r)(x)dx



Example 7.4. Let n = 8 k = 6 and m = 3 which means there exist 3 different

cold standby components. Suppose w = 1, w∗ = 2, wc1 = 2, wc2 = 3 and wc3 = 4,

c1 = 2, c2 = 5, cs1 = 7 cs2 = 8 cs3 = 11, F (t) = e−0.2t, G(t) = e−0.1t and

S1(t) = e−0.2t, S2(t) = e−0.15t,S3(t) = e−0.25t. The minimum required MTTF is

e0 = 7.5. If the decision maker conclude not to use a cold standby component in
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order to satisfy the minimum required MTTF n1 = 3 and n2 = 5. Because

E(T
{8,0}
6 ) = 2.1726

E(T
{7,1}
6 ) = 3.2011

E(T
{6,2}
6 ) = 4.3765

E(T
{5,3}
6 ) = 5.6277

E(T
{4,4}
6 ) = 6.9358

E(T
{3,5}
6 ) = 8.2771

In this case total cost of the system is (3× 2) + (5× 5) = 31. If first cold standby

component is used than

E(T
c,{8,0}
6 ) = 3.8393

E(T
c,{7,1}
6 ) = 5.0860

E(T
c,{6,2}
6 ) = 6.4133

E(T
c,{5,3}
6 ) = 7.8121

Total cost of the system is (5 × 2) + (3 × 5) + 7 = 32. Similarly if second cold

standby is used the allocation with minimum cost and satisfying MTTF constraint

is n1 = 6, n2 = 2 and total cost is (6 × 2) + (2 × 5) + 8 = 30. Finally if

third standby is used the allocation is again n1 = 6, n2 = 2 and total cost is

(6×2)+(2×5)+11 = 33. Hence the cost is minimized using second cold standby

component together with 6 components of type 1 and 2 components of type 2.

It can be seen from the examples that even the cost of cold standby component

is greater than the usual components, the cold standby component is used in the

optimum solutions. However there is no general rule of the optimum solution

since the optimum solution depends on the cost of both cold standby and usual

components as well as their weights and lifetime distributions.

In most of the works that have been done in reliability theory systems having

standby components are assumed to have independent and identical components.

In this work, components have been classified in two groups with respect to their



CHAPTER 7. WEIGHTED SYSTEMS WITH A COLD STANDBY 55

weights and lifetime distributions. Moreover, the system is equipped with a single

cold standby component which also has a different lifetime distribution function

and weight. This assumption makes the problem more realistic but at the same

time it is harder to compute the reliability of the system. A nonlinear and complex

reliability function makes the system modeling and configuration problem even

harder to solve. As a future work one can propose optimization techniques along

with heuristic algorithms in order to address this problem. Furthermore one can

study the same problem where all components and the cold standby component

may have different weights and lifetime distributions.



Chapter 8

Conclusion

In this thesis a method for computing the system reliability of coherent systems

with a cold standby component based on system signatures is presented. Even

though reliability calculations of coherent systems having complex structures and

a cold standby component is difficult, with this proposed method for some im-

portant general coherent systems explicit formulas for computing the reliability

of those systems can be found. Moreover this study is the first attempt to find a

general way to compute the reliability of all coherent systems with a cold standby

component. Furthermore in this thesis reliability calculations have been made for

systems having independent and non identical components and an independent

cold standby component specifically for weighted k-out-of-n systems containing

two different type of components and a cold standby component. As a future

work, these results can be generalized for system having dependent components

or systems having more than two different type of components. Furthermore

these findings can be used to find the reliability of systems having more than one

cold standby component.
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ematics and Statistics in İzmir University of Economics. He has been awarded

both master and PhD scholarship by TÜBİTAK. He worked as a research as-
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