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ABSTRACT

MARSHALL-OLKIN TYPE SHOCK MODELS AND
THEIR APPLICATIONS

CEMAL MURAT ÖZKUT

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. İsmihan Bayramoğlu

June 2015

In traditional Marshall-Olkin type shock models and their modifications, there

are three type of shocks that arrive at random times. These shocks destroy the

components of a system which has two or more components. In this thesis, we as-

sume that if the magnitude of the shock exceeds some predefined threshold, then

the corresponding component is destroyed; otherwise it continues to survive. It is

obvious that, this approach is different from classical Marshall-Olkin type shock

models. More precisely, we assume that the shock time and the magnitude of

the shock are dependent random variables with given bivariate distribution. The

magnitude of shock is an important factor that should be taken into account.

Hence, this approach is more flexible for modeling many real life applications

of shock models. In this work, new class of bivariate distributions involving the

joint distributions of shock times and their magnitudes are obtained. Dependence

properties of new bivariate distributions are studied. For different examples of

underlying bivariate distributions of lifetimes and shock magnitudes, the joint

distributions of lifetimes of the components were investigated. The multivari-

ate extension of the proposed model is also discussed. The proposed model is a

mixture of a singular distribution function, and an absolutely continuous func-

tion, which makes it difficult to obtain maximum likelihood estimators(MLE)

of the unknown parameters. Using Expectation-Maximization(EM) algorithm,

we analyzed data sets, for both bivariate and multivariate Marshall-Olkin type

distribution with magnitude shock effect models. Also, asymptotic confidence

intervals of the unknown parameters of both bivariate and multivariate proposed

models are constructed.
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ÖZ

MARSHALL-OLKIN TİPİ ŞOK MODELLERİ VE
UYGULAMALARI

CEMAL MURAT ÖZKUT

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Danışmanı: Prof. Dr. İsmihan Bayramoğlu

Haziran 2015

Klasik Marshall-Olkin tipi şok modelleri ve bu modellerin modifikasyonlarında,

iki ya da daha fazla bileşen içeren sistem farklı kaynaklar tarafından rastgele

zamanlarda üretilen şoklara maruz kalır ve sistemin ilgili bileşenleri yok olur.

Marshall-Olkin tipi şok modellerinden farklı olarak, üretilen şokun şiddetinin

önceden belirlenen eşik değerden yüksek olduğu taktirde ilgili bileşenin imha

edileceğini aksi takdirde bileşenin çalışmaya devam edeceğini varsaydık. Daha iyi

anlatmak gerekirse, şok zamanı ve şiddetinin bağımlı iki değişkenli dağılıma sahip

olduğunu varsaydık. Şokların şiddetlerinin dikkate alınması gerekliliği yaklaşımı

bize şok modellerin gerçek yaşam uygulamalarında ortaya çıkan gereksinimleri

karşlamamıza izin veriyor. Bu tez çalışmasında, şok zamanı ve şok şiddetinin

ortak dağılımını içeren yeni iki değişkenli dağılım sınıfı elde edildi. Yeni iki

değişkenli dağılımın bağımlılık özellikleri çalışıldı. Bileşenlerin yaşam süreleri ve

şok zamanlarının ikili dağımlarının verildiği farklı örnekler için, bileşenlerin yaşam

sürelerinin ortak dağılımları incelendi. Ayrıca önerilen modelin genişletilmiş

çok değişkenli modeli ayrıca tartışıldı. Önerilen modelin tekil dağılım fonksiy-

onu ve tamamıyla sürekli fonksiyonun kombinasyonu şeklinde olması ortak

dağılımın bilinmeyen parametrelerinin en çok olabilirlik tahmin edicilerini bul-

mayı zorlaştırmaktadır. Bu yüzden, beklenti maximizasyonu algoritması kulla-

narak önerilen ikili ve çoklu modellerin veri setlerini inceledik. Ayrıca, önerilen

ikili ve çoklu modellerin bilinmeyen parametrelerinin asimptotik güven aralıkları

oluşturuldu.

Anahtar Kelimeler : Marshall-Olkin dağılımları, şok modelleri, bağımlılık, en

büyük olabilirlik kestirimi, Beklenti ençoklama algoritması.
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Chapter 1

Introduction

In classical Marshall-Olkin model [26], a system consisting of two components is

subject to three different shocks. These shocks are produced by different sources

at a random time. The properties of the shocks can be described as follows: a

shock from the first source affects the first component, a shock from the second

source affects the second component, and a shock from the third source effects

both components. According to this model, the corresponding component (or

components) dies when a shock occurs. In 1967, Marshall and Olkin [26] con-

sidered the independent exponential shock times and derived the joint survival

function of the components of the system.

Recently, there have been numerous papers which deal with the extensions of

Marshall-Olkin distributions. Ryu [37] extended Marshall and Olkin’s bivariate

exponential distribution to the new bivariate absolutely continuous distribution.

This new distribution does not have lack memory property and has advantage of

identifying the shock arrival rates individually. Also, their impacts are provided.

Marshall and Olkin [27] introduced a new family of distributions, established

by adding a new parameter to an existing distribution. Through this model,

the new family of distributions can be constructed from the existing family with

1



CHAPTER 1. INTRODUCTION 2

survival function F (x), by setting the new survival function as

H(x) =
αF (x)

1− αF (x)
, −∞ < x <∞, 0 < α <∞

where α = 1 − α. If this method is applied twice, it produce no new distri-

bution. This is because the model has a stability property. Another advan-

tage of the method is the flexibility in the new distribution. Various extended

Marshall-Olkin families of distributions can be obtained by using this method.

For instance, Thomas and Jose [41] considered Marshall-Olkin semi-Pareto dis-

tribution and Marshall-Olkin Pareto distribution. In this study, the new fam-

ily of distributions have Pareto marginals. Also, some characteristic properties

of proposed distribution were investigated. By using a compound distribution

with mixing exponential distribution, Ghitany et al. [11] and Ghitany et al.

[10] constructed respectively Marshall-Olkin extended Weibull distribution and

Marshall-Olkin extended Lomax distribution. These distributions were used in

the analysis of randomly censored data. Also, efficient estimates of the parameters

were obtained. Jayakumar and Thomas [15] studied Marshall-Olkin distributions

with three parameters, which is the generalization of the family of two parame-

ters Marshall-Olkin distributions. Recently in 2011, Jose et al. [16] constructed

Marshall-Olkin distributions with Weibull marginals and discussed some proper-

ties of this distribution. Li and Pellerey [23] studied the aging properties of the

generalized Marshall-Olkin distributions. On the other hand, some authors have

tried to generalize the bivariate exponential distribution for constructing new

distributions because such distributions can be used affectively in the analysis of

lifetime data. In 1999, Gupta and Kundu [13] introduced three parameters (loca-

tion, scale and shape) generalized exponential distributions. They also analyzed

the theoretical properties of this family. By using this generalized exponential

distribution, Sarhan and Balakrishnan [39] defined a new bivariate distribution.

However, explicit form of the marginal distributions cannot be derived in their

model. They also discussed the mixture of the proposed bivariate distributions.

The results of Sarhan and Balakrishnan [39] were modified by Kundu and Gupta

[19] by using different marginal distributions. In their modification, the marginal

distributions are generalized exponential distributions. Afterward, Kundu and
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Gupta [20] extended the Sarhan-Balakrihnan distribution by adding a new shape

parameter. This method has an advantage over existing distributions in the sense

that it allows the marginal distributions to be more flexible.

In classical Marshall-Olkin exponential distribution and all its modifications,

there are two types of shocks. One is called fatal shock and it destroys the

corresponding component. Another is called non-fatal shock, and when the shock

occurs, the corresponding component may not be destroyed, but has a chance of

surviving, and each shock to a component represents an independent opportunity

for failure with respective probability.

These two different shocks can be also thought as Poisson processes. Both

approaches lead to classical Marshall-Olkin bivariate exponential distribution.

In addition, there are many application fields, such as life testing, reliability,

economics finance and insurance, in which the bivariate exponential distributions

play a key role. These important probability models can be used in the lack of the

independence assumption, which is questionable or unrealistic in applications.

In the field of financial mathematics, if one deals with the portfolio credit risk

modeling, the unknown future lifetimes of the d credit risky assets are random

variables. Mai [25] considers an appropriate stochastic model for these unknown

lifetimes, and investigates collateralized debt obligations. These are financial

contracts-typically traded between globally active financial institutions, who rec-

ommend insurance to investors, instead of the default of credit risky assets. In

many cases, defaults have been exposed to exogenous shocks, which can be in-

terpreted as economic crises affecting one, two, three or more assets that have

credit risks. The appropriate model for collateralized debt obligations pricing is

the Marshall-Olkin distribution.

Although there has been many researches about modifications of the Marshall-

Olkin distribution obtained from different shock models, there has been little

attention to shock magnitudes. However, there is a need to consider shock models.

These are not always fatal in practical applications, mainly depending on shock

magnitudes. For example, in economic crises, affecting one or more credit-risky

assets at a time, the magnitude of exogenous economic shocks causing the default
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of assets may be different, i.e. small or big shocks may occur. If the shock is

sufficiently big, then there is a failure but if it is not, the effect of the shock can

be ignored. Therefore, it will be reasonable to consider magnitudes of shocks

arriving at a random time. The times of arrival of shocks and their magnitudes

should be considered as stochastically dependent random variables with given

joint distribution function.

In this thesis, the new Marshall-Olkin type shock model is introduced. As

mentioned above, in many practical applications there is a need to consider the

magnitude of a shock in order to model real problems. Accordingly, in this work,

we assume that the shocks coming at random times have different magnitudes.

The shock times and their magnitudes are assumed to be dependent random vari-

ables with given joint distribution (or survival) function. The structure of the

classical Marshall-Olkin distribution is changed by this new assumption, i.e. the

distribution function obtained in this work depends on bivariate joint distribu-

tion of shock times and their magnitudes. Therefore, according to the real life

conditions appeared in applications, this model involves some known bivariate

distribution functions and we obtain a broad class of a new type of Marshall-

Olkin bivariate distribution. These distributions are different from existing mod-

ifications of Marshall-Olkin exponential distribution. Also, the proposed model

allows us to use various marginal distributions regarding the nature of the con-

sidered problem. The new Marshall-Olkin type distributions also present an in-

dependent interest for generating new bivariate distributions, thus we discuss the

dependence properties of the new bivariate survival function obtained from this

model. It should be noted that this distribution is not continuous, i.e it has both

absolutely continuous and singular part similar to the classical Marshall-Olkin

distribution. For more details, refer to [33].

In the literature, there are several papers about the estimation of the un-

known parameter of the Marshall-Olkin distribution. Since the Marshall-Olkin

distribution has absolutely continuous and singular parts, the usual techniques are

not considered suitable for deriving the maximum likelihood estimation (MLE)

of the unknown parameter. Several suggestions and approximations methods

have been suggested in the literature. For example, Arnold [2] obtained the
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maximum likelihood and method of moments estimates of unknown parameters.

Bhattacharyya and Johnson [8] discussed the alternative maximum likelihood es-

timation to Arnold [2]. Method of moment and maximum likelihood estimation

for the parameters of the Marshall-Olkin distribution is also studied by [7] and

they compared results with the results of [2]. Proschan and Sullo [36] studied

MLE for the multivariate Marshall-Olkin model. Pena and Gupta [35] obtained

Bayesian estimation result. Recently, Karlis [17] and Kundu and Dey [18] inves-

tigated the estimation of unknown parameters of Marshall-Olkin model. They

consider estimating unknown parameters problem as a missing value problem,

and they used Expectation-Maximization algorithm to compute MLEs of these

kinds of distributions.

A further highlight of this thesis is finding the maximum likelihood estima-

tor of the unknown parameter of the proposed Marshall-Olkin type distribution

with magnitude shock effect. Throughout the thesis, we use MOMSE instead

of Marshall-Olkin type distribution with magnitude shock effect. Since MOMSE

has both singular and absolutely continuous part, statistical inference is not an

easy task because of the complex structure of its density function, similar to the

classical Marshall-Olkin distribution. The another contribution of the present dis-

sertation is to overcome this drawback and find the maximum likelihood estimator

of the proposed model by using the Expectation-Maximization(EM) algorithm.

In order to implement EM algorithm, the problem of finding maximum likelihood

estimator is treated as a missing value problem. Briefly, in the EM algorithm,

in the ’E’-step, the missing values are replaced with the their expected values.

Then, by using expected values, a ’pseudo-log-likelihood’ function is constructed

and in the ’M’-step, maximum likelihood estimates for a sample is calculated

by maximizing ’pseudo-log-likelihood’ function. Next, EM algorithm is analyzed

on some data sets which involve both bivariate and multivariate MOMSE. Also,

asymptotic confidence intervals of the unknown parameters of both bivariate and

multivariate distributions are constructed.

The rest of the thesis is organized as follows. The classical Marshall-Olkin

distribution and its properties are presented in Chapter 2. The construction of

the new Marshall Olkin shock model is given in Chapter 3. For some different
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underlying bivariate distributions of lifetimes and shock magnitudes, the joint

distributions of lifetimes of the components are investigated in Chapter 4. De-

pendence properties of the joint distribution of the lifetimes of the components,

and stochastic comparisons of different shock models are also discussed in Chap-

ter 5. Then, the result of the maximum likelihood estimation of the bivariate

Gumbel distribution of MOMSE is given in Chapter 6. Finally, in Chapter 7 the

multivariate extension of the proposed model and its propoerties is studied.



Chapter 2

Classical Marshall-Olkin

Distributions

In 1967, Marshall-Olkin [26] introduced a two-component system and the com-

ponents are subject to shocks at a random time. According to this model, there

are three types of shocks that are produced by three sources. A shock from the

source 1 affects the first component, a shock from the source 2 affects the second

component and a shock from the source 3 affects both components simultane-

ously. Suppose that Xj, j = 1, 2 denotes the life length of the component j and

Ti, i = 0, 1, 2 denotes the waiting time for the shock i. Let Ti, i = 0, 1, 2 be

independent exponential random variables having parameters θi > 0. For that

reason, the lifetime of the component j can be represent as

X1 = min(T1, T0)

X2 = min(T2, T0)

Under this setup, the joint survival function of X1 and X2 can be found as follows:

P (X1 > t1, X2 > t2) = P (min(T1, T0) > t1,min(T2, T0) > t2)

= P (T1 > t1, T0 > t1, T2 > t2, T0 > t2)

= P (T1 > t1, T2 > t2, T0 > max(t1, t2))

7
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Taking into account that Ti have exponential distribution with parameter θi, we

have

P (X1 > t1, X2 > t2) = exp(−θ1t1 − θ2t2 − θ0 max(t1, t2)) (2.1)

for every t1 ≥ 0 and t2 ≥ 0.

In a similar way, the marginal survival function of Xj can be derived as:

P (Xj > tj) = P (min(Tj, T0) > tj)

= P (Tj > tj, T0 > tj)

= P (Tj > tj)P (T0 > tj)

P (Xj > tj) = exp(−tj(θj + θ0))

that has exponential distribution with parameter (θj + θ0).

The crucial point of the model is that, as the failure of the components can be

affected simultaneously, the event X1 = X2 can occur with positive probability.

As a result, Marshall-Olkin distribution is not absolutely continuous with respect

to the Lebesgue measure in <2 and has a singular part on the line x1 = x2.

Theorem 2.1 ([26]) In Marshall-Olkin model, the joint survival function (2.1)

has both absolutely continuous and singular part. That is

F̄ (t1, t2) =
θ1 + θ2

θ
F̄a(t1, t2) +

θ0

θ
F̄s(t1, t2),

where singular part is

F̄s(t1, t2) = exp(−θmax(t1, t2))

and absolutely continuous part is

F̄a(t1, t2) =
θ

θ1 + θ2

exp(−θ1t1 − θ2t2 − θ0max(t1, t2))− θ0

θ1 + θ2

exp(−θmax(t1, t2)),

where θ = θ1 + θ2 + θ0.

The joint density function of the Marshall-Olkin distribution is given by
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f(t1, t2) =


θ1(θ2 + θ0)F̄ (t1, t2), t2 > t1

θ2(θ1 + θ0)F̄ (t1, t2), t1 > t2

θ0F̄ (t1, t2), t1 = t2.

In classical and extended versions of the Marshall-Olkin distribution obtained

from different shock models, magnitude of the shocks are not taken into consid-

eration. On the other hand, we need to consider shock models, which are not

always fatal depending on shock magnitudes in real life problems. For example, in

economic crises, affecting one or more credit-risky assets at a time the magnitude

of exogenous economic shocks causing the default of assets may be different, that

is small shocks as well as big shocks may occur. When the shocks have enough

magnitude, their influence may be forceful. On the contrary, if the shocks do not

have enough magnitude, then they are not able to affect. Hence, it will be rea-

sonable to consider magnitudes of shocks arriving at a random time. The times

of arrival of shocks and the magnitudes should be considered as stochastically

dependent random variables with given joint distribution function.

In the next chapter, a new Marshall-Olkin type shock model is introduced.

As mentioned above, it is more suitable for modeling real life problems when

we consider the shocks with their magnitudes. Therefore, we assume that the

shocks coming in random times have magnitudes and the shock times and their

magnitudes are dependent random variables with given joint distribution (or sur-

vival) function. Because of this assumption, a new structure is presented which

is different from the classical Marshall-Olkin distribution, that is the distribution

function obtained in this work depends on bivariate joint distribution of shock

times and their magnitudes. Hence, in accordance with following to the real life

conditions appearing in applications, we model some well known bivariate distri-

bution functions and obtain a wide class of a new type of Marshall-Olkin bivariate

distributions. These distributions are different from existing Marshall-Olkin bi-

variate distribution and their modifications, and allow to use various marginal

distributions regarding the nature of the considered problem. The new Marshall-

Olkin type distributions present also an independent interest for generating new

bivariate distributions, that is why we discuss the dependence properties of the
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new bivariate survival function obtained from this model.



Chapter 3

MOMSE

Consider a system with two components and let X1 and X2 denote the life length

of the component 1 and component 2, respectively. A shock from the first source

which comes at random time T1 affects the component 1 and this shock has mag-

nitude D1. Similarly, a shock from the second source which comes at random time

T2 affects the component 2 and this shock has magnitude D2 and a shock from

the third source comes at random time T0 with the magnitude D0 affects both

components simultaneously. We assume that the random variables Ti and Di,

i = 0, 1, 2 are stochastically dependent and the affect of the shocks for both com-

ponents depends on the upper-threshold d, that is if the magnitude of the shock

is greater than d, then the corresponding component will be destroyed, otherwise

the component has chance to survive. Let us denote the joint distribution func-

tion of the random vector (Ti, Di), i = 0, 1, 2 by FTi,Di(t, d), respectively. Also,

we assume that the bivariate random vectors (T1, D1), (T2, D2), and (T0, D0) are

independent. According to this set up, we can define independent conditional

random variables as follows

V1 ≡ (T1|D1 > d)

V2 ≡ (T2|D2 > d)

V0 ≡ (T0|D0 > d) (3.1)

11
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that is,

Vi:is the time of arrival of the shock which has a magnitude greater than

d, i = 0, 1, 2. In other words, Vi is the time of arrival of the fatal shock for the

corresponding component, i = 0, 1, 2.

Thus, the life lengths X1 and X2 of the components 1 and 2 can be written

respectively as follows

X1 = min(V1, V0)

X2 = min(V2, V0)

Theorem 3.1 The joint survival function of X1 and X2 is

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD0(d)
(3.2)

Proof. By using (3.1) we can write joint survival function of X1 and X2 as follows

P (X1 > t1, X2 > t2) = P (min(V1, V0) > t1,min(V2, V0) > t2)

= P (V1 > t1, V0 > t1, V2 > t2, V0 > t2)

= P (V1 > t1)P (V2 > t2)P (V0 > max(t1, t2))

= P (T1 > t1|D1 > d)P (T2 > t2|D2 > d)P (T0 > max(t1, t2)|D0 > d)

=
P (T1 > t1, D1 > d)P (T2 > t2, D2 > d)P (T0 > max(t1, t2), D0 > d)

P (D1 > d)P (D2 > d)P (D0 > d)

and in terms of joint and marginal survival functions it can be expressed as

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD0(d)
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Corollary 3.2 Marginal survival functions of X1 and X2 are

FX1(t1) =
F T1,D1(t1, d)F T0,D0(t1, d)

FD1(d)FD0(d)

and

FX2(t2) =
F T2,D2(t2, d)F T0,D0(t2, d)

FD2(d)FD0(d)

Proof.

P (X1 > t1) = P (min(V1, V0) > t1)

= P (V1 > t1, V0 > t1)

= P (V1 > t1)P (V0 > t1)

= P (T1 > t1|D1 > d)P (T0 > t1|D0 > d)

=
P (T1 > t1, D1 > d)P (T0 > t1, D0 > d)

P (D1 > d)P (D0 > d)

FX1(t1) =
F T1,D1(t1, d)F T0,D0(t1, d)

FD1(d)FD0(d)

Marginal survival function of X2 can be found in a similar way.

It is seen that the joint survival function of MOMSE involves the survival func-

tion of the random variables T1 and T2 and also the marginal survival functions

of the random variables D1 and D2.



Chapter 4

Some Special Bivariate

Distributions Examples

In this chapter, we investigate the MOMSE distribution for some different under-

lying joint distributions of random variables (Ti, Di), i = 0, 1, 2. To be more pre-

cise, in particular cases, as a joint bivariate distribution of (Ti, Di), i = 0, 1, 2 we

consider bivariate Gumbel exponential distribution, Farlie-Gumbel-Morgenstern

distribution with exponential marginals, the bivariate Pareto distribution, the

bivariate Logistic distribution, the bivariate exponential distribution and also bi-

variate Lomax distribution. The reason of adopting these particular distributions

is that all of them have been successfully used in modeling, reliability and life time

analysis. Detailed description of each model is given in the corresponding subsec-

tions. Note that the MOMSE distribution like the Marshall-Olkin distribution

has absolutely continuous and singular parts.

4.1 Bivariate Gumbel Exponential Distribution

Consider the bivariate Gumbel distribution

FZ1,Z2(z1, z2) = 1− e−z1 − e−z2 + e−(z1+z2+θz1z2), z1, z2 > 0 and 0 ≤ θ ≤ 1. (4.1)

14
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Figure 4.1: Graph of FX1,X2(t1, t2) given in (4.3), for θ = 0.5, d = 1.

The marginal distributions are exponential. This distribution was introduced by

Gumbel in 1960. It has applications in many areas including competing risks,

extreme values, failure times and reliability. For further properties, refer to [12]

and [5]. Let (T1, D1),(T2, D2) and (T0, D0) be the random vectors with bivariate

Gumbel distribution function. Using (4.1), the joint survival function of (Ti, Di)

can be written as

F Ti,Di(ti, d) = e−(ti+d+θtid), i = 0, 1, 2. (4.2)

Then using (4.2) in Theorem 3.1, joint survival function of MOMSE can be found

as follows

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD0(d)

=
e−(t1+d+θt1d)e−(t2+d+θt2d)e−(max(t1,t2)+d+θmax(t1,t2)d)

e−3d

FX1,X2(t1, t2) = e−t1(1+θd)e−t2(1+θd)e−max(t1,t2)(1+θd) (4.3)

Note that if d = 0, then the MOMSE changes into the usual Marshall-Olkin

bivariate distribution. In Figure 4.1, the graph of FX1,X2(t1, t2) given in (4.3) for

particular values of θ = 0.5 and d = 1 is presented.

Theorem 4.1 The joint survival function of MOMSE distribution given in (4.3)
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has both absolutely continuous and singular part. That is,

FX1,X2(t1, t2) = αF a(t1, t2) + (1− α)F s(t1, t2)

where

α =
2

3

F a(t1, t2) =
1

2
e−3(max(t1,t2)+max(t1,t2)dθ)

(
3e|t1−t2|(1+dθ) − 1

)
F s(t1, t2) = e−3(max(t1,t2)+max(t1,t2)dθ)

Proof. For t1 < t2

∂2F (t1, t2)

∂t1∂t2
= f1(t1, t2)

= 2(1 + θd)2e−(t1+2t2)(1+θd)

and for t2 < t1

∂2F (t1, t2)

∂t1∂t2
= f2(t1, t2)

= 2(1 + θd)2e−(2t1+t2)(1+θd)

fa(t1, t2) =
1

α

{
f1(t1, t2) , t1 < t2

f2(t1, t2) , t2 < t1

αF a(t1, t2) =

∞∫
t1

∞∫
t2

f(u, v)dvdu

For t1 < t2

F a(t1, t2) =
1

α


∞∫
t2

v∫
t1

f1(u, v)dudv

︸ ︷︷ ︸
1

+

∞∫
t2

u∫
t2

f2(u, v)dvdu

︸ ︷︷ ︸
2
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Figure 4.2: Graphical representation of the region of u < v, u > v and u = v.

F a(t1, t2) =
1

α

(
1

3
e−3t2(1+dθ)(3e−(t1−t2)(1+dθ) − 1)

)
with a symmetric expression when t1 > t2. Combining both cases

F a(t1, t2) =
1

α

(
1

3
e−3 max(t1,t2)(1+dθ)(3e|t1−t2|(1+dθ) − 1)

)
Since

F a(0, 0) = 1

α =
2

3

With α and F a, the singular part F s can be obtained by subtraction. That is,

F s(t1, t2) =
FX1,X2(t1, t2)− αF a(t1, t2)

1− α
F s(t1, t2) = e−3 max(t1,t2)(1+dθ)

So,

FX1,X2(t1, t2) =
2

3

(
1

2
e−3 max(t1,t2)(1+dθ)(3e|t1−t2|(1+dθ) − 1)

)
+

1

3
e−3 max(t1,t2)(1+dθ)
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4.2 Farlie-Gumbel-Morgenstern Distribution

Consider the Farlie-Gumbel-Morgenstern (FGM) bivariate exponential distribu-

tion

FZ1,Z2(z1, z2) = FZ1(z1)FZ2(z2) [1 + α (1− FZ1(z1)) (1− FZ2(z2))] (4.4)

where −1 ≤ α ≤ 0 and Zi ∼ Exp (1). This distribution was used to model the

joint distribution of two adjacent intervals in a Markov-dependent point process.

We refer to [3], [4], [21] and [5] for more properties. Let (T1, D1),(T2, D2) and

(T0, D0) be the random vectors with the Farlie-Gumbel-Morgenstern (FGM) bi-

variate exponential distribution. Let ω = min(t1, t2) and β = max(t1, t2) then

from Theorem 3.1 joint survival function of MOMSE can be written as

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD0(d)

FX1,X2(t1, t2) = e−3d−2t1−2t2−2β
(
ed+t1 + α

(
ed − 1

) (
et1 − 1

))
×
(
ed+t2 + α

(
ed − 1

) (
et2 − 1

))
×
(
ed+β + α

(
ed − 1

) (
eβ − 1.

))
(4.5)

Absolutely continuous and singular part can be found similarly by using Theorem

4.1. That is,

FX1,X2(t1, t2) =
2

3
F a(t1, t2) +

1

3
F s(t1, t2),

where

F a(t1, t2) =
1

2
e−3d−2(t1+t2)−4β(α(1− ed)(1− eβ) + ed+β)2

×(3e2βα(1− ed − eω + ed+ω)

− e2ωα(1− ed − eβ + ed+β) + 3ed+t1+t2+β − ed+t1+t2+ω),

F s(t1, t2) = e−3(d+2β)
(
ed+β + α

(
ed − 1

) (
eβ − 1

))3
.

Below we provide a graph of FX1,X2(t1, t2) with respect to d for some special

values of t1 and t2. It is observed that the probability of X1 > 1.25 and X2 > 1.5



CHAPTER 4. SPECIAL BIVARIATE DISTRIBUTIONS EXAMPLES 19

Figure 4.3: Graph of survival function FX1,X2(t1, t2) given in (4.5) with respect
to d for t1 = 1.25, t2 = 1.5 and θ = 0.7.

increases as d increases.

4.3 Bivariate Pareto Distribution

Consider the second kind bivariate Pareto distribution. The joint survival func-

tion is

FZ1,Z2(z1, z2) = (1 + z1 + z2)−c , z1, z2 ≥ 0. (4.6)

Bivariate Pareto distributions are very popular in many areas such as modeling

of performance measures for general systems, reliability, and modeling of daily

exchange rate data. For more details one may refer to [29], [14], [30], [34] and [5].

Let (T1, D1),(T2, D2) and (T0, D0) be the random vectors with the bivariate Pareto

distribution. Let ω = min(t1, t2), β = max(t1, t2) and the parameter c = 2, then

using (4.6) in Theorem 3.1,joint survival function of MOMSE can be found as

follows

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD3(d)

=
(1 + t1 + d)−2 (1 + t2 + d)−2 (1 + max(t1, t2) + d)−2

(1 + d)−6

=
(1 + d)6

(1 + d+ t1)2 (1 + d+ t2)2 (1 + d+ β)2 (4.7)
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Figure 4.4: Graph of survival function FX1,X2(t1, t2) given in (4.7), for d = 5 and
d = 15.

which has both absolutely continuous and singular part. That is,

FX1,X2(t1, t2) =
2

3
F a(t1, t2) +

1

3
F s(t1, t2),

where

F a(t1, t2) =
(1 + d)6

(
3(1+d+β)2

(1+d+ω)2
− 1
)

2 (1 + d+ β)6 ,

F s(t1, t2) =
(1 + d)6

(1 + d+ β)6 .

Further studies show that, if c>2, then calculations become complicated. Be-

cause the order of polynomial expressions, which are to be integrated, has in-

creased . Other examples also show that the role of parameters in the model are

important and they should be considered regarding to the nature of the model.
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4.4 Bivariate Logistic Distribution

Consider the bivariate Logistic distribution. We have the following joint distri-

bution and survival function, respectively

F (x, y) = (1 + e−x + e−y)−1

F̄ (x, y) = 1− (1 + e−x)−1 − (1 + e−y)−1 + (1 + e−x + e−y)−1. (4.8)

For further information, refer to [1] and [5]. Let (T1, D1),(T2, D2) and (T0, D0)

be the random vectors with bivariate Logistic distribution function. Let ω =

min(t1, t2) and β = max(t1, t2). Using (4.8) in Theorem 3.1, joint survival func-

tion of MOMSE can be found as follows

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD0(d)

=
8(1 + 2ed)3(ed + eω + 2ed+ω)(ed + eβ + 2ed+β)2

(1 + 3ed)3(1 + eω)(ed + eω + ed+ω)(1 + eβ)2(ed + eβ + ed+β)2
.

(4.9)

Using Theorem 4.1, we can easily obtain both absolutely continuous and singular

part. That is,

FX1,X2(t1, t2) =
2

3
F a(t1, t2) +

1

3
F s(t1, t2)

where

F̄a(t1, t2) =
4(1 + 2ed)3(ed + eβ + 2ed+β)2(−e2ω(1 + ed)(ed + eβ + 2ed+β))

(1 + 3ed)3(1 + eω)(ed + eω + ed+ω)(1 + eβ)3(ed + eβ + ed+β)3

+
4(1 + 2ed)3(ed + eβ + 2ed+β)2ed(2ed + 3e2β(1 + ed) + 2eβ(1 + 2ed))

(1 + 3ed)3(1 + eω)(ed + eω + ed+ω)(1 + eβ)3(ed + eβ + ed+β)3

+
4(1 + 2ed)3(ed + eβ + 2ed+β)2(eω(1 + 2ed)(2ed + 3e2β(1 + ed) + 2eβ(1 + 2ed)))

(1 + 3ed)3(1 + eω)(ed + eω + ed+ω)(1 + eβ)3(ed + eβ + ed+β)3

F̄s(t1, t2) =
8(1 + 2ed)3(ed + eβ + 2ed+β)3

(1 + 3ed)3(1 + eβ)3(ed + eβ + ed+β)3
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Figure 4.5: Graph of survival function FX1,X2(t1, t2) given in (4.9) for d = 1

4.5 Bivariate Exponential Distribution

Consider the bivariate Exponential distribution. We have the following joint

survival function

FZ1,Z2(z1, z2) = (ez1 + ez2 − 1)−1 (4.10)

This distribution is the special case of the Ali-Mikhail-Haq distribution. Bivariate

Exponential distribution is studied in the reliability analysis. For further infor-

mation we refer to [1] and [5]. Let (T1, D1),(T2, D2) and (T0, D0) be the random

vectors with bivariate Exponential distribution function. Let ω = min(t1, t2) and

β = max(t1, t2). Using (4.10) in Theorem 3.1, joint survival function of MOMSE

can be found as follows

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD0(d)

=

(
et1 + ed − 1

)−1 (
et2 + ed − 1

)−1 (
emax(t1,t2) + ed − 1

)−1

(ed)−3

× (1 + 2 max(t1, t2) + 3d+ 4 max(t1, t2)d)−3

=

(
e3d
)

(et1 + ed − 1) (et2 + ed − 1) (emax(t1,t2) + ed − 1)
. (4.11)
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Figure 4.6: Graph of survival function FX1,X2(t1, t2) given in (4.11) with respect
to d for t1 = 1.25, t2 = 2.

Using Theorem 4.1, we can easily obtain both absolutely continuous and singular

part. That is,

FX1,X2(t1, t2) =
2

3
F a(t1, t2) +

1

3
F s(t1, t2)

where

F a(t1, t2) =
e3d
(
−2 + 2ed − eω + 3eβ

)
2 (−1 + ed + eω) (−1 + ed + eβ)3

F s(t1, t2) =

(
e3d
)

(−1 + ed + eβ)3
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Figure 4.7: Graph of survival function FX1,X2(t1, t2) given in (4.11), for d = 2.

4.6 Bivariate Lomax Distribution

Consider the bivariate Lomax distribution. We have the following joint survival

function

FZ1,Z2(z1, z2) = (1 + az1 + bz2 + θz1z2)−c , a, b, c > 0 and 0 ≤ θ ≤ (c+ 1)ab

(4.12)

The name of this distribution is also known as Durling distribution. Bivariate

Lomax distribution is studied in the reliability analysis. For further information

we refer to [31], [38], [22] and [5]. Let (T1, D1),(T2, D2) and (T0, D0) be the random

vectors with bivariate Lomax distribution function with the parameters a = 2,

b = 3, θ = 4 and c = 3. Let ω = min(t1, t2) and β = max(t1, t2) using (4.12) in

Theorem 3.1, joint survival function of MOMSE can be found as follows
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Figure 4.8: Graph of survival function FX1,X2(t1, t2) given in (4.13) with respect
to d for t1 = 1.25, t2 = 1.5.

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD0(d)

=
(1 + 2t1 + 3d+ 4t1d)−3 (1 + 2t2 + 3d+ 4t2d)−3

(1 + 3d)−9

× (1 + 2 max(t1, t2) + 3d+ 4 max(t1, t2)d)−3

=
(1 + 3d)9

(1 + 3d+ 2t1 + 4dt1)3 (1 + 3d+ 2t2 + 4dt2)3 (1 + 3d+ 2β + 4βd)3 .

(4.13)

Using Theorem (4.1, we can easily obtain both absolutely continuous and singular

part. That is,

FX1,X2(t1, t2) =
2

3
F a(t1, t2) +

1

3
F s(t1, t2)

where

F a(t1, t2) =
(1 + 3d)9

(
−1 + 3(1+3d+2β+4dβ)3

(1+2ω+d(3+4ω))3

)
2(1 + 2β + d(3 + 4β))9

F s(t1, t2) =
(1 + 3d)9

(1 + 3d+ 2β + 4dβ)9

In the next Corollary, marginal probability density function (pdf) of Xi ob-

tained easily by using Corollary (3.2).
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Corollary 4.2 Marginal survival functions of X1 and X2 can be written as

FXi(ti) =
(1 + 3d)6

(1 + 3d+ 2ti + 4dti)
6 , i = 1, 2.

Marginal pdf of Xi can be derived as follows

fXi(ti) = − ∂

∂ti
FXi(ti)

fXi(ti) =
6 (1 + 3d)6 (2 + 4d)

(1 + 3d+ 2ti + 4dti)
7 .

Theorem 4.3 The conditional pdf of Xi, given Xj = tj, denoted by fi|j(ti|tj)(i 6=
j = 1, 2), is given by

fi|j(ti|tj) =


f

(1)
i|j (ti|tj) if ti > tj

f
(2)
i|j (ti|tj) if ti < tj

f
(0)
i|j (ti|tj) if ti = tj

,

where

f
(1)
i|j (ti|tj) =

6 (1 + 2d) (1 + 3d)3 (1 + 2tj + d(3 + 4tj))
3

(1 + 3d+ 2ti + d(3 + 4ti))
7

f
(2)
i|j (ti|tj) =

3 (1 + 3d)3 (2 + 4d)

(1 + 3d+ 2ti + 4dti)
4

f
(0)
i|j (ti|tj) =

(1 + 2d) (1 + 3d)3 (1 + 3d+ 2tj + 4dtj)
7

(2 + 4d) (1 + 2tj + d(3 + 4tj))
10

Proof. Proof follows from the following well known definition of conditional den-

sity.

fi|j(ti|tj) =
fXi,Xj(ti, tj)

fXj(tj)

By using the Corollary (4.2) and Theorem (4.3), we can easily obtain co-

variance and correlation coefficient of the components X1 and X2 in the next

Corollary.
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Corollary 4.4

E [Xi] =

∞∫
0

ti
6 (1 + 3d)6 (2 + 4d)

(1 + 3d+ 2ti + 4dti)
7

=
1 + 3d

10(1 + 2d)

E
[
X2
i

]
=

∞∫
0

t2i
6 (1 + 3d)6 (2 + 4d)

(1 + 3d+ 2ti + 4dti)
7

=
(1 + 3d)2

40(1 + 2d)2

V ar [Xi] = E
[
X2
i

]
− (E [Xi])

2

=
3 (1 + 3d)2

200(1 + 2d)2

E [X1X2] =

∫ ∫
t1t2f12(t1, t2)dt1dt2

=

∞∫
0

t2∫
0

t1t2f1(t1, t2)dt1dt2︸ ︷︷ ︸
t1<t2

+

∞∫
0

t1∫
0

t1t2f2(t1, t2)dt1dt2︸ ︷︷ ︸
t1>t2

+

∞∫
0

t21f0(t1, t1)dt1︸ ︷︷ ︸
t1=t2

=
(1 + 3d)2

70 (1 + 2d)2

Hence the covariance is given by

Cov [X1, X2] = E [X1X2]− E [X1]E [X2]

=
3 (1 + 3d)2

700 (1 + 2d)2
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and the correlation is

ρ [X1, X2] =
Cov [X1, X2]√
V ar [X1]V ar [X2]

=
2

7

From Corollary (4.4), we get desired result such that 0 ≤ ρ [X1, X2] ≤ 1.



Chapter 5

Dependency and Comparison

Results

In this chapter, we discuss the dependency properties of the new proposed bi-

variate survival function MOMSE. First, we need to give some definition and

dependency properties in order to obtain our results.

Definition. [32] Let X and Y be continuous random variables. X and Y are

right corner set increasing (RCSI [X, Y ]), if

P [X > t1, Y > t2|X > t̄1, Y > t̄2]

is nondecreasing in t̄1 and in t̄2 for all t1 and t2. The following theorem can be

found in [32], page 198.

Theorem 5.1 Let X and Y be continuous random variables with joint distribu-

tion function H. Then

RCSI [X, Y ] ⇐⇒ H (t1, t2)H (t̄1, t̄2) ≥ H (t1, t̄2)H (t̄1, t2)

for all t1, t2, t̄1, t̄2 in [−∞,∞] such that t1 ≤ t̄1 and t2 ≤ t̄2.

Theorem 5.2 MOMSE satisfies the RCSI [X1, X2] property.

29
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Proof. From (3.2) we have

FX1,X2(t1, t2) =
F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)

FD1(d)FD2(d)FD0(d)
.

By using Theorem (5.1), we need to show that

F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)F T1,D1(t1, d)F T2,D2(t2, d)

F
2

D1
(d)F

2

D2
(d)F

2

D0
(d)

×

F T0,D0(max(t1, t2), d)

− F T1,D1(t1, d)F T2,D2(t2, d)F T0,D0(max(t1, t2), d)F T1,D1(t1, d)F T2,D2(t2, d)

F
2

D1
(d)F

2

D2
(d)F

2

D0
(d)

×

F T0,D0(max(t1, t2), d)

≥ 0.

Namely, we need to check, whether[
F T1,D1(t1, d)F T1,D1(t1, d)F T2,D2(t2, d)F T2,D2(t2, d)

F
2

D1
(d)F

2

D2
(d)F

2

D0
(d)

]
×

[F T0,D0(max(t1, t2), d)F T0,D0(max(t1, t2), d)−

F T0,D0(max(t1, t2), d)F T0,D0(max(t1, t2), d)]

≥ 0

or not. Since the first factor is always is nonnegative, we need to analyze the

second term. That is, we need to verify

F T0,D0(max(t1, t2), d)F T0,D0(max(t1, t2), d)−

F T0,D0(max(t1, t2), d)F T0,D0(max(t1, t2), d)
?

≥ 0.

Hence, for t1 ≤ t1 and t2 ≤ t2 the following six cases need to be analyzed :

Case 1. t1 ≤ t1 ≤ t2 ≤ t2

Case 2. t1 ≤ t2 ≤ t1 ≤ t2

Case 3. t1 ≤ t2 ≤ t2 ≤ t1

Case 4. t2 ≤ t1 ≤ t2 ≤ t1
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Case 5. t2 ≤ t2 ≤ t1 ≤ t1

Case 6. t2 ≤ t1 ≤ t1 ≤ t2

Case 1 ⇒ t1 ≤ t1 ≤ t2 ≤ t2

It is clear that

F T0,D0(t2, d)F T0,D0(t2, d)− F T0,D0(t2, d)F T0,D0(t2, d) = 0.

Case 2 ⇒ t1 ≤ t2 ≤ t1 ≤ t2

We have to check

F T0,D0(t2, d)F T0,D0(t2, d)− F T0,D0(t2, d)F T0,D0(t1, d)
?

≥ 0 or

F T0,D0(t2, d)
[
F T0,D0(t2, d)− F T0,D0(t1, d)

] ?

≥ 0.

Since t1 ≥ t2, then clearly F T0,D0(t1, d) ≤ F T0,D0(t2, d) and

F T0,D0(t2, d)
[
F T0,D0(t2, d)− F T0,D0(t1, d)

]
≥ 0.

Case 3 ⇒ t1 ≤ t2 ≤ t2 ≤ t1

We need to show that whether below inequality is hold or not.

F T0,D0(t2, d)F T0,D0(t1, d)− F T0,D0(t2, d)F T0,D0(t1, d)
?

≥ 0 or

F T0,D0(t1, d)
[
F T0,D0(t2, d)− F T0,D0(t2, d)

] ?

≥ 0.

Since t2 ≥ t2, then clearly F T0,D0(t2, d) ≤ F T0,D0(t2, d) and

F T0,D0(t1, d)
[
F T0,D0(t2, d)− F T0,D0(t2, d)

]
≥ 0.

Case 4 ⇒ t2 ≤ t1 ≤ t2 ≤ t1
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We have to analyze this condintion in order to satisfy below inequality

F T0,D0(t1, d)F T0,D0(t1, d)− F T0,D0(t2, d)F T0,D0(t1, d)
?

≥ 0 or

F T0,D0(t1, d)
[
F T0,D0(t1, d)− F T0,D0(t2, d)

] ?

≥ 0.

Since t2 ≥ t1, then clearly F T0,D0(t2, d) ≤ F T0,D0(t1, d) and

F T0,D0(t1, d)
[
F T0,D0(t1, d)− F T0,D0(t2, d)

]
≥ 0.

Case 5 ⇒ t2 ≤ t2 ≤ t1 ≤ t1

It is clear that

F T0,D0(t1, d)F T0,D0(t1, d)− F T0,D0(t1, d)F T0,D0(t1, d) = 0.

Case 6 ⇒ t2 ≤ t1 ≤ t1 ≤ t2

Finally, we need to check

F T0,D0(t1, d)F T0,D0(t2, d)− F T0,D0(t2, d)F T0,D0(t1, d)
?

≥ 0 or

F T0,D0(t2, d)
[
F T0,D0(t1, d)− F T0,D0(t1, d)

] ?

≥ 0.

Since t1 ≥ t1, then clearly F T0,D0(t1, d) ≤ F T0,D0(t1, d) and

F T0,D0(t2, d)
[
F T0,D0(t1, d)− F T0,D0(t1, d)

]
≥ 0.

Consequently, all cases are verified clearly, then we can say that MOMSE satisfies

the RCSI [X1, X2] property.

In the following sections, some properties of the stochastic comparison and

some ageing properties of the proposed conditional random variables are given.
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5.1 Stochastic Comparison

Stochastic orders among random variables play an important role in statistics,

especially in reliability theory. There are many kinds of stochastic orders in the

literature. In this section, we focus on only the usual stochastic order.

Definition. Let U1 and U2 be two random variables. If

P (U1 > t) ≤ P (U2 > t) for all t ∈ (−∞,∞), (5.1)

then U1 is said to be smaller than U2 in the usual stochastic order. It is denoted

by U1 ≤st U2. For more information about the stochastic order, we refer to [40].

Theorem 5.3 ([40],part a, page 273) Let X and Y be two n-dimensional random

vectors. If X ≤st Y and g:Rn → Rk is any k-dimensional increasing (decreasing)

function, for any positive integer k, then the k-dimensional vectors g(X) and

g(Y) satisfy g(X) ≤st (≥st)g(Y).

Let {V1, V2, V0} be independent conditional random variables as defined in

(3.1) and {W1,W2,W0} be another set of independent conditional random vari-

ables defined as Wi
d
= Vi, where

d
= stands for equality in distribution. Let the

random vectors X and Y be defined as follows:

X = (X1, X2) and Y = (Y1, Y2)

where X1 = min {V1, V0}, X2 = min {V2, V0}, Y1 = min {W1,W0} and Y2 =

min {W2,W0}.

Theorem 5.4 If Vi ≤st Wi for i = 0, 1, 2, then X ≤stY.

Proof. Since Vi and Wi, i = 0, 1, 2, are independent random variables, Vi ≤st Wi

imply (V1, V2, V0) ≤st (W1,W2,W0). Then the assertion of the theorem follows

from Theorem 5.3.
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5.2 Residual Life and Ageing Properties

Let Xt = [(X1 − t,X2 − t)|X1 > t,X2 > t] denote the residual life of X given

that the components have survived at time t. Denote by F i(x|t) the residual life

function of ith component given that it survives at time t, i.e.

F i(x|t) = P{Xi − t > x | Xi > t}, i = 1, 2.

Then it is easy to see that

F i(x|t) =
F i(t+ x)

F i(t)
,

F i(t) > 0. For more information about residual life, we refer to [6]. The survival

function of Xt is given in the following theorem.

Theorem 5.5 Let x =(x1, x2) and (Vi)t = [Vi − t | Vi > t] , i = 0, 1, 2. The sur-

vival function of Xt is

P (Xt > x) = P (min{(V1)t, (V0)t} > x1,min{(V2)t, (V0)t} > x2).

Proof. Indeed, we have

P (Xt > x) = P (X1 − t > x1, X2 − t > x2|X1 > t,X2 > t)

= P (min {V1 − t, V0 − t} > x1,min {V2 − t, V0 − t} > x2|Vi > t, i = 0, 1, 2)

=
P (V1 > x1 + t, V0 > x1 + t, V2 > x2 + t, V0 > x2 + t)

P (V1 > t, V2 > t, V0 > t)

=
P (V1 > x1 + t, V2 > x2 + t, V0 > max(x1, x2) + t)

P (V1 > t, V2 > t, V0 > t)

=
F 1(t+ x1)

F 1(t)

F 2(t+ x2)

F 2(t)

F 0(t+ max(x1, x2))

F 0(t)

= P ((V1)t > x1)P ((V2)t > x2)P ((V0)t > max(x1, x2))

= P (min{(V1)t, (V0)t} > x1,min{(V2)t, (V0)t} > x2).
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Definition. A nonnegative random vector X = (X1, X2) is said to be bivariate

new better than used (BNBU) if X ≥st Xt for all t ≥ 0.

Corollary 5.6 If Vi is new better than used (NBU) for i = 0, 1, 2, then X is

BNBU.

Proof. By Theorem 1.A.30(b) of [40] page 15, if Vi is NBU then Vi ≥st (Vi)t for

all t > 0 and i = 0, 1, 2. Since min{x, y} is an increasing function with respect to

x and y, then from Theorem 6.B.16(a) of [40] page 273, we get

X = (min{V1, V0},min{V2, V0})

≥st (min{(V1)t, (V0)t},min{(V2)t, (V0)t}) = Xt.



Chapter 6

Maximum Likelihood Estimation

This chapter deals with finding the unknown parameter θ of the MOMSE. Be-

cause if sampling is from a population described by a pdf f(x|θ), knowledge of

the parameter θ, provides knowledge of the entire population. In the literature,

parameter estimator of the Marshall-Olkin type distribution is widely studied.

There are four methods which can be used to find estimators. These methods are

the method of moments, maximum likelihood estimators, bayes estimators and

EM algorithm. The EM algorithm is different from other methods because of

its nature. This method is specifically designed to find the maximum likelihood

estimator. In this thesis, only maximum likelihood estimator and EM algorithm

are considered. Due to the fact that, MOMSE has both singular and absolutely

continuous parts similar to the classical Marshall-Olkin distribution. Statistical

inference is not an easy task because of the complex structure of its density func-

tion. To overcome this drawback and find the maximum likelihood estimator

of the proposed model, we use the EM algorithm. First, we introduce the EM

algorithm, then we apply this algorithm to the proposed MOMSE model.

36
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6.1 The EM Algorithm

An expectation–maximization (EM) algorithm is an iterative method for finding

maximum likelihood estimates of unknown parameters. Generally, this algorithm

is preferred when the problem is considered as a missing data problem. For more

details about this algorithm, we refer to [28] and [9]. According to setup of the

MOMSE model, the vector Xi = (X1i, X2i) is considered as observed data. On

the other hand, the missing data consists of the random vector Vi = (V0i, V1i, V2i),

which is non-observable. In the E-step, we calculate the conditional expectation

of Vi given Xi, and then use these results to calculate the MLEs for a sample.

Consider a random bivariate sample {(t11, t21) , . . . , (t1n, t2n)} . Let n0, n1 and n2

denote the number of observations for which t1i = t2i, t1i < t2i and t1i > t2i,

respectively. More precisely,

I0 = {i : t1i = t2i} n0 = |I0|
I1 = {i : t1i < t2i} n1 = |I1|
I2 = {i : t1i > t2i} n2 = |I2|

and n = n0 + n1 + n2. For a given sample of observations, the log-likelihood

function of the MOMSE model with bivariate Gumbel distribution function can

be written as

L(θ0, θ1, θ2) = n1 ln [(1 + θ1d)(2 + d(θ0 + θ2))] + n2 ln [(1 + θ2d)(2 + d(θ0 + θ1))]

+ n0 ln(1 + θ0d)− (1 + θ1d)
n∑
i=1

t1i − (1 + θ2d)
n∑
i=1

t2i − (1 + θ0d)
n∑
i=1

max(t1i, t2i)

(6.1)

Suppose t1 < t2, that is, X1 = min(V1, V0) < min(V2, V0) = X2. We have only

two inequalities

V1 < V0 < V2 and V1 < V2 < V0

which satisfy this condition among all the permutations of V0, V1 and V2. Also, it

is obvious that V0 ≥ max(t1, t2). We need to find the conditional density function

V0, V1 and V2.
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First, consider the probability under the condition that components X1 and X2

are affected at time t1 and t2, respectively. More precisely,

lim
∆t0→0

1

∆t0
P (t0 ≤ V0 ≤ t0 + ∆t0|X1 = t1, X2 = t2, θ)

From the inequality V1 < V0 < V2 .

t1 = X1 = min(V1, V0) = V1 and

t2 = X2 = min(V2, V0) = V0 = t0

It is clear that t0 = max(t1, t2). Under this setup conditional density function of

V0 can be obtained as

fV0(t0|t1, t2, θ) =
fV1(s)fV0(t0)F̄V2(t0)

fX1,X2(t1, t2)

=
1 + θ0d

2 + (θ0 + θ2)d
,

where F̄Y (z) denotes the survival function of the random variable Y and s =

min(t1, t2). Now, consider the inequality V1 < V2 < V0. Since t0 > max(t1, t2), the

conditional density function of V0 is

fV0(t0|t1, t2, θ) =
fV1(s)fV2(t2)fV0(t0)

fX1,X2(t1, t2)

=
e−(t0−t2)(1+θ0d)(1 + θ0d)(1 + θ2d)

2 + (θ2 + θ0)d

Hence,

fV0(t0|t1, t2, θ)

{
1+θ0d

2+(θ0+θ2)d
, t0 = t2

e−(t0−t2)(1+θ0d)(1+θ0d)(1+θ2d)
2+(θ2+θ0)d

, t0 > t2
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The conditional expectation can be computed as

E(V0|t1, t2, θ) =

(
1 + θ0d

2 + (θ0 + θ2)d

)
t2+∫ ∞

t2

s

(
e−(t0−t2)(1+θ0d)(1 + θ0d)(1 + θ2d)

2 + (θ2 + θ0)d

)
ds

=
t2(1 + θ0d)

2 + (θ0 + θ2)d
+

(1 + θ2d) [1 + t2(1 + θ0d)]

[2 + (θ0 + θ2)d] (1 + θ0d)

Similarly, one can easily show that

E(V2|t1, t2, θ) =
t2(1 + θ2d)

2 + (θ0 + θ2)d
+

(1 + θ0d) [1 + t2(1 + θ2d)]

[2 + (θ0 + θ2)d] (1 + θ2d)

In addition, it is easily to see that E(V1|t1, t2, θ) = t1. On the other hand, these

conditional expectation of the random variables V0, V1 and V2 can be easily derived

for the case t1 > t2. Now, consider the last case t1 = t2, i.e. X1 = min(V0, V1) =

min(V0, V2) = X2. In this case, again there are two inequalities

V0 < V1 < V2 and V0 < V2 < V1

Using these inequalities, for t0 > t1 = t2 conditional density function of the

random variable V1 is

fV1(t0|t1, t2, θ) =
fV1(t0)fV0(t1)F̄V2(t1)

fX1,X2(t1, t2)

=
(1 + θ1d)(1 + θ0d)e−(t0−t1)(1+θ1d)

2 + (θ1 + θ2)d

and the conditional expectation of the random variable V1 is

E(V1|t1, t2, θ) =
1 + t1(1 + θ1d)

(1 + θ1d)

Similarly, one can obtain the conditional expectation of the random variable V2

as follows

E(V2|t1, t2, θ) =
1 + t1(1 + θ2d)

(1 + θ2d)
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In this case, it is clear that E(V0|t1, t2, θ) = t1. For all cases, conditional expec-

tations of the random variables V0, V1 and V2 are given in Table 6.1.

E(V0|t1, t2, θ) E(V1|t1, t2, θ)
t1 < t2

t2(1+θ0d)2+(1+θ2d)[1+t2(1+θ0d)]
[2+(θ0+θ2)d](1+θ0d)

t1

t1 > t2
t1(1+θ0d)2+(1+θ1d)[1+t1(1+θ0d)]

[2+(θ0+θ1)d](1+θ0d)
t1(1+θ1d)2+(1+θ0d)[1+t1(1+θ1d)]

[2+(θ0+θ2)d](1+θ1d)

t1 = t2 t1
1+t1(1+θ1d)

(1+θ1d)

E(V2|t1, t2, θ)
t1 < t2

t2(1+θ2d)2+(1+θ0d)[1+t2(1+θ2d)]
[2+(θ0+θ2)d](1+θ2d)

t1 > t2 t2
t1 = t2

1+t1(1+θ2d)
(1+θ2d)

Table 6.1: The conditional expectations of the random variables V0, V1 and V2.

The algorithm can be described as follows:

E-step: After kth iteration, for i = 1, . . . , n, calculate the pseudo-values ai =

E(V0i|t1, t2, θ(k)), bi = E(V1i|t1, t2, θ(k)) and ci = E(V2i|t1, t2, θ(k)) by using the

data and the vector parameters θ(k) = (θ
(k)
0 , θ

(k)
1 , θ

(k)
2 ) which are obtained at the

kth step.

M-step: Since the shock times Ti, i = 0, 1, 2 are exponentially distributed with

parameter (1 + dθi), the maximum likelihood estimates from the exponential dis-

tribution are obtained using the pseudo-values ai, bi and ci. Hence, the estimates

are updated by

θ
(k+1)
0 =

1

d

(
n∑
ai
− 1

)
θ

(k+1)
1 =

1

d

(
n∑
bi
− 1

)
θ

(k+1)
2 =

1

d

(
n∑
ci
− 1

)

The iterating process should stop when some convergence criterion is satisfied,

otherwise process returns to the E-step.
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6.2 Data Analysis for Bivariate Case

For illustrating the EM algorithm to obtain the unknown parameters of the

MOMSE, we generated data from a MOMSE using θ0, θ1, θ2 and d as 0.4, 0.3,

0.6 and 3, respectively. (see Table 6.2).

t1 t2 t1 t2
0.2327 0.2327 0.0423 0.0454
0.0622 0.5326 0.1656 0.1656
0.2123 0.3321 0.6828 0.1787
0.0705 0.2253 0.1621 0.1621
1.0792 0.5612 0.0523 0.0771
0.6471 0.0423 0.2964 0.2964
0.0095 0.0982 0.0255 0.3624
0.2936 0.2936 0.1716 0.1716
0.0976 0.0115 0.3564 0.2575
0.1223 0.1223 0.1669 0.1669
0.1228 0.8988 0.4179 0.4344
0.1304 0.1312 0.0055 0.3758
0.3826 0.1618 0.0946 0.0646
0.0562 1.6152 0.1557 0.1440
0.2868 0.0262 0.5715 0.5715
0.2029 0.1026 0.5590 0.0397
0.2714 0.5140 0.0648 0.0648
0.0406 0.1988 0.2898 0.2898
0.1307 0.3028 0.7291 0.4573
0.1692 0.1005 0.0056 0.0056

Table 6.2: Simulated data from MOMSE model.

We use some initial values for θ to start the EM algorithm and use the con-

vergence criteria as | (Lk−Lk−1)

Lk−1
| < 10−12 (Lk denotes the the log-likelihood value at

the kth step). Table 6.3 presents the initial values and number of iterations until

convergence. For example, if we start the algorithm using θ
(1)
0 = 0.1, θ

(1)
1 = 0.1

and θ
(1)
2 = 0.1 as initial values, iteration stops after 46 steps. Similarly, when

the algorithm starts from the values θ
(1)
0 = 0.7, θ

(1)
1 = 0.4 and θ

(1)
2 = 0.1, the

algorithm converges to the same point after 47 iterations.

In all cases, we derive MLEs of θ0, θ1 and θ2 as 0.2499, 0.4422 and 0.3084
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θ
(1)
1 θ

(1)
2 θ

(1)
0 number of iteration

0.1 0.1 0.1 46
0.3 0.3 0.3 44
0.5 0.1 0.5 47
0.7 0.3 0.1 46
0.6 0.8 0.9 40
0.1 0.5 0.1 43
0.1 0.1 0.5 48
0.5 0.1 0.1 40
0.5 0.2 0.8 47
0.4 0.1 0.7 47

Table 6.3: Number of iterations until convergence.

Figure 6.1: Value of Log-Likelihood function at different iteration.

respectively and corresponding log-likelihood value -2.3156. It can be seen from

Figure 6.1 that log-likelihood function is nondecreasing. In 1982, Louis [24] sug-

gested a technique for computing the asymptotic confidence interval by using the

observed Fisher information matrix obtained from the EM algorithm. By using

this technique, we have also computed the 90% confidence intervals of θ1, θ2 and

θ0 as follows (0.0134,0.4864), (0.1467,0.7377) and (0.0470, 0.5698), respectively.

Detailed procedure can be seen in Appendix section.

Now, consider two components which are connected in series. This model is called

a censored bivariate MOMSE. Let us denote Z = (X1, X2), δ1 = I(X1 < X2) and
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δ2 = I(X1 > X2) with I(A) denoting the indicator function of the event. In this

model, the random vector observed on system failure is (Z, δ1, δ2). See [35] for

more details about properties of a censored model with classical Marshall-Olkin

distribution. The random variable Z has the following survival distribution

P (Z > t) = exp(−t [(1 + dθ1) + (1 + dθ2) + (1 + dθ0)])

Bivariate random vector (δ1, δ2) has a multinomial distribution

(1; 1+dθ1
3+d(θ0+θ1+θ2)

, 1+dθ2
3+d(θ0+θ1+θ2)

). Joint density of the vector (Z, δ1, δ2) can be written

with respect to the product of the Lebesgue measure on R+ = [0,∞) and counting

measure on M = {(0, 0) , (0, 1) , (1, 0)} as

f(z,m1,m2) = [(1 + dθ1) + (1 + dθ2) + (1 + dθ0)]×

exp(−t [(1 + dθ1) + (1 + dθ2) + (1 + dθ0)])×(
1 + dθ1

3 + d(θ0 + θ1 + θ2)

)m1
(

1 + dθ2

3 + d(θ0 + θ1 + θ2)

)m2
(

1 + dθ0

3 + d(θ0 + θ1 + θ2)

)m0

for (Z, δ1, δ2)=(z,m1,m2)∈ R+ × M and m0 = 1 − m1 − m2. In this model,

maximum likelihood estimation can be found using EM algorithm. First, it is

necessary to have conditional expectations similar with the usual model. It can

be clearly seen that zi substitutes in all cases t1 and t2 in Table 6.1. We can use

EM algorithm after deriving conditional expectations for all cases, as can be seen

in Table 6.4.

δ1 = 1, δ2 = 0 δ1 = 0, δ2 = 1

E(V0|z, δ1, δ2, θ)
z(1+θ0d)2+(1+θ2d)[1+z(1+θ0d)]

[2+(θ0+θ2)d](1+θ0d)
z(1+θ0d)2+(1+θ1d)[1+z(1+θ0d)]

[2+(θ0+θ1)d](1+θ0d)

E(V1|z, δ1, δ2, θ) z z(1+θ1d)2+(1+θ0d)[1+z(1+θ1d)]
[2+(θ0+θ2)d](1+θ1d)

E(V2|z, δ1, δ2, θ)
z(1+θ2d)2+(1+θ0d)[1+z(1+θ2d)]

[2+(θ0+θ2)d](1+θ2d)
z

δ1 = 0, δ2 = 0
E(V0|z, δ1, δ2, θ) z

E(V1|z, δ1, δ2, θ)
1+z(1+θ1d)

(1+θ1d)

E(V2|z, δ1, δ2, θ)
1+z(1+θ2d)

(1+θ2d)

Table 6.4: The conditional expectations of random variables V0, V1 and V2 for the
series system with two components.
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Multivariate Extension of

MOMSE

If the system has more than two components, the extension of MOMSE model

can be constructed similar to the classical Marshall-Olkin distribution,. Firstly,

let us consider a system having three components. Let X1, X2 and X3 denote the

life length of the first, second and third components, respectively. A shock from

the first source at random time T1 with the magnitude D1 affects component 1, a

shock from the second source at random time T2 with the magnitude D2 affects

component 2, and a shock from the third source at random time T3 with the

magnitude D3 affects component 3. Another source, at random time T0 with the

magnitude D0 affects all of the components. We assume that the random vari-

ables Ta and Da, a ∈ {0, 1, 2, 3} are stochastically dependent, and the affect of the

shocks for all components depends on the upper-threshold d. More precisely, if

the magnitude of the shock is greater than d, then the corresponding component

is destroyed, otherwise it survives. Denote the joint distribution function of the

random vector (Ta, Da) by FTa,Da(t, d), a ∈ {0, 1, 2, 3}. We assume that the bi-

variate random vectors (T1, D1), (T2, D2), (T3, D3), and (T0, D0) are independent.

According to this setup, we can define independent conditional random variables

44
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as follows:

V1 = T1|D1 > d

V2 = T2|D2 > d

V3 = T3|D3 > d

V0 = T0|D0 > d

that is, Va : is a time of arrival of the shock which has magnitude greater than

d. Thus the life lengths X1, X2and X3 of components 1, 2 and 3 can be written

respectively as follows

X1 = min(V1, V0)

X2 = min(V2, V0)

X3 = min(V3, V0)

Theorem 7.1 The joint survival function of X1, X2 and X3 is

F̄X1,X2,X3(t1, t2, t3) ≡ P{X1 > t1, X2 > t2, X3 > t3}

=

3∏
i=1

F̄Ti,Di(ti, d)F̄T0,D0(max(t1, t2, t3), d)

3∏
i=0

F̄Di(d)
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Proof. Indeed, we have

P (X1 > t1, X2 > t2, X3 > t3) = P (min(V1, V0) > t1,

min(V2, V0) > t2,min(V3, V0) > t3)

= P (V1 > t1, V2 > t2, V3 > t3, V0 > max(t1, t2, t3))

= P (T1 > t1|D1 > d)P (T2 > t2|D2 > d)P (T3 > t3|D3 > d)×

P (T0 > max(t1, t2, t3)|D0 > d)

=

3∏
i=1

F̄Ti,Di(ti, d)F̄T0,D0(max(t1, t2, t3), d)

3∏
i=0

F̄Di(d)

Now, consider the system having r components. Using similar idea one can

easily derive the joint survival function of X1, X2,. . . , Xr as follows

F̄X1,X2,...,Xr(t1, t2, . . . , tr) =

r∏
i=1

F̄Ti,Di(ti,d)F̄T0,D0(max(t1, t2, . . . , tr), d)

r∏
i=0

F̄Di(d)

Let (T1, D1), (T2, D2), . . . , (Tr, Dr) and (T0, D0) be the random vectors with bi-

variate Gumbel distribution function with parameter θi, i = 0, 1, . . . , r . Then

the joint survival function of X1, X2,. . .,Xr is

P (X1 > t1, X2 > t2, . . . , Xr > tr) = e

−

r∑
i=1

(1+θid)ti

e−(1+θ0d) max(t1,t2,...,tr)

Similar to the bivariate case, the joint density function is not absolutely continu-

ous with respect to the Lebesgue measure in Rr, and has singular parts. Hence we
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have to separate all the possible cases to derive joint density function as follows

f(t1, t2, . . . , tr) =



(1 + θ0d)F̄X1,X2,...,Xr(t1, t2, . . . , tr)

if t1 = t2 = · · · = tr > 0

(2 + (θ0 + θj)d)F̄X1,X2,...,Xr(t1, t2, . . . , tr)
r∏
i=1
i 6=j

(1 + θid)

if tj = max(t1, t2, . . . , tr), j = 1, . . . , r

F̄X1,X2,...,Xr(t1, t2, . . . , tr)(1 + θ0d)
w∏

m=1

(1 + θimd)

if ti1 , ti2 , . . . , tiw < tj1 = tj2 = . . . = tjl = t0

(7.1)

7.1 EM Algorithm for Multivariate MOMSE

For the construction of the EM algorithm, we need to derive the conditional

expectations for all cases given in formula (7.1). Let T and θ denote the observed

data and vector of the unknown parameters respectively. Consider the first case

where all ti’s are equal, i.e. t1 = t2 = · · · = tr. Similar to bivariate case, it

is clear that E(V0|T, θ) = t1, while for i = 1, . . . , r, E(Vi|T, θ) = 1+t1(1+θid)
(1+θid)

.

Now, consider the case that there is a value tj which is greater than all other

ti values,.i.e. tj = max(t1, t2, . . . , tr), j = 1, . . . , r and ti 6= tj. Again similar to

the bivariate case E(V0|T, θ) =
tj(1+θ0d)

2+(θ0+θj)d
+

(1+θjd)[1+tj(1+θ0d)]

[2+(θ0+θj)d](1+θ0d)
and E(Vj|T, θ) =

tj(1+θjd)

2+(θ0+θj)d
+

(1+θ0d)[1+tj(1+θjd)]

[2+(θ0+θj)d](1+θjd)
. Finally, there is a case which is the combination

of the first and second cases. Some shocks could come before the common shock

which affects all the live components at time t0. More precisely, ti1 , ti2 , . . . , tiw <

tj1 = tj2 = . . . = tjl = t0 for some w+l = r. Similar to previous cases for the values

of the left hand side of the inequality E(Vim|T, θ) = tim where m = 1, . . . , w . For

the values of the right hand side of the inequality E(Vjp |T, θ) =
1+t0(1+θjpd)

(1+θjpd)
and

E(V0|T, θ) = t0 where p = 1, . . . , l. After constructing all conditional expectations

values, the EM algorithm can be applied as follows.

E-step: After kth iteration, for i = 1, . . . , n and j = 0, . . . , r calculate the

pseudo-values aji = E(Vji|Ti, θ
(k)) by using the data and the vector θ(k) of pa-

rameters θ
(k)
j , j = 0, . . . , r which are obtained at the kth step.
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M-step: Since the shock times Tj, j = 0, 1, ..., r are exponentially distributed

with parameter (1+dθj), the maximum likelihood estimates from the exponential

distribution are obtained using the pseudo-values aji. Hence, the estimates are

updated by

θ
(k+1)
j =

1

d

(
n∑n
i=1 aji

− 1

)
.

Iterating process should stop when some convergence criterion is satisfied, other-

wise process returns to the E-step.

7.2 Data Analysis for Trivariate Case

To illustrate how the EM algorithm obtains the unknown parameters of the mul-

tivariate MOMSE, we use a generated data set from a trivariate MOMSE. First,

we need to derive the density function as

f(t1, t2, t3) =



(1 + θ0d)F̄X1,X2,X3(t1, t2, t3) if t1 = t2 = t3 > 0

(2 + (θ0 + θ1)d)F̄X1,X2,X3(t1, t2, t3)(1 + θ2d)(1 + θ3d)

if t1 = max(t1, t2, t3)

(2 + (θ0 + θ2)d)F̄X1,X2,X3(t1, t2, t3)(1 + θ1d)(1 + θ3d)

if t2 = max(t1, t2, t3)

(2 + (θ0 + θ3)d)F̄X1,X2,X3(t1, t2, t3)(1 + θ1d)(1 + θ2d)

if t3 = max(t1, t2, t3)

(1 + θ0d)(1 + θ1d)F̄X1,X2,...,Xs(t1, t2, t3) if t1 < t2 = t3

(1 + θ0d)(1 + θ2d)F̄X1,X2,...,Xs(t1, t2, t3) if t2 < t1 = t3

(1 + θ0d)(1 + θ3d)F̄X1,X2,...,Xs(t1, t2, t3) if t3 < t1 = t2

(7.2)

then using formula (7.2) one can construct the conditional expectations as Table

7.1 and Table 7.2.
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Case E(V0|T, θ) E(V1|T, θ)
t1 = t2 = t3 t1

1+t1(1+θ1d)
(1+θ1d)

t1 = max(t1, t2, t3) t1(1+θ0d)2+(1+θ1d)[1+t1(1+θ0d)]
[2+(θ0+θ1)d](1+θ0d)

t1(1+θ1d)2+(1+θ0d)[1+t1(1+θ1d)]
[2+(θ0+θ1)d](1+θ1d)

t2 = max(t1, t2, t3) t2(1+θ0d)2+(1+θ2d)[1+t2(1+θ0d)]
[2+(θ0+θ2)d](1+θ0d)

t1

t3 = max(t1, t2, t3) t3(1+θ0d)2+(1+θ3d)[1+t3(1+θ0d)]
[2+(θ0+θ3)d](1+θ0d)

t1
t1 < t2 = t3 t2 t1
t2 < t1 = t3 t1

1+t1(1+θ1d)
(1+θ1d)

t3 < t1 = t2 t1
1+t1(1+θ1d)

(1+θ1d)

Table 7.1: The conditional expectations of the random variables V0 and V1 of the
trivariate MOMSE model.

Case E(V2|T, θ) E(V3|T, θ)
t1 = t2 = t3

1+t1(1+θ2d)
(1+θ2d)

1+t1(1+θ3d)
(1+θ3d)

t1 = max(t1, t2, t3) t2 t3

t2 = max(t1, t2, t3) t2(1+θ2d)2+(1+θ0d)[1+t2(1+θ2d)]
[2+(θ0+θ2)d](1+θ2d)

t3

t3 = max(t1, t2, t3) t2
t3(1+θ3d)2+(1+θ0d)[1+t3(1+θ3d)]

[2+(θ0+θ3)d](1+θ3d)

t1 < t2 = t3
1+t2(1+θ2d)

(1+θ2d)
1+t3(1+θ3d)

(1+θ3d)

t2 < t1 = t3 t2
1+t3(1+θ3d)

(1+θ3d)

t3 < t1 = t2
1+t2(1+θ2d)

(1+θ2d)
t3

Table 7.2: The conditional expectations of the random variables V2 and V3 of the
trivariate MOMSE model.

We use a generated data set from a trivariate MOMSE model (Table 7.3).

In this data set generation, we use threshold (d) and the paramters vector

(θ0, θ1, θ2, θ3) as 5 and (0.35,0.55,0.45,0.5), respectively.

We looked the relative change of the loglikelihood value and algorithm ter-

minated when this relative change is smaller than 10−12. In this example, if we

use (1,1,1,1) as the initial values ((θ
(1)
0 , θ

(1)
1 , θ

(1)
2 , θ

(1)
3 )), EM algorithm converged

after 36 iterations, and similarly if we use θ
(1)
0 = 0.3, θ

(1)
1 = 0.3, θ

(1)
2 = 0.3 and

θ
(1)
3 = 0.3, algorithm converged after 33 iterations. We obtained following esti-

mates of (θ0, θ1, θ2, θ3) as (0.2996, 0.2358, 0.3911, 0.3197) and the corresponding

loglikelihood is 6.3075 . We have also computed the 90% confidence intervals of
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t1 t2 t3 t1 t2 t3
0.069659 0.044139 0.031041 0.226058 0.226058 0.17106
0.16356 0.16356 0.068778 0.253304 0.237616 0.253304
0.465493 0.040193 0.024975 0.25822 0.219427 0.290669
0.077449 0.077449 0.077449 0.410006 0.195078 0.410006
0.05118 0.05118 0.05118 0.268739 0.09944 0.268739
0.200402 0.40109 0.002241 0.247194 0.104735 0.215409
0.036085 0.036085 0.036085 0.223542 0.01098 0.381222
0.139267 0.062295 0.500786 0.210235 0.210235 0.15786
0.033714 0.033714 0.033714 0.174155 0.174155 0.174155
0.169444 0.169444 0.169444 0.199255 0.199255 0.141193
0.302772 0.324536 0.094643 0.041135 0.041135 0.041135
0.023782 0.311853 0.493157 0.617889 0.457925 0.172914
0.274754 0.022399 0.340186 0.003366 0.110081 0.466479
0.19749 0.065659 0.09662 0.379499 0.011359 0.173795
0.06028 0.496606 0.496606 0.093903 1.02822 0.345047

Table 7.3: Simulated data from trivariate MOMSE with parameters vector (0.35,
0.55, 0.45, 0.5) and threshold 5.

θ0, θ1,θ2 and θ3 as follows (0.2732, 0.7255), (0.1224, 0.6637), (0.3581, 0.9453) and

(0.2561, 0.8097), respectively.
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Conclusion

There is a need to consider shock magnitudes in many practical applications of

Marshall-Olkin shock models . For example, in financial applications, if one deals

with shocks affecting the financial markets and causing financial crisis, some of

the companies can survive if the magnitudes of shocks do not exceed a predefined

threshold. This threshold may depend on the financial resistance of the company,

flexibility and the capability to survive in extremal situations. Similar necessity

can be encountered in investigations of earthquakes. The shocks with small seis-

mic intensity are not catastrophic. There is also a need to consider shocks with

magnitudes in biological and medical applications. For instance, in the case of

usage of chemical preparations under needed dosage the treatment may not be

effective. Hence, there is a need to consider a new Marshall-Olkin shock model

where the magnitudes of the shocks are taken into account. In this thesis, un-

der some restrictive assumptions on independence and distributions of considered

random variables, we introduce a shock model where the shocks coming from dif-

ferent sources can destroy the components of the system if the magnitudes of the

shocks exceed predefined threshold. The corresponding bivariate survival func-

tions are presented and their stochastic properties are investigated. Some special

examples with well known bivariate underlying distributions of shock times and

magnitudes are presented. In addition, we study statistical inference for proposed

model based on the maximum likelihood. Since MOMSE has both singular and

51



CHAPTER 8. CONCLUSION 52

absolutely continuous part, statistical inference is not an easy task because of the

complex structure of its density function similar to the classical Marshall-Olkin

distribution. Another contribution of the present dissertation is to overcome this

drawback and find the maximum likelihood estimator of the proposed model by

using the EM algorithm. In order to implement the EM algorithm, the problem

of the finding maximum likelihood estimator is treated as a missing value prob-

lem. The EM algorithm is applied to some data sets which involve both bivariate

and multivariate extensions of MOMSE. Also, asymptotic confidence intervals

of the unknown parameters of both bivariate and multivariate distributions are

constructed.



Appendix A

Observed Fisher Information

Matrix

In this chapter, we study how observed fisher information matrix can be con-

structed. Let the matrix H and the vector G denote the Hessian matrix and

gradient vector of the log-likelihood function. We can obtain the observed fisher

information matrix as H−GGT . As an example for bivariate MOMSE model,

we can construct matrix H and the vector G as follows:

H =


−∂2L(θ0,θ1,θ2)

∂θ20
−∂2L(θ0,θ1,θ2)

∂θ0∂θ1
−∂2L(θ0,θ1,θ2)

∂θ0∂θ2

−∂2L(θ0,θ1,θ2)
∂θ0∂θ1

−∂2L(θ0,θ1,θ2)

∂θ21
−∂2L(θ0,θ1,θ2)

∂θ1∂θ2

−∂2L(θ0,θ1,θ2)
∂θ0∂θ2

−∂2L(θ0,θ1,θ2)
∂θ1∂θ2

−∂2L(θ0,θ1,θ2)

∂θ22



G =


∂L(θ0,θ1,θ2)

∂θ0
∂L(θ0,θ1,θ2)

∂θ1
∂L(θ0,θ1,θ2)

∂θ2
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H11 =
n0d

2

(1 + θ̂0d)2
+

n1d
2

(2 + d(θ̂0 + θ̂2))2
+

n2d
2

(2 + d(θ̂0 + θ̂1))2

H12 = H21 =
n2d

2

(2 + d(θ̂0 + θ̂1))2

H13 = H31 =
n1d

2

(2 + d(θ̂0 + θ̂2))2

H22 =
n1d

2

(1 + θ̂1d)2
+

n2d
2

(2 + d(θ̂0 + θ̂1))2

H23 = H32 = 0

H33 =
n1d

2

(2 + d(θ̂0 + θ̂2))2
+

n2d
2

(1 + θ̂2d)2

G1 =
n1d

(2 + d(θ̂0 + θ̂2))
+

n2d

(2 + d(θ̂0 + θ̂1))
+

n0d

(1 + θ̂0d)
− d

n∑
i=1

max(t1i, t2i)

G2 =
n1d

(1 + θ̂1d)
+

n2d

(2 + d(θ̂0 + θ̂1))
− d

n∑
i=1

t1i

G3 =
n1d

(2 + d(θ̂0 + θ̂2))
+

n2d

(1 + θ̂2d)
− d

n∑
i=1

t2i

For more information, we refer to [24].
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