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in partial fulfillment of the requirements

for the degree of doctor of philosophy

in the graduate school of natural and applied sciences

JUNE 2016





ABSTRACT

q-FLOQUET THEORY AND ITS EXTENSIONS TO
TIME SCALES PERIODIC IN SHIFTS

HALİS CAN KOYUNCUOĞLU

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. Murat Adıvar

June 2016

This thesis proposes a Floquet theory for q-difference systems which are con-

structed on qZ := {qn : n ∈ Z, q > 1} ∪ {0} by using multiplicative periodicity

notion. The Floquet decomposition theorem is given by obtaining the solution of

a matrix exponential equation. The existence of periodic solutions of both homo-

geneous and nonhomogeneous systems are investigated by providing the necessary

and sufficient conditions. Additionally, by establishing a linkage between Floquet

multipliers and Floquet exponents of a q-Floquet system, stability analysis is

done. The obtained results for q-difference systems are unified on time scales

by using new periodicity concept based on shift operators introduced in [11] (see

also [12]). This approach enables us to discuss Floquet theory of dynamic systems

on more general domains including nonadditive domains, such as {±n2, n ∈ Z}

and ∪∞
k=1

[
3±k, 2.3±k

]
∪{0} . Given results provide a wide perspective for Floquet

theory and they are the most general results that are obtained in the existing

literature.

Keywords: Floquet theory, transition matrix, matrix exponential, multiplicative

periodicity, time scales, shift operator, periodicity in shifts, Floquet multipliers,

Floquet exponents, stability.
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ÖZ

q-FLOQUET TEORİSİ VE KAYDIRMA

OPERATÖRLERİNE GÖRE PERİYODİK ZAMAN
SKALALARINDA GENELLEŞTİRİLMESİ

HALİS CAN KOYUNCUOĞLU

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Danışmanı: Prof. Dr. Murat Adıvar

Haziran 2016

Bu tezde qZ := {qn : n ∈ Z, q > 1} ∪ {0} tanım aralığında kurulan q-

fark sistemlerinin Floquet teorisi çarpımsal periyodiklik kavramı kullanılarak

incelenmiştir. Floquet ayrışma teoremi üstel matris fonksiyonu denkleminin

çözümünün varlığı ispatlanarak verilmiştir. Homojen ve homojen olmayan

q-Floquet fark sistemleri incelenerek, periyodik çözümün varlığı için gerek

yeter koşullar gösterilmiştir. Ayrıca, Floquet çarpanları ve Floquet kuvvetleri

arasında kurulan ilişkinin ışığında elde edilen sonuçlar kararlılık analizinde kul-

lanılmıştır. Tezin kalan kısmında, q-Floquet teorisi zaman skalalarında kaydırma

operatörlerine bağlı olarak tanımlanan yeni periyodiklik kavramıyla ([11] ve [12])

genelleştirilmiştir. Bu yaklaşım dinamik sistemlerin Floquet teorisinin toplam-

sallık koşulu aranmaksızın ±n2, n ∈ Z ve ∪∞
k=1

[
3±k, 2.3±k

]
∪ {0} gibi daha genel

tanım aralıklarında tartışılmasına imkan tanımıştır. Genelleştirilen sonuçlar Flo-

quet teorisine daha geniş bir açıdan bakılmasını sağlayıp, literatürdeki şu ana

kadar Floquet teorisi üzerine yapılmış çalışmalar içerisinde en genel olanlarıdır.

Anahtar Kelimeler : Floquet teorisi, dönüşüm matrisi, üstel matris fonksiyonu,

çarpımsal periyodiklik, zaman skalası, kaydırma operatörü, kaydırma operatörüne

göre periyodiklik, Floquet çarpanları, Floquet üstelleri, kararlılık.
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Necla and Burçin for their helps and understanding.

I am most thankful to my great family who are the secret behind the success.

Therefore, I would like to thank my family Alp, Semra, Ilona, Ece, Yüce, Gökçe
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Nomenclature

Symbol Response

R Set of real numbers

R+ Set of positive real numbers

Z Set of integers

hZ {hn : n ∈ Z, h > 0}

qZ {qn : n ∈ Z, q > 1} ∪ {0}

N0 Set of natural numbers

C Set of complex numbers

Q Set of rational numbers

T Time scale

dqf q-differential of function f

Dqf q-derivative of function f
∫
f (t) dqt q-Integral of function f

ΦA (., t0) Transition matrix

σ Forward jump operator

ρ Backward jump operator

µ Step size function

f∆ ∆-derivative of function f

R Set of regressive functions

Crd Set of rd-continuous functions

Symbol Response

C1
rd Set of differentiable functions

with rd-continuous derivatives
∫ t

t0
f (τ)∆τ ∆-integral of function f

◦

ı Hilger purely imaginary number

R+ Set of positively regressive

functions

ξµ(t) Cylinder transform

ep (., .) Exponential function

eA (., .) Matrix exponential function

δ+ Forward shift operator

D+ Domain of forward shift

operator

δ− Backward shift operator

D− Domain of backward shift

operator

L Lyapunov transformation

M Monodromy operator

γ Floquet exponent

λ Floquet multiplier
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Chapter 1

Introduction

In the literature, analysis of periodic equations and systems has taken great inter-

est due to its tremendous application potential in engineering, biology, biomathe-

matics, chemistry etc. (see [35], [42], [45], [57], [66] and [70]). As it is well known,

equations and systems with periodic coefficients are always constructed on peri-

odic domains. To define an ω-periodic function on a set T, one need to guarantee

that T is periodic with period P ≤ ω. In terms of conventional thinking, the

domain T is periodic if and only if there exists a P ∈ T such that t± P ∈ T for

all t ∈ T (see [53]). The set of reals R, the set of integers Z, hZ := {hk : k ∈ Z} ,

and
⋃
k∈Z

[2k, 2k + 1] are examples of periodic domains. Hereafter, these domains

are called as additively periodic domains. There is a vast literature dealing with

periodic solutions of various types of differential, difference and integral equations

and their systems which are constructed on additively periodic domains (see [4],

[49], [50], [72] and [73]).

Floquet theory is an important tool in the study of periodic systems for inves-

tigation of periodic solutions and stability theory of dynamic systems. Indeed, it

is a century-old theory which was introduced by Gaston Floquet in 1883 in order

to analyze the solutions of systems of linear differential equations with periodic

coefficients (see [43]). Afterwards, this theory has been extended to difference

equations/systems, integral equations, integro-differential equations, and partial

2



Chapter 1. Introduction 3

differential equations (see [17], [18], [21], [23], [55] and [65]). The extension of Flo-

quet theory to different type of equations became very useful tool for researchers

in fields of mathematics and physics. By a short literature review, one may de-

duce that Floquet theory is very common in quantum physics, classical physics,

chemistry, electronics, dynamic systems (see [31], [34], [40], [54], [56], [58] and

[61]).

In recent years, the theory of time scales has taken prominent attention in

the area of pure and applied mathematics. This popular theory was introduced

by Stefan Hilger in 1988, in his Ph.D. thesis under the guidance of his advisor

Bernd Aulbach (see [48]). The aim of Hilger’s thesis was threefold: unification,

extension and discretization. The motivation behind this theory and Hilger’s

subsequent works (see [46]-[48]) have opened a new way for mathematicians since

the theory of time scales avoids separate studies for differential and difference

systems by using similar arguments. For an excellent review on time scale cal-

culus, we refer to pioneering works [24] and [25]. Consequently, the mentioned

advantage of the time scale theory has motivated mathematicians especially who

work on applied mathematics, and they have started to develop time scale ana-

logues of existing theories such as: oscillation theory, stability theory, population

dynamics, mathematical modelling, optimization, mathematical physics, integral

equations, probability theory, Floquet theory, economics, boundary value prob-

lems, eigenvalue problems etc. (see [2], [3], [5], [8], [9], [10], [11], [14], [15], [16],

[22], [26], [33], [36], [38], [37], [51], [60], [63], [69], [71], and [74]).

The time scale variant of Floquet theory was first treated by Ahlbrandt and

Ridenhour [14], and this study basicly focused on Floquet’s theorem on mixed

domains and Putzer representations of matrix logarithms. Adamec [1] criticized

the approach in [14] and stated his concerned about suitability of using real

exponential function instead of time scale exponential function. Later on, Jef-

fery J. DaCunha’s work on Floquet theory gave a great contribution to applied

mathematics. Liapunov stability and unified Floquet theory regarding Liapunov

transformations were first handled by DaCunha in 2004 in his Ph.D. thesis. The

study [37] not only improved the results of [14] but also extended the study of

Floquet theory on time scales extensively. The highlights of the thesis are as
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follows:

1. Unification and extension of Liapunov’s direct method.

2. Development of unified Floquet theory including Liapunov transformations.

3. Application of Floquet theory of homogeneous linear dynamic systems to

nonhomogeneous linear dynamic systems.

4. By using monodromy operators, establishing a linkage between Floquet

(characteristic) multipliers and Floquet exponents.

5. Stability analysis of time varying linear dynamic equations on time scales.

In [38], DaCunha and Davis improved the results of [37] by answering the

following questions:

Q1 Does the solution of matrix exponential equation eR(t, τ) = M, exist for a

nonsingular, constant, n× n matrix M?

Q2 Is the n×n matrix R in continuous, discrete and unified versions of Floquet’s

theorem necessarily constant? Can it be time varying?

Q3 If the matrix R was time varying, how would we make the stability analysis?

In all existing works on Floquet theory, dynamic systems are constructed on

additively periodic domains. However, additive periodicity assumption is a strong

restriction for the class domains on which periodic solutions of dynamic equations

can be analyzed. For instance

qZ := {qn : n ∈ Z} ∪ {0} , q > 1

is not an additively periodic domain. Since q-difference equations are the dy-

namic equations defined on qZ, Floquet theories in previous studies including [38]

and [37] are insufficient to investigate periodic solutions of systems q-difference
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equations. A q-difference equation is an equation including a q-derivative Dq,

given by

Dq (f) (t) =
f (qt)− f (t)

(q − 1) t
, t ∈ qZ := {qn : q > 1 is a constant andn ∈ Z} ,

of its unknown function. Observe that the q−derivative Dq (f) of a function f

turns into ordinary derivative f ′ if we let q → 1. The theory of q-difference

equations is a useful tool for the discretization of differential equations used for

modeling continuous processes [41], [59], [62]. Pulita [68] concluded that ”in the

p-adic context, q-difference equations are not simply a discretization of solutions

of differential equations, but they are actually equal”. One may also refer to

[20] for further discussion about the equivalence between q-difference equations

and differential equations. There is a vast literature on the existence of periodic

solutions of differential equations, unlike the existence of periodic solutions of q-

difference equations. Thus, it is of importance to study the existence of periodic

solutions of q-difference equations. That is, investigation of periodicity on addi-

tively periodic domains rules out very important domains that are not additively

periodic.

In order to improve and extend the results of the above mentioned works

related to Floquet theory, the definition of a periodic domain should be revisited.

The idea behind this need can be presented briefly as follows:

1. Once a starting point t ∈ T is determined, a periodic domain T should

contain an element at each backward or forward step with size p.

2. Addition is not always the way to step forward and backward on a domain,

for instance, 2±1t lead to one unit backward and forward steps over the

domain {2n : n ∈ Z} ∪ {0} .

3. In some way, we should characterize the backward and forward steps on a

domain without using only addition.
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Periodicity notion and Floquet theory on the domain

qN0 = {qn : q > 1 and n = 0, 1, 2, . . .}

have been studied in [28] and [32]. In [28] and [32], an ω-periodic function f on

qN0 is defined to be the one satisfying

f (qωt) =
1

qω
f (t) for all t ∈ qN0 and a fixed ω ∈ {1, 2, . . .} .

According to this periodicity definition the function g (t) = 1/t is q-periodic

over the domain qN0 . Unlike the conventional periodic functions in the exist-

ing literature, the function g (t) = 1/t does not repeat its values at each period

t, qωt, (qω)2 t, .... The periodicity notion used in [28] and [32] resembles the peri-

odicity on R in geometric meaning. Their idea is based on the equality of areas

lying below the graph of the function at each period. In parallel with conventional

periodicity perception, we define a periodic function to be the one repeating its

values at each forward/backward step on its domain with a certain size. For

instance, according to our definition the function h(t) = (−1)
ln t
ln q is a q2-periodic

function on qZ = {q > 1 : qn, n ∈ Z} since

h
(
q±2t

)
= (−1)

ln t
ln q

±2 = (−1)
ln t
ln q = h (t) .

Obviously, the function h (t) repeats the values −1 and 1 at each back-

ward/forward step with the size q2. Consequently, the use of new periodicity

notion for qZ in Floquet theory provides not only a generalization but also an

alternative approach to already existing literature in particular cases [28], [32].

The organization of the rest of the thesis is as follows: In the next chapter,

some basics of quantum calculus and time scales calculus are outlined under the

guidance of [24] and [52]. Additionally, the periodicity notion for quantum cal-

culus and the new periodicity concept on time scales are introduced according to

pioneering work of Adıvar [12]. In Chapter 3, q-Floquet theory is established with

respect to Lyapunov transformations and Chapter 4 is devoted to generalization

and unification of results by using periodicity in shifts (see [6]).



Chapter 2

Preliminaries

2.1 A brief introduction to quantum calculus

In this section, some definitions and results about the quantum calculus con-

structed on qZ, q > 1, are presented according to books [24] and[52]. Most of the

definitions, theorems and examples can be found in [24] and [52].

Definition 1. Let f be an arbitrary function defined on qZ, q > 1. The q-

differential of f at a point qm, m ∈ Z, is given by

dqf (q
m) := f

(
qm+1

)
− f (qm) .

Notice that, symmetry property is lost for production of two functions in quantum

differentials. That is

dq (f (q
m) g (qm)) = f

(
qm+1

)
dqg (q

m) + g (qm) dqf (q
m) ,

and

dq (g (q
m) f (qm)) = g

(
qm+1

)
dqf (q

m) + f (qm) dqg (q
m)

may not be equal all the time.

Definition 2. The q-derivative of a function f defined on qZ, q > 1 at a point

7
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qm, m ∈ Z is given by

Dqf (q
m) =

dqf (q
m)

dqqm
=

f (qm+1)− f (qm)

(q − 1) qm
.

Obviously, when q → 1, Dqf →
df
dx
and like the ordinary differentiation operator,

q-derivation operator is a linear operator.

The properties of q-derivation operator, Dq, are as follows:

Theorem 2.1 Assume f, g : qZ → R be two functions and α, β are constants.

Then

i. Dq (fg) (q
m) = Dqf (q

m) g (qm) + f (qm+1)Dqg (q
m) ,m ∈ Z

ii. If f (qm) f (qm+1) 6= 0 for all m ∈ Z, then we have

Dq

(
1

f

)
(qm) = −

Dqf (q
m)

f (qm) f (qm+1)

iii. If g (qm) g (qm+1) 6= 0 for all m ∈ Z, then we have

Dq

(
f

g

)
(qm) =

Dqf (q
m) g (qm)− f (qm)Dqg (q

m)

g (qm) g (qm+1)
.

The following definitions and results are given according to [24].

Definition 3 (q-Exponential function). Let p be a regressive function on qZ, i.e.

1 + (q − 1) qmp(qm) 6= 0, ∀m ∈ Z.

Then ep (., q
m0) y0 is unique solution of the initial value problem

Dqy(q
m) = p(qm)y(qm), y(qm0) = y0

form0 ∈ Z withm ∈ [m0,∞)∩Z. Furthermore, the explicit form of q-exponential

function ep (q
m, qm0) is given by
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ep(q
m, qm0) :=

∏

τ∈[m0,m)Z

[1 + (q − 1) qτp (qτ )] ,

where [m0,m)Z := [m0,m) ∩ Z.

The following theorem summarizes some basic properties of q-exponential

functions.

Theorem 2.2 Let p and g are regressive functions on qZ. Then

i. e0(q
m, qm0) ≡ 1 and ep(q

m, qm) ≡ 1

ii. ep(q
m+1, qm0) = (1 + (q − 1) qmp(qm))ep(q

m, qm0)

iii. ep(q
m, qm0)eg(q

m, qm0) = ep⊕g(q
m, qm0), where p⊕ g := p+ g+ pg (q − 1) qm

iv. ep(q
m, qm0) = 1

ep(qm0 ,qm)
= e	p(q

m0 , qm), where 	p(qm) = − p(qm)
1+(q−1)qmp(qm)

v. ep(q
m, qm0)ep(q

m0 , qτ ) = ep(q
m, qτ ).

Definition 4. A matrix function A : qZ → Rn×n is said to be regressive matrix

function if I + (q − 1) qmA(qm) is invertible for all m ∈ Z.

Definition 5 (q-Matrix exponential function). Let m0 ∈ Z be fixed and A :

qZ → Rn×n be a regressive matrix function. The unique matrix solution of the

matrix system

DqY (q
m) = A(qm)Y (qm), Y (qm0) = I, (2.1)

is called q-matrix exponential function and it is represented by eA (., q
m0) for

m ≥ m0. Moreover, the matrix function eA (q
m, qm0) can be evaluated as

eA (q
m, qm0) =

∏

τ∈[m0,m)
Z

[I + (q − 1) qτA (qτ )] ,

(see also [28]).

In the next result, some properties of the matrix exponential of the system

(2.1) are listed.
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Theorem 2.3 If A is a regressive matrix function on qZ, then we have

i. e0 (q
m, qm0) ≡ I and eA (q

m, qm) ≡ I, where 0 and I indicate the zero matrix

and the identity matrix, respectively

ii. eA (q
m+1, qm0) = (I + (q − 1) qmA (qm)) eA (q

m, qm0)

iii. eA (q
m, qm0) = e−1

A (qm0 , qm)

iv. eA (q
m, qm0) eA (q

m, qτ ) = eA (q
m, qτ ) .

Theorem 3, Theorem 2.2 and Theorem 2.3 are the special cases of theorems [24,

Theorem 1.20], [24, Theorem 2.36] and [24, Theorem 5.21] when the time scale

T is chosen to be qZ, q > 1, respectively.

The definitions of q-antiderivative and q-integral, introduced in Chapter 18

and Chapter 19 of [52], are as follows:

Definition 6 (q-Antiderivative). Let f be a function defined on qZ, q > 1. The

function F is called q-antiderivative of the function f and denoted by

∫
f (t) dqt

if DqF (q
m) = f(qm) for all m ∈ Z.

Remark. Similar to the conventional calculus, q-antiderivative is not unique. It

is well known that uniqueness of the antiderivative of a function on set of reals

is valid up to adding a constant. However, in quantum calculus having a zero

derivative, Dqϕ(q
m) = 0, does not mean that ϕ is a constant function. Obviously,

any nonconstant function ϕ satisfying ϕ (qm+1) = ϕ (qm) for m ∈ Z has a zero

q-derivative.

Definition 7 (q-Integral). The indefinite integral of a function f defined on

qZ, q > 1 is given by the geometric series expansion

∫
f (t) dqt = (q − 1) qm

∞∑

τ=0

qτf
(
qm+τ

)
.
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Additionally, the definite integral from qm to qn of the function f is defined by

∫ qn

qm
f (s) dqs := (q − 1)

n−1∑

τ=m

qτf (qτ ) .

The following definition is the q-discrete analogue of the definition of transition

matrix on arbitrary time scales given in [39], [38].

Definition 8 (Transition matrix). Let m0 ∈ Z be fixed and A : qZ → Rn×n be a

regressive matrix function. The solution of the q-difference matrix system

DqY (q
m) = A(qm)Y (qm), Y (qm0) = Y0

for m ≥ m0 is expressed by the equality

Y (qm) = ΦA (q
m, qm0)Y0,

where ΦA (q
m, qm0) is called q-transition matrix of the system and given by

ΦA (q
m, qm0) = I +

∫ qm

qm0

A (τ1) dqτ1 +

∫ qm

qm0

A (τ1)

∫ qτ1

qm0

A (τ2) dqτ2dqτ1 + . . .

+

∫ qm

qm0

A (τ1)

∫ qτ1

qm0

A (τ2) . . .

∫ qτi−1

qm0

A (τi) dqτi . . . dqτ1 + . . . . (2.2)

2.1.1 Periodicity notion on quantum calculus

In order to discuss periodic solutions of q-difference equations and systems which

are constructed on the domain qZ, q > 1, one needs to provide periodicity notion

on quantum calculus. By employing results of [12] in the special case T = qZ, q >

1, periodicity on quantum calculus is discussed in this part.

Definition 9 (Periodic functions on qZ). Let f be a real valued function defined

on qZ, q > 1. We say that f is periodic if there exists a T ∈ [1,∞)Z such that

f
(
qm±T

)
= f(qm) for all m ∈ Z. (2.3)
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The number qT is called the period of f, if it is the smallest number satisfying

(2.3).

Example 2.1. The function h(qm) = (−1)m on qZ is a q2 periodic function since

h(qm±2) = (−1)m±2 = (−1)
ln qm±2

ln q = (−1)
ln qm

ln q
±2 = (−1)

ln qm

ln q = (−1)m = h(qm),

for all m ∈ Z.

Definition 10 (Multiplicatively periodic functions on q-calculus). A real valued

function f on qZ, q > 1 is called multiplicatively periodic function if there exists

a T ∈ [1,∞)Z such that

f
(
qm±T

)
q±T = f(qm) for all m ∈ Z. (2.4)

The smallest number qT satisfying (2.4) is called the period of the function f.

Example 2.2. The function f (t) = 1
t
is a multiplicatively q-periodic function

on qZ.

One can deduce the following result using Theorem 2 in [12]:

Theorem 2.4 Let f : qZ → R be a multiplicatively periodic function with period

qT , T ∈ [1,∞)Z . Then

∫ qm

1

f(s)dqs =

∫ qm±T

q±T

f(s)dqs.

2.2 A brief introduction to time scale calculus

This part is devoted to some basic concepts of time scale calculus. The definitions,

results and examples given in this section can be found in [19], [24], and [25].
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2.2.1 Basic calculus on time scales

Any arbitrary, nonempty closed subset of real numbers is called a time scale. Any

closed interval and the sets R,Z, hZ,N0, q
Z ∪ {0} and Cantor set are examples

of time scales. It should be emphasized that Q,R\Q,C are not time scales.

Henceforth, a time scale will be denoted by T. The basic operators on time scales

which enables moving forward and backward steps on T are defined as follows:

Definition 11. Let T be a time scale and t ∈ T. The forward and backward

jump operators σ, ρ : T→ T are defined by

σ (t) := inf {s ∈ T : s > t} ,

and

ρ (t) := sup {s ∈ T : s < t} ,

respectively. The step size function (graininess function) µ : T→ [0,∞) is defined

by

µ (t) := σ (t)− t.

Moreover, any point on a time scale can be classified by using forward and back-

ward jump operators. The following table introduces several types of points on

a time scale.

t right-scattered t < σ (t)
t right-dense t = σ (t)
t left-scattered ρ (t) < t
t left-dense ρ (t) = t
t isolated ρ (t) < t < σ (t)
t dense ρ (t) = t = σ (t)

Table 2.1: Classification of points on a time scale

Example 2.3. The next table shows forward&backward jump operators and step

size functions for the most well known time scales: .

In order to define differentiation on an arbitrary time scale, we have to define
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T R Z hZ qZ, q > 1
ρ (t) t t− 1 t− h t/q
σ (t) t t+ 1 t+ h qt
µ (t) 0 1 h (q − 1)t

Table 2.2: Basic operations on R, Z, hZ and qZ, q > 1

the set Tκ by using T as follows: If T has a left-scattered maximum m, then

Tκ = T− {m}. Otherwise, Tκ = T.

Definition 12 (Hilger derivative of a function). Let f be a real valued function

on T and t ∈ Tκ. Then f∆(t) is defined to be a number (provided it exists)

with the property that given any ε > 0, there is a neighborhood U of t (i.e.,

U : (t− δ, t+ δ) ∩ T for some δ > 0) such that

∣∣[f (σ (t))− f (s)]− f∆ (t) [σ (t)− s]
∣∣ ≤ ε |σ (t)− s| for all s ∈ U.

Furthemore, f is called ∆-differentiable on Tκ if f∆ (t) exists for all t ∈ Tκ.

Now, we present the result of [24] which provides some important properties

regarding ∆-derivative of a function f on an arbitrary time scale.

Theorem 2.5 Assume f is a real valued function defined on a time scale T and

t ∈ Tκ. Then we have the following results:

i. If f is differentiable at t, then f is continuous at t

ii. If f is continuous at t and t is right-scattered, then f is differentiable at t

with

f∆ (t) =
f (σ (t))− f (t)

µ (t)

iii. If t is right dense, then f is differentiable at t if and only if the limit

lim
s→t

f (t)− f (s)

t− s

exists as a finite number
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iv. If f is differentiable at t, then

f (σ (t)) = f(t) + µ (t) f∆ (t)

Example 2.4. The following table shows ∆-derivative of a function defined on

the time scales R,Z and qZ, q > 1.

T R Z qZ, q > 1

f∆ (t) f ′ (t) = lim
h→0

f(t+h)−f(t)
h

∆f(t) = f (t+ 1)− f(t) Dqf(t) =
f(qt)−f(t)
(q−1)t

Table 2.3: Continuous and discrete counterparts of ∆-derivative

Theorem 2.6 Let f and g are ∆-differentiable functions at t ∈ Tκ. Then, we

have

i. (αf + βg)∆ (t) = αf∆ (t) + βg∆ (t), for any constant α and β

ii. (fg)∆ (t) = f∆ (t) g (t) + f (σ (t)) g∆ (t)

iii. If f (t) f (σ (t)) 6= 0, then
(

1
f

)∆

(t) = − f∆(t)
f(t)f(σ(t))

iv. If g (t) g (σ (t)) 6= 0, then
(

f
g

)∆

(t) = f∆(t)g(t)−f(t)g∆(t)
g(t)g(σ(t))

.

Regularity and rd-continuity notions for functions defined on arbitrary time

scales are introduced in the next definition:

Definition 13. Let f be a real valued function defined on a time scale T. f

is said to be regular if its right and left sided limits exist as finite numbers at

all right dense and left dense points in T. Moreover, f is called rd-continuous if

it is continuous at all right dense points in T and its left sided limits exist as

finite numbers at all left dense points in T. Hereafter, Crd and C1
rd stand for the

class of rd-continuous functions and differentiable functions with rd-continuous

derivatives, respectively.

Theorem 2.7 Suppose the function f is defined on a time scale T. Then we have

the following implications:
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i. Continuity ⇒ rd-continuity

ii. Rd-continuity ⇒ regularity

iii. fσ is regulated (rd-continuous) when f is regulated (rd-continuous).

Theorem 2.8 The sufficient condition for a function to have an antiderivative

is being rd-continuous. In particular if t0 ∈ Y the antiderivative F of an rd-

continuous function f is defined by

F (t) :=

∫ t

t0

f (τ)∆τ for t ∈ T.

Example 2.5. The following table shows integration on time scales R, Z and qZ:

T R Z qZ, q < 1∫ b

0
f(t)∆t

∫ b

0
f(t)dt

∑b−1
t=0 f(t), (0 < b)

∫ b

0
f(t)dqt = (1− q) b

∑∞
j=0 q

jf(qjb)

Table 2.4: Continuous and discrete counterparts of integration on particular time
scales

2.2.2 Hilger’s complex plane and time scale exponential

function

Definition 14. Hilger complex numbers are defined by the set

Cµ : =

{
z ∈ C : z 6= −

1

µ (t)

}
.

Moreover, Hilger real axis, Hilger alternating axis and the Hilger imaginary circle
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are given by the sets

Rµ : =

{
z ∈ Cµ : z ∈ R and z > −

1

µ (t)

}
,

Aµ : =

{
z ∈ Cµ : z ∈ R and z < −

1

µ (t)

}
,

Iµ : =

{
z ∈ Cµ :

∣∣∣∣z +
1

µ (t)

∣∣∣∣ =
1

µ (t)

}
,

respectively. Notice that when µ (t) = 0 we have C0 = C, R0 = R, I0 = iR and

A0 = ∅.

The following figure illustrates the Hilger’s complex plane: Reµ (z) , Imµ (z) and

Figure 2.1: Hilger’s complex plane
.

◦
ı are called Hilger real part of z, Hilger imaginary part of z and Hilger purely

imaginary number defined by

Reµ (z) :=
|zµ (t) + 1| − 1

µ (t)
,

Imµ (z) :=
Arg (zµ (t) + 1)

µ (t)
,

and
◦
ıω =

eiωµ(t) − 1

µ (t)
for −

π

µ (t)
< ω ≤

π

µ (t)
,
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respectively.

Definition 15. The circle plus, ⊕, on Cµ is defined by

z ⊕ w = z + w + zwµ (t) .

Notice that (Cµ,⊕) is an Abelian group. Moreover, the inverse of z with respect

to the operation ⊕ is represented by 	z given by

	z := −
z

1 + zµ (t)
,

and the operation 	 satisfies

i. z 	 w = z ⊕ (	w)

ii. z 	 z = 0

iii. z 	 w = z−w
1+wµ(t)

.

Observe that for any complex number z in Cµ can be decomposed as

z = Reµ (z)⊕
◦
ıImµ (z) .

Definition 16. A function p : T→ R is said to be regressive if

1 + µ (t) p (t) 6= 0 for all t ∈ Tκ.

Hereafter, we use the notation R to represent the set of all regressive and rd-

continuous functions defined on T.

Definition 17. Let p ∈ R. Then the time scale exponential function ep (t, s) is

defined by

ep (t, s) = exp

(∫ t

s

ξµ(τ) (p (τ))∆τ

)
for s, t ∈ T,

where ξµ(t) is the cylinder transform given by

ξµ(t) (z) = log (1 + zµ (t)) .
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Furthermore, for a fixed t0 ∈ T the time scale exponential function is defined as

a solution of the following regressive initial value problem

y∆ = p (t) y, y (t0) = 1

on T.

In the following result, basic properties of time scale exponential function are

given.

Theorem 2.9 Let p, q ∈ R. Then

i. e0(t, s) ≡ 1 and ep(t, t) ≡ 1

ii. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s)

iii. ep(t, s) =
1

ep(s,t)
= e	p(s, t)

iv. ep(t, s)ep(s, r) = ep(t, r)

v.
(

1
ep(·,s)

)∆

= − p(t)
eσp (·,s)

.

Example 2.6. The following table demonstrates some exponential functions over

some particular time scales.

T eα(t, t0)

R eα(t−t0)

Z (1 + α)t−t0

hZ (1 + hα)(t−t0)/h

qN0

∏

s∈[t0,t)qN0

[1 + (q − 1)αs] , t > t0

1
n
Z

(
1 + α

n

)n(t−t0)

Table 2.5: Exponential functions on some particular time scales
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2.2.3 Regressive matrices and time scale matrix exponen-

tial

Definition 18. Let A be an n × n matrix function so that A : T→ Rn×n. A is

said to be rd-continuous if each entry of A is rd-continuous on T. The notation

Crd is also used for the representation of rd-continuous matrix functions.

Definition 19. Let A be an n×n matrix function on T. A is said to be regressive

on T if I + µ (t)A(t) is invertible for all t ∈ Tκ. The notation R represents the

class of regressive rd-continuous matrix functions on T like the scalar case.

Definition 20. Suppose A is an n×n regressive matrix valued function on T and

t0 ∈ T. Then the matrix exponential function, eA (., t0) is defined as the unique

matrix valued solution of the following matrix initial value problem

Y ∆ = A (t)Y, Y (t0) = I,

where I indicates the the identity matrix.

Example 2.7. If A is chosen to be a constant n × n matrix, then we have the

matrix exponentials

eA (t, t0) = eA(t−t0)

on T = R and

eA (t, t0) = (I + A)t−t0

on T = Z provided A 6= −I.

The following theorem summarizes the basic properties of time scale matrix

exponential functions:

Theorem 2.10 Let A be an n × n regressive matrix function on T. Then, we

have

i. e0 (t, s) ≡ I and eA (t, t) ≡ I, where 0 denotes zero matrix

ii. eA (σ (t) , s) = (I + µ (t)A (t)) eA (t, s)
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iii. eA (t, s) = e−1A (s, t)

iv. eA (t, s) eA (s, r) = eA (t, r) .

For an arbitrary matrix A, the solution of the system

x∆(t) = A(t)x(t), x(t0) = x0

is given by the equality

x (t) = ΦA (t, t0) x0,

where ΦA (t, t0), called the transition matrix for the system (4.1), is given by

ΦA (t, t0) = I +

t∫

t0

A (τ1)∆τ1 +

t∫

t0

A (τ1)

τ1∫

t0

A (τ2)∆τ2∆τ1 + . . .

+

t∫

t0

A (τ1)

τ1∫

t0

A (τ2) . . .

τi−1∫

t0

A (τi)∆τi . . .∆τ1 + . . . (2.5)

As it is discussed in [39], the matrix exponential eA (t, t0) is not always identical

to ΦA (t, t0). We have eA (t, t0) ≡ ΦA (t, t0) only if the matrix A satisfies the

equality

A (t)

t∫

s

A (τ)∆τ =

t∫

s

A (τ)∆τA (t) .

2.2.4 The new periodicity concept on time scales

In this part, shift operators and new periodicity notion based on shift operators

on time scales are introduced according to studies [11] and [12]. Given results

and examples can be directly found in [12].

Definition 21 (Shift operators). Let T∗ be a nonempty subset of T including

a fixed number t0 ∈ T∗ such that there exist operators δ± : [t0,∞)T × T∗ → T∗

satisfying the following properties
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i. Shift operators δ± are strictly increasing in their second arguments, if

(T, t) , (T, u) ∈ D± := {(s, t) ∈ [t0,∞)T × T∗ : δ± (s, t) ∈ T∗} ,

then

T ≤ t < u implies δ± (T, t) < δ± (T, u)

ii. If (T1, u) , (T2, u) ∈ D− with T1 < T2, then δ− (T1, u) > δ− (T2, u) and if

(T1, u) , (T2, u) ∈ D+ with T1 < T2, then δ+ (T1, u) < δ+ (T2, u)

iii. If t ∈ [t0,∞)T , then (t, t0) ∈ D+ and δ+ (t, t0) = t. Moreover, if t ∈ T∗, then

(t0, t) ∈ D+ and δ+ (t0, t) = t

iv. (a) If (s, t) ∈ D+, then (s, δ+ (s, t)) ∈ D− and δ− (s, δ+ (s, t)) = t

(b) If (s, t) ∈ D−, then (s, δ− (s, t)) ∈ D+ and δ+ (s, δ− (s, t)) = t

v. (a) If (s, t) ∈ D+ and (u, δ+ (s, t)) ∈ D−, then (s, δ− (u, t)) ∈ D+ and

δ− (u, δ+ (s, t)) = δ+ (s, δ− (u, t))

(b) If (s, t) ∈ D− and (u, δ− (s, t)) ∈ D+, then (s, δ+ (u, t)) ∈ D− and

δ+ (u, δ− (s, t)) = δ− (s, δ+ (u, t)) .

The operators δ+ and δ− are called as forward and backward shift operators

corresponding the initial point t0. Moreover, the sets D+ and D− are the domains

of the forward and backward shift operators, respectively.

Example 2.8. The following table shows the shift operators δ± (s, t) on some

time scales:

T t0 T∗ δ− (s, t) δ + (s, t)
R 0 R t− s t+ s
Z 0 Z t− s t+ s

qZ ∪ {0} , q > 1 1 qZ t
s

st

N1/2 0 N1/2 (t2 − s2)
1/2

(t2 + s2)
1/2

Table 2.6: Shift operators on particular time scales
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Definition 22 (Periodicity in shifts). Let T be a time scale with the shift oper-

ators δ± associated with the initial point t0 ∈ T∗, then T is said to be periodic in

shifts δ±, if there exists a p ∈ (t0,∞)T∗ such that (p, t) ∈ D∓ for all t ∈ T∗. P is

called the period of T with respect to T∗ if

P = inf {p ∈ (t0,∞)T∗ : (p, t) ∈ D∓ for all t ∈ T∗} > t0.

Note that additive periodic time scales are unbounded sets. The following

example indicates that a periodic time scale in shifts may be bounded.

Example 2.9. The time scale T=
{

qn

1+qn
: q > 1 is constant and n ∈ Z

}
∪ {0, 1}

is a bounded time scale which is periodic in shifts with respect to

T∗ =

{
qn

1 + qn
: q > 1 is constant and n ∈ Z

}
.

and shift operators

δ±(P, t) =
q







ln( t
1−t)±ln( P

1−P )
ln q







1 + q

(
ln( t

1−t)±ln( P
1−P )

ln q

) , P =
q

1 + q
, t0 =

1

2
.

Definition 23 (Periodic function in shifts δ±). Assume that T is a time scale

P -periodic in shifts and f is a real valued function defined on T∗. The function

f is periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± and f
(
δT± (t)

)
= f (t) for all t ∈ T∗, (2.6)

where δT± (t) = δ± (T, t). The possible smallest number T satisfying (2.6) is called

the period of f.

Example 2.10. Let T = R with initial point t0 = 1, the function

f (t) = sin

(
ln |t|

ln (1/2)
π

)
, t ∈ R∗ := R−{0}
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is 4-periodic in shifts δ± since

f (δ± (4, t)) =

{
f (t4±1) if t ≥ 0

f (t/4±1) if t < 0

= sin

(
ln |t| ± 2 ln (1/2)

ln (1/2)
π

)

= sin

(
ln |t|

ln (1/2)
π ± 2π

)

= sin

(
ln |t|

ln (1/2)
π

)

= f (t) .

Definition 24 (∆-periodic function in shifts δ±). Assume that T is a time scale

P -periodic in shifts and f is a real valued function defined on T∗. The function

f is ∆-periodic function in shifts if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± for all t ∈ T∗ (2.7)

the shifts δT± are ∆-differentiable with rd-continuous derivatives (2.8)

and

f
(
δT± (t)

)
δ∆T
± (t) = f (t) (2.9)

for all t ∈ T∗, where δT± (t) = δ± (T, t). The possible smallest number T satisfying

(2.7-2.9) is called the period of f .

The following result is useful for integration of functions which are ∆-periodic

in shifts.

Theorem 2.11 Let T be a time scale that is periodic in shifts δ± with period P ∈

(t0,∞)T∗ and f a ∆-periodic function in shifts δ± with the period T ∈ [P,∞)T∗ .

Suppose that f ∈ Crd(T), then

∫ t

t0

f(s)∆s =

∫ δT
±
(t)

δT
±
(t0)

f(s)∆s.
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q-Floquet theory

In this chapter, q-analogue of Floquet theory for homogeneous and nonhomoge-

neous dynamic systems constructed on qZ for q > 1 is established to give sufficient

conditions for existence of periodic solutions by using Lyapunov transformation.

Lyapunov transformation on q-domain can be defined similar to Definition 2.1 in

[38] as follows:

Definition 25. A matrix valued function L : qZ → Rn×n is called Lyapunov

transformation if L(qm) is invertible, has a bounded matrix norm, and for some

η ∈ R+

|detL (qm)| ≥ η for all m ∈ Z.

3.1 Homogeneous case

Consider the nonautonomous regressive q-difference system

Dqx (q
m) = A (qm) x (qm) , x (qm0) = x0, m,m0 ∈ Z and m ≥ m0, (3.1)

where the matrix function A : qZ → Rn×n is multiplicatively periodic with period

qT . Hereafter, the system (3.1) is called q-Floquet system.

25
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In order to construct the matrix R which is a solution of the matrix exponen-

tial equation, the definition of real power of a matrix is essential.

Definition 26 (Real power of a matrix). [38, Definition A.5] Given an n × n

nonsingular matrix M with elementary divisors {(λ− λi)
mi}ki=1 and any r ∈ R,

the real power of the matrix M is introduced by

M r :=
k∑

i=1

Pi (M)λr
i

[
mi−1∑

j=0

Γ (r + 1)

j!Γ (r − j + 1)

(
M − λiI

λi

)j
]
, (3.2)

where

Pi (λ) := ai (λ) bi (λ) ,

bi (λ) := Πk
j 6=i
j=1

(λ− λj) ,

1

p (λ)
=

k∑

i=1

ai (λ)

(λ− λi)
mi

,

and p (λ) is the characteristic polynomial of M .

It can be seen from Proposition A.3 in [38] that M s+r = M sM r for any

r, s ∈ R.

Theorem 3.1 Let M be a nonsingular, n×n constant matrix and R : qZ→ Cn×n

be a matrix function. A solution of the matrix exponential equation

eR
(
qm0+T , qm0

)
= M, m0, T ∈ Z,

is given by

R (qm) =
M (q−T+1) − I

(q − 1) qm
, m ∈ Z. (3.3)

Proof. Let’s construct the matrix exponential function eR (q
m, qm0) as follows

eR (q
m, qm0) := M (q−T+1(m−m0)), (3.4)

where real power of a nonsingular matrixM is given by Definition 26. In order to

show that the function eR (q
m, qm0) constructed in (3.4) is the matrix exponential
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one can observe that eR (q
m0 , qm0) = M0 = I. Then, differentiating (3.4) yields

DqeR (q
m, qm0) = R (qm) eR (q

m, qm0) ,

which can be seen from

DqeR (q
m, qm0) =

eR (q
m+1, qm0)− eR (q

m, qm0)

(q − 1) qm

=
M (q−T+1(m+1−m0)) −M (q−T+1(m−m0))

(q − 1) qm

=
M (q−T+1) − I

(q − 1) qm
M (q−T+1(m−m0))

= R (qm) eR (q
m, qm0) .

This shows that (3.3) is a solution of eR
(
qm0+T , qm0

)
= M.

Corollary 3.2 The matrices R (qm) and M defined in Theorem 3.1 have the

same eigenvectors.

Proof. Let {λi, vi}, i = 1, 2, ..., n be eigenpairs of M, i.e., Mvi = λivi for all

i = 1, 2, ..., n. Consider

R(qm)vi =
M (q−T+1) − I

(q − 1) qm
vi =

(
λ
(q−T+1)
i − 1

(q − 1) qm

)
vi. (3.5)

Substituting γi(q
m) =

λ
(q−T+1)
i −1

(q−1)qm
into (3.5), one can conclude that R(qm) has the

eigenpairs {γi(q
m), vi}

n
i=1.

Lemma 3.3 Let P : qZ → Rn×n be a regressive, multiplicatively periodic matrix

valued function with period qT such as

P (qm) = P
(
qm+T

)
qT , m ∈ Z.

Then the transition matrix of the q-difference system

DqY (qm) = P (qm)Y (qm) , Y (qm0) = Y0, m,m0 ∈ Z with m ≥ m0, (3.6)
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is unique up to period qT . That is

ΦP (q
m, qm0) = ΦP

(
qm+T , qm0+T

)
(3.7)

for all m,m0 ∈ Z.

Proof. By [39], the unique solution to (3.6) is Y (qm) = ΦP (q
m, qm0)Y0. Observe

that

DqY (qm) = DqΦP (q
m, qm0)Y0 = P (qm) ΦP (q

m, qm0)Y0

and

Y (qm0) = ΦP (q
m0 , qm0)Y0 = Y0.

To verify (3.7), it should be shown that ΦP

(
qm+T , qm0+T

)
Y0 also solves (3.6).

Taking the q-derivative of ΦP

(
qm+T , qm0+T

)
Y0 gives

Dq

[
ΦP

(
qm+T , qm0+T

)
Y0

]
= P

(
qm+T

)
qTΦP

(
qm+T , qm0+T

)
Y0

= P (qm) ΦP

(
qm+T , qm0+T

)
Y0.

On the other hand,

ΦP

(
qm+T , qm0+T

)
m=m0

Y0 = ΦP

(
qm0+T , qm0+T

)
Y0 = Y0,

which means that ΦP

(
qm+T , qm0+T

)
Y0 solves (3.6). From the uniqueness of the

solution of (3.6), we get (3.7).

The next result can be proved in a similar way.

Corollary 3.4 Let P : qZ → Rn×n be a regressive, multiplicatively periodic matrix

valued function with period qT . Then

eP (q
m, qm0) = eP

(
qm+T , qm0+T

)
for m,m0 ∈ Z. (3.8)

Theorem 3.5 (Floquet decomposition) Let A be a matrix valued function that

is multiplicatively periodic with period qT . The transition matrix for A in (3.1)
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can be decomposed in the following form

ΦA (q
m, qτ ) = L (qm) eR (q

m, qτ )L−1 (qτ ) , for all m, τ ∈ Z, (3.9)

where R : qZ→ Cn×n as in (3.3) is multiplicatively qT -periodic and L : qZ → Rn×n

is defined by

L (qm) := ΦA (q
m, qm0) e−1R (qm, qm0) for m,m0 ∈ Z (3.10)

periodic with period qT and invertible.

Proof. Let the matrix function R defined as in Theorem 3.1 with a constant

matrix M := ΦA

(
qm0+T , qm0

)
. Then consequently, we have eR

(
qm0+T , qm0

)
=

ΦA

(
qm0+T , qm0

)
and we define the Lyapunov transformation L as in (3.10). Ob-

viously, L is defined on qZ and invertible. The equality

ΦA (q
m, qm0) = L (qm) eR (q

m, qm0) (3.11)

along with (3.10) implies

ΦA (q
m0 , qm) = e−1R (qm, qm0)L−1 (qm)

= eR (q
m0 , qm)L−1 (qm) . (3.12)

Equation (3.9) can be obtained by combining (3.11) and (3.12). The periodicity

of L can be shown by using (3.7) and (3.8) which yields

L
(
qm+T

)
= ΦA

(
qm+T , qm0

)
e−1R

(
qm+T , qm0

)

= ΦA

(
qm+T , qm0+T

)
ΦA

(
qm0+T , qm0

)
eR

(
qm0 , qm+T

)

= ΦA

(
qm+T , qm0+T

)
ΦA

(
qm0+T , qm0

)
eR

(
qm0 , qm0+T

)
eR

(
qm0+T , qm+T

)

= ΦA

(
qm+T , qm0+T

)
eR

(
qm0+T , qm+T

)

= ΦA

(
qm+T , qm0+T

)
e−1R

(
qm+T , qm0+T

)

= ΦA (q
m, qm0) e−1R (qm, qm0)

= L (qm) for m,m0 ∈ Z.
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Hereafter, (3.9) is refered as the q-Floquet decomposition for ΦA. The following

result can be proven similar to Theorem 3.7 in [38].

Theorem 3.6 Let the transition matrix ΦA of the system (3.1) is decomposed as

ΦA (q
m, qm0) = L (qm) eR (q

m, qm0). Then, x (qm) = ΦA (q
m, qm0) x0 is a solution

of the q-Floquet system (3.1) if and only if the linear q-difference system

Dqz (q
m) = R (qm) z (qm) , z (qm0) = x0, m,m0 ∈ Z and m ≥ m0

has a solution of the form z (qm) = L−1 (qm) x (qm).

Theorem 3.7 The q-Floquet system (3.1) has a qT -periodic solution with a

nonzero inital state x (qm0) = x0 if and only if at least one of the eigenvalues

of

eR
(
qm0+T , qm0

)
= ΦA

(
qm0+T , qm0

)
, m0 ∈ Z

is 1.

Proof. Let x (qm) be a qT -periodic solution of (3.1) corresponding to nonzero

initial state x (qm0) = x0. Then, the decomposition of the solution x can be

written as

x (qm) = ΦA (q
m, qm0) x0 = L (qm) eR (q

m, qm0)L−1 (qm0) x0 for m,m0 ∈ Z,

by employing Theorem 3.5. Furthermore, we have

x
(
qm+T

)
= L

(
qm+T

)
eR

(
qm+T , qm0

)
L−1 (qm0) x0,

and using qT -periodicity of x and L, one can obtain

eR (q
m, qm0)L−1 (qm0) x0 = eR

(
qm+T , qm0

)
L−1 (qm0) x0,
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which gives the equalities

eR (q
m, qm0)L−1 (qm0) x0 = eR

(
qm+T , qm0+T

)
eR

(
qm0+T , qm0

)
L−1 (qm0) x0

= eR (q
m, qm0) eR

(
qm0+T , qm0

)
L−1 (qm0) x0,

where we use Corollary 3.4 in the last equation. Hence

L−1 (qm0) x0 = eR
(
qm0+T , qm0

)
L−1 (qm0) x0,

for m,m0 ∈ Z and, we deduce that L−1 (qm0) x0 is an eigenvector of the matrix

eR
(
qm0+T , qm0

)
corresponding to the eigenvalue 1.

Conversely, let us assume that 1 is an eigenvalue of eR
(
qm0+T , qm0

)
with corre-

sponding eigenvector z0. This means z0 is real valued and nonzero. Let us define

the function z(qm) = eR (q
m, qm0) z0. By using Corollary 3.4, one may show the

qT -periodicity of z as follows:

z
(
qm+T

)
= eR

(
qm+T , qm0

)
z0

= eR
(
qm+T , qm0+T

)
eR

(
qm0+T , qm0

)
z0

= eR
(
qm+T , qm0+T

)
z0

= eR (q
m, qm0) z0

= z (qm) .

Fixing x0 := L (qm0) z0 and employing Theorem 3.5, the nontrivial qT -periodic

solution x of q-Floquet system (3.1) is obtained as follows

x (qm) = ΦA (q
m, qm0) x0 = L (qm) eR (q

m, qm0)L−1 (qm0) x0

= L (qm) eR (q
m, qm0) z0 = L (qm) z (qm) .

This completes the proof.

Example 3.1. Consider the following linear homogeneous 2 × 2 diagonal q-

difference initial value problem

Dqx = A (qm) x (qm) , x (1) = x0, m ∈ Z, (3.13)
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where

x (qm) =

[
x1 (q

m)

x2 (q
m)

]
,

x (1) =

[
x10

x20

]
,

and

A (qm) =

[
c1q

−m 0

0 c2q
−m

]

with positive reals c1 and c2. Then, the matrix function is multiplicatively q-

periodic and the transition matrix for the system (3.13) can be given as

ΦA (q
m, 1) =

[
[1 + (q − 1) c1]

m 0

0 [1 + (q − 1) c2]
m

]

where we also use the explicit form of q- exponential function (see Definition 3).

Now as we did in Theorem 3.1, we have

ΦA (q, 1) = eR (q, 1) =

[
1 + (q − 1) c1 0

0 1 + (q − 1) c2

]
= M.

Then the matrix function R(qm) in Floquet decomposition is given by

R(qm) =
M − I

(q − 1) qm

=
1

(q − 1) qm

[
(q − 1) c1 0

0 (q − 1) c2

]

=

[
q−mc1 0

0 q−mc2

]
.

Furthermore, by (3.4) we have eR (q
m, 1) = Mm and the matrix function L is
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obtained as

L (qm) = ΦA (q
m, 1) e−1R (qm, 1)

=

[
[1 + (q − 1) c1]

m 0

0 [1 + (q − 1) c2]
m

][
[1 + (q − 1) c1]

−m 0

0 [1 + (q − 1) c2]
−m

]

= I.

3.2 Nonhomogeneous case

This part of the thesis concerns with the existence of a periodic solution of the

following nonhomogeneous regressive initial value problem

Dqx (q
m) = A (qm) x (qm) + f (qm) , x (qm0) = x0 for m,m0 ∈ Z, (3.14)

where A : qZ→ Rn×n, f : qZ→ Rn and f is regressive. Hereafter, A and f are

supposed to be multiplicatively periodic with the period qT .

Lemma 3.8 A solution x (qm) of (3.14) is qT -periodic if and only if x
(
qm0+T

)
=

x (qm0) .

Proof. Assume that x (qm) qT -periodic and define z (qm) as

z (qm) = x
(
qm+T

)
− x (qm) , m ∈ Z,

and obviously z (qm0) = x
(
qm0+T

)
− x (qm0) = 0. Additionally, taking the q-

derivative of both sides of (3.14) yields

Dqz (q
m) = Dq

[
x
(
qm+T

)
− x (qm)

]

= Dq

(
x
(
qm+T

))
−Dq (x (q

m))

= A
(
qm+T

)
x
(
qm+T

)
qT + f

(
qm+T

)
qT − A (qm) x (qm)− f (qm) .
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Since A and f are multiplicatively periodic with period qT , we have

Dqz (q
m) = A (qm) x

(
qm+T

)
+ f (qm)− A (qm) x (qm)− f (qm)

= A (qm)
[
x
(
qm+T

)
− x (qm)

]

= A (qm) z (qm) .

By the uniqueness of solutions, one can conclude that z (qm) ≡ 0 and x
(
qm+T

)
=

x (qm) for all m ∈ Z.

Theorem 3.9 The solution of (3.14) is qT -periodic for any inital point qm0 ,m0 ∈

Z and corresponding initial state x (qm0) = x0 if and only if the multiplicatively

qT -periodic homogeneous initial value problem

Dqz (q
m) = A (qm) z (qm) , z (qm0) = z0, (3.15)

has not a periodic solution for any nonzero initial state z (qm0) = z0.

Proof. In [13], the solution of

x∆(t) = A(t)x(t) + f(t) (3.16)

is given by

x (t) = X (t)X−1 (τ) x0 +

∫ t

τ

X (t)X−1 (σ (s)) f (s)∆s

on an arbitrary time scale, where X (t) is a fundamental matrix solution of the

homogenous part of the system (3.16) with the initial condition x (τ) = x0. As

it is shown in [13], one can express the solution x (t) of (3.14) as follows:

x (qm) = ΦA (q
m, qm0) x0 +

∫ qm

qm0

ΦA (q
m, qs) f (s) dqs, (3.17)

where s is of the form qτ for τ ∈ Z.

By the previous lemma it is known that x (qm) is qT -periodic if and only if
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x
(
qm0+T

)
= x0 or equivalently

[
I − ΦA

(
qm0+T , qm0

)]
x0 =

∫ qm0+T

qm0

ΦA

(
qm0+T , qs

)
f (s) dqs, (3.18)

where s is in the same form as in (3.17). By guidance of Theorem 3.7, we have to

show that (3.14) has a solution if and only if eR
(
qm0+T , qm0

)
has no eigenvalues

equal to 1.

Let eR
(
q%+T , q%

)
= ΦA

(
q%+T , q%

)
, for some % ∈ Z, has no eigenvalues equal to

1. That is,

det
[
I − ΦA

(
q%+T , q%

)]
6= 0.

Invertibility and periodicity of ΦA imply that

0 6= det
[
ΦA

(
qm0+T , q%+T

) (
I − ΦA

(
q%+T , q%

))
ΦA (q

%, qm0)
]

= det
[
ΦA

(
qm0+T , q%+T

)
ΦA (q

%, qm0)− ΦA

(
qm0+T , qm0

)]
. (3.19)

By periodicity of ΦA, the invertibility of
[
I − ΦA

(
qm0+T , qm0

)]
is equivalent to

(3.19) for any qm0 ,m0 ∈ Z. Thus, (3.18) has a solution in the following form

x0 =
[
I − ΦA

(
qm0+T , qm0

)]−1
∫ qm0+T

qm0

ΦA

(
qm0+T , qs

)
f (s) dqs

for any initial point qm0 and for any multiplicatively periodic function f with

period qT . Let ξ (qm) := q1−m+m0 . From the definition of ξ, we have ξ
(
qm+T

)
=

1
qT
ξ (qm) . This shows that ξ is multiplicatively periodic with period qT . For an

arbitrary initial point qm0 and corresponding f0 := f (qm0) , one can define a

regressive and multiplicatively periodic function f as

f (qm) := ΦA

(
qm+1, qm0+T

)
ξ (qm) f0, m ∈ [m0,m0 + T )Z . (3.20)

Then, ∫ qm0+T

qm0

ΦA

(
qm0+T , qs

)
f (s) dqs = f0

∫ qm0+T

qm0

ξ (s) dqs. (3.21)
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Thus, (3.18) can be rewritten as

[
I − ΦA

(
qm0+T , qm0

)]
x0 = f0

∫ qm0+T

qm0

ξ (s) dqs. (3.22)

For any f given in (3.20), and hence for any corresponding f0, (3.22) has a solution

for x0 by assumption. Therefore,

det
[
I − ΦA

(
qm0+T , qm0

)]
6= 0.

Consequently, eR
(
qm0+T , qm0

)
= ΦA

(
qm0+T , qm0

)
has no eigenvalue 1. Then, one

can conclude by Theorem 3.7 that (3.15) has no periodic solution.

3.3 q-Floquet multipliers and q-Floquet expo-

nents

In this section, Floquet multipliers and exponents of the q-Floquet system (3.1)

and their properties are investigated. Let Φ (qm) be the fundamental matrix

solution at qτ (i.e. Φ (qτ ) = I) for the system (3.1). Then, any fundamental

matrix solution Ψ (qm) can be written as follows

Ψ (qm) = Φ (qm)Ψ (qτ ) or Ψ (qm) = ΦA (q
m, qm0)Ψ (qm0) , (3.23)

where ΦA is the transition matrix of the system (3.1).

Definition 27. For a nonzero initial state x0 ∈ Rn, the monodromy operator

M : Rn → Rn is given by

M (x0) := ΦA

(
qm0+T , qm0

)
x0 = Ψ

(
qm0+T

)
Ψ−1 (qm0) x0, (3.24)

where ΦA is the transition matrix and Ψ is any fundamental matrix solution of

(3.1). The eigenvalues of the monodromy operator are called Floquet (character-

istic) multipliers of the system (3.1).
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The following result can be presented in a similar way as in Theorem 7.1 in

[37].

Lemma 3.10 The monodromy operator is an invertible matrix and as a conse-

quence, every Floquet multiplier is nonzero.

Theorem 3.11 The monodromy operator M corresponding to different funda-

mental matrices of the system (3.1) is unique.

Proof. Suppose that M1 and M2 are monodromy operators corresponding to fun-

damental matrices Ψ1 (q
m) and Ψ2 (q

m) for m ∈ Z, respectively. By using Def-

inition 27, one can obtain the monodromy operator M2 (x0) corresponding to

Ψ2 (q
m) as follows

M2 (x0) = Ψ2

(
qm0+T

)
Ψ−12 (qm0) x0.

Using (3.23), we get

M2 (x0) = Ψ2

(
qm0+T

)
Ψ−12 (qm0) x0

= Ψ1

(
qm0+T

)
Ψ2 (q

τ )Ψ−12 (qτ )Ψ−11 (qm0) x0

= Ψ1

(
qm0+T

)
Ψ−11 (qm0) x0

= M1 (x0) .

By using Theorem 3.5, (3.23), and (3.24), we obtain

ΦA (q
m, qm0) = Ψ1 (q

m)Ψ−11 (qm0) = L (qm) eR (q
m, qm0)L−1 (qm0) (3.25)

and

M (x0) = ΦA

(
qm0+T , qm0

)
x0 = Ψ1

(
qm0+T

)
Ψ−11 (qm0) x0. (3.26)

Combining (3.25) and (3.26) yields

ΦA

(
qm0+T , qm0

)
= Ψ1

(
qm0+T

)
Ψ−11 (qm0) = L

(
qm0+T

)
eR

(
qm0+T , qm0

)
L−1

(
qm0+T

)
.
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The periodicity of L gives

ΦA

(
qm0+T , qm0

)
= L (qm0) eR

(
qm0+T , qm0

)
L−1 (qm0) , m0 ∈ Z. (3.27)

Hence, it is observed that Floquet multipliers of the system (3.1) are the eigen-

values of the matrix eR
(
qm0+T , qm0

)
.

Definition 28 (Floquet exponent). The Floquet exponent of the system (3.1) is

defined as to be the function satisfying the equation

eγ
(
qm0+T , qm0

)
= λ,

where λ is the Floquet multiplier of (3.1).

The next result is the q-analogue of the spectral mapping theorem and it can

be proven by following the same way of the proof of [38, Theorem 5.3].

Theorem 3.12 Let R (qm) be a matrix function as in Theorem 3.1,

with eigenvalues γ1 (q
m) , . . . , γn (q

m) repeated according to multiplicities.Then

γp
1 (q

m) , . . . , γp
n (q

m) are the eigenvalues of Rp (t) and the eigenvalues of eR are

eγ1 , . . . , eγn. As a consequence, Floquet exponents are the eigenvalues of the ma-

trix R.

Next theorem shows that Floquet exponents of the system (3.1) are not

unique.

Theorem 3.13 Let γ be a Floquet exponent of the system and λ be the corre-

sponding Floquet multiplier such that eγ
(
qm0+T , qm0

)
= λ. Then γ (qm)⊕

◦
ı 2πτ
(q−1)qm0

is also a Floquet exponent for (3.1) for all τ ∈ Z.

Proof. For all τ ∈ Z and any initial point qm0 for m0 ∈ Z we have

e
γ⊕
◦
ı 2πτ
(q−1)qm0

(
qm0+T , qm0

)
= eγ

(
qm0+T , qm0

)
e◦
ı 2πτ
(q−1)qm0

(
qm0+T , qm0

)
,

where

◦
ı

2πτ

(q − 1) qm0
=

e
i2πτqm

qm0 − 1

(q − 1) qm
.
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Then by using explicit form of q-exponential function, we obtain

e
γ⊕
◦
ı 2πτ
(q−1)qm0

(
qm0+T , qm0

)
= eγ

(
qm0+T , qm0

) ∏

%∈[m0,m0+T )
Z

[
1 + (q − 1) q%

[
e

i2πτq%

qm0 − 1

(q − 1) q%

]]

= eγ
(
qm0+T , qm0

) ∏

%∈[m0,m0+T )
Z

e
i2πτq%

qm0

= eγ
(
qm0+T , qm0

)
,

which gives the desired result.

Lemma 3.14 Let τ ∈ Z. Then the exponential functions e◦
ı 2πτ
qm0 (q−1)

and e
	
◦
ı 2πτ
qm0 (q−1)

are q periodic.

Proof. Consider the explicit form of
◦
ı 2πτ
qm0 (q−1)

on q-calculus

◦
ı

2πτ

qm0 (q − 1)
=
exp(i2πτqm−m0)− 1

(q − 1) qm

which enables to write

e◦
ı 2πτ
qm0 (q−1)

(
qm+1, qm0

)
=

∏

%∈[m0,m+1)
Z

1 + (q − 1) q%
exp(i2πτq%−m0)− 1

(q − 1) q%

= exp(i2πτqm−m0)
∏

%∈[m0,m)
Z

1 + (q − 1) q%
exp(i2πτq%−m0)− 1

(q − 1) q%

=
∏

%∈[m0,m)
Z

1 + (q − 1) q%
exp(i2πτq%−m0)− 1

(q − 1) q%

= e◦
ı 2πτ
qm0 (q−1)

(qm, qm0) .

The periodicity of e
	
◦
ı 2πτ
qm0 (q−1)

can be shown by repeating the same procedure,

hence we omit it.

Theorem 3.15 If the q-Floquet system (3.1) has a Floquet exponent γ (qm), then

the transition matrix ΦA (q
m, qm0) has the following decomposition

ΦA (q
m, qm0) = L (qm) eR (q

m, qm0) ,

where γ (qm) is an eigenvalue of R (qm) .
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Proof. Consider the Floquet decomposition ΦA (q
m, qm0) = L̃ (qm) eR̃ (q

m, qm0)

and let γ be the Floquet exponent according to Floquet multiplier λ. The matrix

function R̃ (qm) has an eigenvalue γ̃ (qm) such that eγ̃
(
qm0+T , qm0

)
= λ, where

γ̃ (qm) can be generated from Theorem 3.13 for τ ∈ Z as

γ̃ (qm) := γ (qm)⊕
◦
ı

2πτ

(q − 1) qm0
.

Then, we set

R (qm) := R̃ (qm)	
◦
ı

2πτ

(q − 1) qm0
I,

and

L (qm) := L̃ (qm) e◦
ı 2πτ
(q−1)qm0 I

(qm, qm0) ,

gives

R̃ (qm) := R (qm)⊕
◦
ı

2πτ

(q − 1) qm0
I.

Hence,

L (qm) eR (q
m, qm0) = L̃ (qm) e◦

ı 2πτ
(q−1)qm0 I

(qm, qm0) eR (q
m, qm0)

= L̃ (qm) e◦
ı 2πτ
(q−1)qm0 I⊕R

(qm, qm0) = L̃ (qm) eR̃ (q
m, qm0) .

This shows that ΦA (q
m, qm0) = L (qm) eR (q

m, qm0) is another Floquet decompo-

sition of (3.1) where γ (qm) is an eigenvalue of R (qm) .

Theorem 3.16 Let λ be a Floquet multiplier of the q-Floquet system (3.1) and

γ (qm) be the corresponding Floquet exponent. Then, (3.1) has a nontrivial solu-

tion of the form

x (qm) = eγ (q
m, qm0)κ (qm) (3.28)

satisfying

x
(
qm+T

)
= λx (qm) ,

where κ is a qT -periodic function.

Proof. Let ΦA (q
m, qm0) be the transition matrix of (3.1) and ΦA (q

m, qm0) =

L (qm) eR (q
m, qm0) is Floquet decomposition such that γ (qm) is an eigenvalue of

R (qm) for m,m0 ∈ Z. There exists a nonzero vector u 6= 0 such that R (qm) u =
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γ (qm) u, and therefore, eR (q
m, qm0) u = eγ (q

m, qm0) u by spectral mapping theo-

rem stated in Theorem 3.12. Then, the solution x (qm) := ΦA (q
m, qm0) u can be

represented as follows

x (qm) = L (qm) eR (q
m, qm0) u = eγ (q

m, qm0)L (qm) u.

The above equation implies (3.28) when κ (qm) = L (qm) u.

In order to prove the second part of the theorem consider the following equation:

x
(
qm+T

)
= eγ

(
qm+T , qm0

)
κ
(
qm+T

)

= eγ
(
qm+T , qm0+T

)
eγ

(
qm0+T , qm0

)
κ (qm)

= eγ
(
qm0+T , qm0

)
eγ (q

m, qm0)L (qm) u

= eγ
(
qm0+T , qm0

)
x (qm)

= λx (qm) ,

which completes the proof.

This theorem provides a procedure for the construction of a solution to the

system (3.1) when a Floquet multiplier is given, where the next one shows the

linear independence of two solutions corresponding to two distinct characteristic

multipliers.

Theorem 3.17 Let λ1 and λ2 be the characteristic multipliers of the system (3.1)

and γ1, γ2 are Floquet exponents such that

eγi(q
m0+T , qm0) = λi, i = 1, 2.

If λ1 6= λ2, then there exist qT -periodic functions χ1 and χ2 such that

xi(q
m) = eγi(q

m, qm0)χi(q
m), i = 1, 2

are linearly independent solutions of the system(3.1).

Proof. Let ΦA (q
m, qm0) = L (qm) eR (q

m, qm0) and γ1 (q
m) be an eigenvalue
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of R (qm) corresponding to eigenvector v1. Since λ2 is an eigenvalue of

ΦA

(
qm0+T , qm0

)
, by Theorem 3.12 there is an eigenvalue γ (qm) of R (qm) satis-

fying

eγ
(
qm0+T , qm0

)
= λ2 = eγ2

(
qm0+T , qm0

)
.

Hence, for some τ ∈ Z we have γ2(q
m) = γ (qm)⊕

◦
ı 2πτ
(q−1)qm0

. Furthermore, λ1 6= λ2

implies that γ(qm) 6= γ1 (q
m). If v2 is a nonzero eigenvector of R (qm) correspond-

ing to the eigenvalue γ(qm), then the eigenvectors v1 and v2 are linearly indepen-

dent. Similar to the related part in the proof of Theorem 3.16, we can state the

solutions of the system (3.1) can be written as

x1 (q
m) = eγ1 (q

m, qm0)L (qm) v1 (3.29)

and

x2 (q
m) = eγ (q

m, qm0)L (qm) v2.

Since x1 (q
m0) = v1 and x2 (q

m0) = v2, the solutions x1 (q
m) and x2 (q

m) are

linearly independent. Moreover, the solution x2 can be rewritten in the following

form

x2(q
m) = eγ2 (q

m, qm0) eγ	γ2(q
m, qm0)L(qm)ν2

= eγ2 (q
m, qm0) e

	
◦
ı 2πτ
(q−1)qm0

(qm, qm0)L(qm)ν2. (3.30)

The conclusion of proof follows by substituting χ1 (q
m) = L (qm) v1 and χ2 (q

m) =

e
	
◦
ı 2πτ
(q−1)qm0

(qm, qm0)L(qm)ν2 in (3.29) and (3.30), respectively.

3.4 Stability properties of q-Floquet systems

In this section, q-Floquet theory established in previous sections is employed to

investigate the stability characteristics of the regressive multiplicatively periodic

system

Dqx (q
m) = A (qm) x (qm) , x (qm0) = x0, for m,m0 ∈ Z, m ≥ m0. (3.31)
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By Theorem 3.1, the matrix function R is given by

R (qm) =
[ΦA

(
qm0+T , qm0

)
](q
−T+1) − I

(q − 1) qm
, (3.32)

where it is used in the Floquet decomposition theorem (see Theorem 3.5). Also,

Theorem 3.6 concludes that the solution z(qm) of the uniformly regressive system

Dqz (q
m) = R (qm) z (qm) , z (qm0) = x0 (3.33)

can be expressed in terms of the solution x(qm) of the system (3.31) as follows

z(qm) = L−1(qm)x(qm) (3.34)

where L(qm) is the Lyapunov transformation given by (3.10).

In preparation for the main result, the following definitions and results regard-

ing stability properties of homogeneous systems are presented. Notice that the

literature provided below is just q-analogues of definitions and results established

on time scales. We address [38] for stability and asymptotical stability properties

of the solution. Moreover, we refer to [30] for exponential stability criteria for the

solution of the homogeneous system (3.31).

Definition 29 (Stability). The q-Floquet system (3.31) is uniformly stable if

there exists a positive constant α such that for any m0 ∈ Z the corresponding

solution x(qm) satisfies

‖x(qm)‖ ≤ α ‖x(qm0)‖ , m ≥ m0.

Theorem 3.18 Let ΦA be the transition matrix of the q-Floquet system (3.31).

Then, (3.31) is uniformly stable if and only if the inequality

‖ΦA(q
m, qm0)‖ ≤ α

holds for a positive constant α > 0 and for all m ≥ m0.
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Definition 30 (Asymptotical stability). In addition to uniform stability condi-

tion, if for any given c > 0, there exists a K > 0 such that the inequality

‖x(qm)‖ ≤ c ‖x(qm0)‖ , qm ≥ qm0 +K.

holds, then the system (3.31) is uniformly asymptotically stable.

Definition 31 (Exponential stability). The q-Floquet system (3.31) is uniformly

exponentially stable if there exist α, β > 0 such that the inequality

‖x(qm)‖ ≤ ‖x(qm0)‖αe	β(q
m, qm0), m ≥ m0,

holds for any initial state and associated solution.

We provide necessary and sufficient conditions for exponential stability in the

next result.

Theorem 3.19 The system (3.31) is uniformly exponentially stable if and only

if there exist α, β > 0 such that the inequality

‖ΦA(q
m, qm0)‖ ≤ αe	β(q

m, qm0)

is satisfied for the transition matrix ΦA for all m ≥ m0.

Given a constant n× n matrix M , let S be a nonsingular matrix that trans-

forms M into its Jordan canonical form

J := S−1MS = diag [Jm1 (λ1) , . . . , Jmk
(λk)]

where k ≤ n,
∑k

i=1 mi = n, λi are the eigenvalues of M , and Jm (λ) is an m×m
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Jordan block given by

Jm (λ) =




λ 1

λ 1
. . . . . .

. . . 1

λ




.

The uniform regressivity notion for functions defined on qZ, q > 1 is given in the

next definition:

Definition 32. ( [67], See also [38, Definition 7.1]) The scalar function γ : qZ→ C

is uniformly regressive if there exists a constant θ > 0 such that 0 < θ−1 ≤

|1 + (q − 1) qmγ (qm)| , for all m ∈ Z.

Lemma 3.20 The q-Floquet system (3.31) has uniformly regressive Floquet ex-

ponents i.e. all eigenvalues of the matrix function R (qm) in (3.33) are uniformly

regressive.

Proof. Similar to Corollary 3.2, let

γi (q
m) =

λ
(q−T+1)
i − 1

(q − 1) qm
, i = 1, 2, ..., k (3.35)

be any of the k ≤ n distinct eigenvalues of R (qm). Then |1 + (q − 1) qmγi (q
m)| =∣∣∣λ(q−T+1)

i

∣∣∣ and setting θ−1 := min{
∣∣∣λ(q−T+1)

1

∣∣∣ , . . . ,
∣∣∣λ(q−T+1)

k

∣∣∣}, gives

0 < θ−1 ≤ |1 + (q − 1) qmγi (q
m)| ,

where 0 < θ−1 is obtained from Remark 4.3.

The following definition is the q-analogue of the Definition 7.3 given in [38].

Definition 33. A matrix function H (qm) is said to have a dynamic eigenvector

w (qm) with the dynamic eigenvalue ξ (qm) if the pair {ξ (qm) , w (qm)} satisfies

Dqw (qm) = H (qm)w (qm)− ξ (qm)w
(
qm+1

)
, m ∈ Z. (3.36)
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Then the pair {ξ (qm) , w (qm)} is called a dynamic eigenpair. Moreover, the

vector function

χi := eξi (q
m, qm0)wi (q

m) (3.37)

is called the mode vector of the matrix function H (qm) associated with the pair

{ξ (qm) , w (qm)}.

The following result can be given in a similar way in Lemma 7.4 in [38].

Lemma 3.21 Any regressive matrix function H has n dynamic eigenpairs with

linearly independent eigenvectors. Moreover, if the dynamic eigenvectors form

the columns of a matrix function W (qm), then W satisfies the matrix dynamic

eigenvalue problem

DqW (qm) = H (qm)W (qm)−W
(
qm+1

)
Ξ (qm) , (3.38)

where Ξ (qm) := diag [ξ1 (q
m) , . . . , ξn (q

m)] .

The following theorem basically shows that mode vectors can be used for

stability analysis.

Theorem 3.22 Solutions to the uniformly regressive (but not necessarily peri-

odic) time varying linear q-difference system (3.31) are

1. stable if and only if there exists a γ > 0 such that every mode vector χi (q
m)

of A (qm) satisfies ‖χi (q
m)‖ ≤ γ <∞ for all 1 ≤ i ≤ n;

2. asymptotically stable if and only if, in addition to (1), ‖χi (q
m)‖ → 0, for

all 1 ≤ i ≤ n,

3. exponentially stable if and only if there exists γ, λ > 0 such that ‖χi (q
m)‖ ≤

γe	λ (q
m, qm0), for all 1 ≤ i ≤ n and m ≥ m0.

Proof. Proof can be done by using exactly the same procedure in [38, Theorem

7.5].
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Definition 34. For each y ∈ N0 the mappings hy : q
Z×qZ → R+, recursively

defined by

h0(q
m, qm0) :≡ 1, hy+1(q

m, qm0) =

∫ qm

qm0

q

(q − 1) τ
hy(τ, q

m0)dqτ (3.39)

are called monomials.

Lemma 3.23 Let γ (qm) be an eigenvalue of R(qm) and λ be the corresponding

Floquet multiplier. If

−Reµγ(q
m) > 0 (3.40)

holds, then

lim
m→∞

hy(q
m, qm0)eγ (q

m, qm0) = 0

for y ∈ N0 and initial point qm0 .

Proof. Inspired by [47, Theorem 7.4], it suffices to show that limm→∞

hy(q
m, qm0)eReµγ(qm) (q

m, qm0) = 0, where

Reµγ(q
m) :=

|γ(qm) (q − 1) qm + 1| − 1

(q − 1) qm
.

We proceed by mathematical induction. Taking y = 0 gives h0(q
m, qm0) ≡ 1 and

by [67, Lemma 17], we have

lim
m→∞

eReµγ(qm) (q
m, qm0) = 0 for fixed m0.

Suppose that it is true for a fixed y ∈ N and consider the (y + 1)th step

lim
m→∞

hy+1 (q
m, qm0) eReµγ(qm) (q

m, qm0)

= lim
m→∞

[∫ qm

qm0

q

(q − 1) τ
hy (τ, q

m0) dqτ

] (
e	Reµγ(qm) (q

m, qm0)
)−1

= lim
m→∞

[
q

(q − 1) qm
hy (q

m, qm0)

]
eReµγ(qm) (q

m+1, qm0)

−Reµγ(qm)

= lim
m→∞

[
q

(q−1)qm
hy (q

m, qm0) eReµγ(t) (q
m+1, qm0)

−Reµγ(qm)

]
, (3.41)
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where q-analogue of l’Hospital theorem is used [24]. Using (3.35) we obtain

−Reµγi(q
m) =

1−
∣∣∣λ(q−T+1)

∣∣∣
(q − 1) qm

. (3.42)

Substituting (3.42) into (3.41), one can obtain

lim
m→∞

hy+1 (q
m, qm0) eReµγ(qm) (q

m, qm0) = lim
m→∞



q
∣∣∣λ(q−T+1)

∣∣∣hy (q
m, qm0) eReµγ(qm) (q

m, qm0)

1−
∣∣λ(q−T+1)

∣∣




= 0.

Theorem 3.24 Let {γi (q
m)}ni=1 be the set of conventional eigenvalues of the

matrix R(qm) given in (3.32) and {wi (q
m)}ni=1 be the set of corresponding

linearly independent dynamic eigenvectors as defined by Lemma 3.21. Then,

{γi (q
m) , wi (q

m)}ni=1 is a set of dynamic eigenpairs of R(qm) with the property

that for each 1 ≤ i ≤ n there are positive constants Di > 0 such that

‖wi (q
m)‖ ≤ Di

mi−1∑

y=0

hy (q
m, qm0) , (3.43)

holds where hy (q
m, qm0), y = 0, 1, ...,mi − 1, are the monomials defined as in

(3.39) and mi is the dimension of the Jordan block which contains the ith eigen-

value, for all 1 ≤ i ≤ n.

Proof. There exists an appropriate n × n constant, nonsingular matrix S which

transforms ΦA

(
qm0+T , qm0

)
to its Jordan canonical form given by

J := S−1ΦA

(
qm0+T , qm0

)
S

=




Jm1 (λ1)

Jm2 (λ2)
. . .

Jmd
(λd)




n×n

, (3.44)
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where d ≤ n,
∑d

i=1 mi = n, λi are the eigenvalues of ΦA

(
qm0+T , qm0

)
. By utilizing

above determined matrix S, one can define the following:

K (qm) := S−1R (qm)S

= S−1

(

[ΦA

(
qm0+T , qm0

)
](q
−T+1) − I

(q − 1) qm

)

S

=
S−1[ΦA

(
qm0+T , qm0

)
](q
−T+1)S − I

(q − 1) qm
.

This along with [38, Theorem A.6] yields K (qm) = J(q−T+1)−I
(q−1)qm

.

Note that, K (qm) has the block diagonal form

K (t) = diag [K1 (q
m) , . . . , Kd (q

m)]

in which each Ki (q
m) given by

Ki (q
m) :=




λ
(q−T+1)
i −1

(q−1)qm
q−T+1λ

(q−T+1
−1)

i

(q−1)qm
. . .

(
∏n−2

τ=0 [q
−T+1−τ ])λ(q−T+1

−n+1)
i

(q−1)qm(n−1)!

λ
(q−T+1)
i −1

(q−1)qm
. . .

(
∏n−3

τ=0 [q
−T+1−τ ])λ(q−T+1

−n+2)
i

(q−1)qm(n−2)!

. . .

λ
(q−T+1)
i −1

(q−1)qm




mi×mi

.

It should be mentioned that, since R (qm) and K (qm) are similar, they have the

same conventional eigenvalues

γi (q
m) =

λ
(q−T+1)
i − 1

(q − 1) qm
, i = 1, 2, ..., n

with corresponding multiplicities. Furthermore, if the dynamic eigenvalues of

K(qm) are taken as the conventional eigenvalues γi (q
m), then the correspond-

ing dynamic eigenvectors {ui (q
m)}ni=1 of K (qm) can be given by ui (q

m) =

S−1wi (q
m).

In order to prove this claim let’s show that {γi (q
m) , ui (q

m)}ni=1 is a set of
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dynamic eigenpairs of K (qm) . By Definition 33,

Dqui (q
m) = S−1Dqwi (q

m)

= S−1R (qm)wi (q
m)− S−1γi (q

m)wi

(
qm+1

)

= K (qm)S−1wi (q
m)− γi (q

m)S−1wi

(
qm+1

)

= K (qm) ui (q
m)− γi (q

m) ui

(
qm+1

)
, (3.45)

for all 1 ≤ i ≤ n. The next step is to show that ui (q
m) satisfies (3.43). Since

{γi (q
m) , ui (q

m)}ni=1 is the set of dynamic eigenpairs of K (qm) , it satisfies (3.45)

for all 1 ≤ i ≤ n. By choosing the ith block of K (qm) with dimension mi ×mi,

one can construct the following linear dynamic system

Dqv (q
m) = K̃i (q

m) v (qm) =




0 q−T+1

(q−1)qmλi

q−T+1(q−T+1−1)

2(q−1)qmλ2
i

. . .




n−2∏

τ=0

[q−T+1−τ]




(n−1)!(q−1)qmλn−1
i

0 q−T+1

(q−1)qmλi




n−3∏

τ=0

[q−T+1−τ]




(n−2)!(q−1)qmλn−2
i

0
. . .

...
. . . q−T+1

(q−1)qmλi

0




v(qm)

(3.46)

where K̃i (q
m) := Ki (q

m)	γi (q
m) I. There are mi linearly independent solutions

of (3.46). Let us denote these solutions by vi,j (q
m), where i corresponds to the

ith block matrix Ki (q
m) and j = 1, . . . ,mi. As it is done in the proof of [38,

Theorem 7.6], we have the following construction. For 1 ≤ i ≤ d, we define

li =
∑i−1

s=0 ms, with m0 = 0. Then, the form of an arbitrary n× 1 column vector

uli+j for i ≤ j ≤ mi can be given as

uli+j = [ 0, . . . , 0︸ ︷︷ ︸
m1+...+mi−1

, vTi,j (q
m)

︸ ︷︷ ︸
mi

, 0, . . . , 0︸ ︷︷ ︸
mi+1,...,md

]1×n. (3.47)

Considering all vector solutions of (3.45), the solution of the n×nmatrix dynamic
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equation can be written as

DqU (qm) = K (qm)U (qm)− U
(
qm+1

)
Γ (qm) ,

where Γ (qm) := diag [γ1 (q
m) , . . . , γn (q

m)] , and hence

U (qm) :=
[
u1, . . . , um1 , . . . , u(

∑i−1
k=1 mk), . . . , u(

∑i
k=1 mk), . . . , u(

∑d
k=1 mk)−1, un

]

=







v1,1 v1,2 . . . v1,m1

v1,1
. . . v1,m1−1

. . . . . .

v1,1




m1×m1

. . . 


vd,1 vd,2 . . . vd,md

vd,1
. . . vd,md−1

. . . . . .

vd,1




md×md




n×n

.

The mi linearly independent solutions of (3.46) have the form

vi,1 (q
m) := [vi,mi

(qm) , 0, . . . , 0]Tmi×1
,

vi,2 (q
m) := [vi,mi−1 (q

m) , vi,mi
(qm) , 0, . . . , 0]Tmi×1

,

...

vi,mi
(qm) := [vi,1 (q

m) , vi,2 (q
m) , . . . , vi,mi−1 (q

m) , vi,mi
(qm)]Tmi×1

.

Then, the dynamic equations are in the form

Dqvi,mi
(qm) = 0,

Dqvi,mi−1 (q
m) =

q−T+1

(q − 1) qmλi

vi,mi
(qm)
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Dqvi,mi−2 (q
m) =

q−T+1
(
q−T+1 − 1

)

2 (q − 1) qmλ2
i

vi,mi
(qm) +

q−T+1

(q − 1) qmλi

vi,mi−1 (q
m)

...

Dqvi,1 (q
m) =

∏mi−2
τ=0

[
q−T+1 − τ

]

(mi − 1)! (q − 1) qmλmi−1
i

vi,mi
(qm)

+

∏mi−3
τ=0

[
q−T+1 − τ

]

(mi − 2)! (q − 1) qmλmi−2
i

vi,mi−1 (q
m)

+ · · ·+
q−T+1

(q − 1) qmλi

vi,2 (q
m) .

Moreover, one can get the following solutions

vi,mi
(qm) = 1, vi,mi−1 (q

m) =

∫ qm

qm0

q−T+1

(q − 1) τλi

vi,mi
(τ) dqτ,

vi,mi−2 (q
m) =

∫ qm

qm0

q−T+1
(
q−T+1 − 1

)

2 (q − 1) τλ2
i

vi,mi
(τ) dqτ +

∫ qm

qm0

q−T+1

(q − 1) τλi

vi,mi−1 (τ) dqτ,

...

vi,1 (q
m) =

∫ qm

qm0

∏mi−2
%=0

[
q−T+1 − %

]

(mi − 1)! (q − 1) τλmi−1
i

vi,mi
(τ) dqτ

+

∫ qm

qm0

∏mi−3
%=0

[
q−T+1 − %

]

(mi − 2)! (q − 1) τλmi−2
i

vi,mi−1 (τ) dqτ +

· · ·+

∫ qm

qm0

q−T+1

(q − 1) τλi

vi,2 (τ) dqτ.

It can be shown that each v is bounded. There exist constants Bi,j, i = 1, . . . , d

and j = 1, . . . ,mi, such that

|vi,mi
(qm)| = 1 ≤ Bi,mi

h0 (q
m, qm0) = Bi,mi

,

|vi,mi−1(q
m)| ≤

∫ qm

qm0

∣∣∣∣
q−T+1

(q − 1) τλi

vi,mi
(τ)

∣∣∣∣ dqτ

=
q−T

|λi|

∫ qm

qm0

q

(q − 1) τ
h0 (τ, q

m0) dqτ



Chapter 3. q-Floquet theory 53

=
q−T

|λi|
h1 (q

m, qm0) ≤ Bi,mi−1h1 (q
m, qm0) ,

|vi,mi−2(q
m)| ≤

∫ qm

qm0

∣∣∣∣∣
q−T+1

(
q−T+1 − 1

)

2 (q − 1) τλ2
i

vi,mi
(τ)

∣∣∣∣∣ dqτ

+

∫ qm

qm0

∣∣∣∣
q−T+1

(q − 1) τλi

vi,mi−1(τ)

∣∣∣∣ dqτ

≤
q−T

(
q−T+1 − 1

)

2λ2
i

∫ qm

qm0

q

(q − 1) τ
h0 (τ, q

m0) dqτ

+
q−2T

λ2
i

∫ qm

qm0

q

(q − 1) τ
h1 (τ, q

m0) dqτ

≤ Bi,mi−2 (h1 (q
m, qm0) + h2 (q

m, qm0)) ,
...

|vi,1 (q
m)| ≤ Bi,1

mi−1∑

y=0

hy (q
m, qm0) .

Setting βi := maxj=1,...,mi
{Bi,j} for each 1 ≤ i ≤ d gives

‖uli+j (q
m)‖ ≤ βi

mi−1∑

y=0

hy (q
m, qm0)

for 1 ≤ i ≤ d and j = 1, 2, ...,mi. Since wi = Sui

‖wi (q
m)‖ = ‖Sui (q

m)‖ ≤ ‖S‖ βi

mi−1∑

y=0

hy (q
m, qm0)

= Di

mi−1∑

y=0

hy (q
m, qm0) ,

where Di := ‖S‖ βi, for all 1 ≤ i ≤ n.

The following definition is the special case of Definition 7.8 in [38] when T =

qZ, q > 1.

Definition 35. Let Cµ :=
{
z ∈ C : z 6= − 1

(q−1)qm

}
. Given an element qm,m ∈ Z,

the Hilger circle is defined by

Hqm := {z ∈ Cµ : Reµ(z) < 0} .
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Next, we present Floquet stability theorem which shows the strong relation-

ship between the stability results of the q-Floquet system (3.31) and the eigen-

values of the corresponding nonautonomous linear dynamic system (3.33).

Theorem 3.25 (Floquet stability theorem) The stability results for the solutions

of the system (3.31) are given as follows

1. If

−Reµγi(q
m) > 0 (3.48)

for all i = 1, . . . , n, then the system (3.31) is asymptotically stable. More-

over, if there is a positive constant ε such that (3.48) and

−Reµγi (q
m) ≥ ε (3.49)

for all i = 1, . . . , n, then the system (3.31) is exponentially stable.

2. If

−Reµγi(q
m) ≥ 0

for all i = 1, . . . , n, and if, for each characteristic exponent with

Reµ (γi (q
m)) = 0

the algebraic multiplicity equals the geometric multiplicity, then the system

(3.31) is stable; otherwise the system (3.31) is unstable.

3. If

Reµ (γi (q
m)) > 0

for some i = 1, . . . , n, then the system (3.31) is unstable.

Proof. Let eR (q
m, qm0) be the transition matrix of the system (3.33) and R (qm)

be defined as in (3.32). Given the eigenvalues {γi (q
m)}ni=1 of R (qm), one can

define the set of dynamic eigenpairs {γi (q
m) , wi (q

m)}ni=1 and from Theorem 3.24,

the dynamic eigenvector wi (q
m) satisfies (3.43). Moreover, let us define W (qm)
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by

W (qm) = eR (q
m, qτ ) e	Ξ (q

m, qτ ) . (3.50)

Then we have

eR (q
m, qτ ) = W (qm)eΞ (q

m, qτ ) , (3.51)

where τ ∈ Z and Ξ (qm) is given as in Lemma 3.21. Employing (3.51), one can

write that

eR (q
τ , qm0) = eΞ (q

τ , qm0)W−1(qm0). (3.52)

Combining (3.51) and (3.52), the transition matrix of the system (3.33) can be

represented by

eR (q
m, qm0) = W (qm) eΞ (q

m, qm0)W−1 (qm0) , (3.53)

where W (qm) := [w1 (q
m) , w2 (q

m) , . . . , wn (q
m)]. The matrix W−1 (qm0) can be

denoted as follows:

W−1 (qm0) =




vT1 (q
m0)

vT2 (q
m0)
...

vTn (q
m0)



.

Since Ξ (qm) is a diagonal matrix, (3.53) can be written as follows

eR (q
m, qm0) =

n∑

i=1

eγi (q
m, qm0)W (qm)FiW

−1 (qm0) (3.54)

where Fi := δi,j is n × n matrix. Using vTi (q
m)wj (q

m) = δi,j for all m ∈ Z, Fi

can be written as

Fi = W−1 (qm) [0, . . . , 0, wi (q
m) , 0, . . . , 0] . (3.55)

By means of (3.54) and (3.55) we have

eR (q
m, qm0) =

n∑

i=1

eγi (q
m, qm0)wi (q

m) vTi (q
m0) =

n∑

i=1

χi (q
m) vTi (q

m0) ,
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where χi (q
m) is mode vector of system (3.33).

Case 1 By (3.37), for each 1 ≤ i ≤ n, we can write that

‖χi (q
m)‖ ≤ Di

di−1∑

y=0

hy (q
m, qm0) |eγi (q

m, qm0)|

≤ Di

di−1∑

y=0

hy (q
m, qm0) eReµ(γi )

(qm, qm0)

where Di is as in Theorem 3.24, di represents the dimension of the Jordan block

which contains ith eigenvalue of R (qm).Using Lemma 3.23 we get

lim
m→∞

hy (q
m, qm0) eReµ(γi )

(qm, qm0) = 0

for each 1 ≤ i ≤ n and all y = 0, 1, ..., di − 1. This along with Theorem 3.22

implies that (3.33) is asymptotically stable. By Theorem 3.6, since the solutions

of (3.31) and (3.33) are related by Lyapunov transformation, we can state that

solution of (3.31) is asymptotically stable. For the second part, consider

‖χi (q
m)‖ ≤ Di

di−1∑

y=0

hy (q
m, qm0) |eγi (q

m, qm0)|

≤ Di

di−1∑

y=0

hy (q
m, qm0) eReµ(γi )⊕ε

(qm, qm0) e	ε (q
m, qm0) . (3.56)

If (3.49) holds, then Reµ (γi)⊕ ε satisfies (3.40). Hence, by Lemma 3.23 the term

hk (q
m, qm0) eReµ(γi )⊕ε

(qm, qm0) converges to zero as m→∞. That is, there is an

upper bound Cε for the sum
∑di−1

y=0 hy (q
m, qm0) eReµ(γi )⊕ε

(qm, qm0). This along

with (3.56) yields

‖χi (q
m)‖ ≤ DiCεe	ε (q

m, qm0) .

Hence, Theorem 3.22 implies that (3.33) is exponentially stable. Using the above

given argument (3.31) is exponentially stable.

Case 2 Assume that Reµ [γc (q
m)] = 0 for some 1 ≤ c ≤ n with equal algebraic

and geometric multiplicities corresponding to γc(q
m). Then the Jordan block of
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γc(q
m) is 1× 1. Hence,

lim
m→∞

‖χc (q
m)‖ ≤ lim

m→∞
Dc |eγc (q

m, qm0)|

≤ lim
m→∞

DceReµ(γc ) (q
m, qm0)

= Dc.

By Theorem 3.22, the system (3.33) is stable. By Theorem 3.6, the solutions of

(3.31) and (3.33) are related by Lyapunov transformation. This implies that the

system (3.31) is stable.

Case 3 Suppose that Reµ(γi (q
m)) > 0 for some i = 1, . . . , n. Then, we have

lim
m→∞

‖eR (q
m, qm0)‖ =∞,

and by the relationship between solutions of (3.31) and (3.33), one can write that

lim
m→∞

‖ΦA (q
m, qm0)‖ =∞.

Therefore, (3.31) is unstable.

The proof is complete.

Example 3.2. Let us reconsider the Example 3.1 given in Chapter 3:

Dqx (q
m) =

[
c1q

−m 0

0 c2q
−m

]
x (qm) , x(1) = x0, m ∈ Z and c1, c2 ∈ R+.

(3.57)

As in Example 3.1, R (qm) can be obtained as follows:

R (qm) =

[
c1q

−m 0

0 c2q
−m

]
.

Then R (qm) has eigenvalues γ1(q
m) = c1q

−m and γ2(q
m) = c2q

−m. As a con-

sequence, Reµ(γ1,2 (t)) > 0. Thus, it can be seen by the last theorem that the

system (3.57) is unstable.
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One state the following corollary as a consequence of Theorem 3.25.

Corollary 3.26 Let λi be a Floquet multiplier of the q-Floquet system (3.31) for

i = 1, . . . , n. Then, we have

1. If |λi| < 1 for all i = 1, . . . , n., then the system (3.31) is exponentially

stable;

2. If |λi| ≤ 1 for all i = 1, . . . , n and if, for each |λi| = 1 for some i = 1, . . . , n,

the algebraic multiplicity equals to geometric multiplicity, then the system

(3.31) is stable.

3. |λi| > 1 for some i = 1, . . . , n, then the system (3.31) is unstable.



Chapter 4

Extension of Floquet theory to

time scales periodic in shifts δ±

In this chapter, Floquet theory is reconstructed on more general domains in-

cluding both additively and nonadditively periodic time scales. Hereafter, T is

supposed to be a T -periodic time scale in shifts δ± and that the shift operators

δ± are ∆-differentiable with rd-continuous derivatives. For brevity, the term ”pe-

riodic in shifts” is used to mean periodicity in shifts δ±. Throughout the chapter,

the notation δT± (t) is employed to indicate the shifts δ± (T, t). Furthermore, the

notation δ
(n)
± (T, t), n ∈ N, represents the n-times composition of shifts, δT±, by

itself, namely,

δ
(n)
± (T, t) := δT± ◦ δ

T
± ◦ ... ◦ δ

T
±︸ ︷︷ ︸

n−times

(t) .

Observe that, the period of a function f does not have to be equal to period of

the time scale on which f is determined. However, for simplicity of the results

the period of time scale T is assumed to be equal to period of the all functions

defined on T. The following definition plays a key role in the following analysis:

Definition 36. [38, Definition 2.1]A Lyapunov transformation is an invertible

matrix L (t) ∈ C1
rd (T,R

n×n) satisfying

‖L (t)‖ ≤ ρ and |detL (t)| ≥ η for all t ∈ T

59
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where ρ and η are arbitrary positive reals.

4.1 Floquet theory based on new periodicity

concept: Homogeneous case

Consider the following regressive nonautonomous linear dynamic system

x∆ (t) = A (t) x (t) , x (t0) = x0, (4.1)

where A : T∗→ Rn×n is ∆-periodic in shifts with period T . Observe that if the

time scale is additively periodic, then δ∆± (T, t) = 1 and ∆-periodicity in shifts

becomes the same as the periodicity in shifts. Hence, the homogeneous system

focused in this section is more general than that of [37] and [38].

In preparation for the next result, the following set

P (t0) :=
{
δ
(k)
+ (T, t0) , k = 0, 1, 2, . . .

}
(4.2)

and the function

Θ (t) :=

m(t)∑

j=1

δ−

(
δ
(j−1)
+ (T, t0) , δ

(j)
+ (T, t0)

)
+G (t) , (4.3)

where

m (t) := min
{
k ∈ N0 : δ

(k)
+ (T, t0) ≥ t

}
(4.4)

and

G (t) :=





0 if t ∈ P (t0)

−δ−
(
t, δ

(m(t))
+ (T, t0)

)
if t /∈ P (t0)

(4.5)

are defined.

Remark. For an additive periodic time scale one always has Θ (t) = t− t0.

Theorem 4.1 For a nonsingular, n × n constant matrix M a solution R :
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T→ Cn×n of matrix exponential equation

eR
(
δT+ (t0) , t0

)
= M

can be given by

R (t) = lim
s→t

M
1
T
[Θ(σ(t))−Θ(s)] − I

σ (t)− s
, (4.6)

where I is the n× n identity matrix and Θ is as in (4.3).

Proof. Let’s construct the matrix exponential function eR (t, t0) as follows

eR (t, t0) := M
1
T
Θ(t) for t ≥ t0, (4.7)

where Θ is given by (4.3) and real power of a nonsingular matrix M is given

by Definition 26. To show that the function eR (t, t0) constructed in (4.7) is the

matrix exponential we first observe that

eR (t0, t0) = M
1
T
Θ(t0) = I,

where we use (4.7) along with Θ (t0) = G (t0) = 0. Second, differentiating (4.7)

yields

e∆R (t, t0) = R (t) eR (t, t0) .

To see this, first suppose that t is right-scattered. Then,

e∆R (t, t0) =
eR (σ (t) , t0)− eR (t, t0)

σ (t)− t

=
M

1
T
Θ(σ(t)) −M

1
T
Θ(t)

σ (t)− t

=
M

1
T
[Θ(σ(t))−Θ(t)] − I

σ (t)− t
M

1
T
Θ(t)

= R (t) eR (t, t0) .

If t is right dense, then σ (t) = t. Setting s = t + h in (4.3) and using (4.7) one
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can obtain

e∆R (t, t0) = lim
h→0

eR (t+ h, t0)− eR (t, t0)

h

= lim
h→0

M
1
T
Θ(t+h) −M

1
T
Θ(t)

h

= lim
h→0

M
1
T
[Θ(t+h)−Θ(t)] − I

h
M

1
T
Θ(t)

= R (t) eR (t, t0) .

In any case, we have e∆R (t, t0) = R (t) eR (t, t0). Finally, we obtain

Θ
(
δT+ (t0)

)
= δ−

(
t0, δ

T
+ (t0)

)
= δT+ (t0) = T,

and therefore,

eR
(
δT+ (t0) , t0

)
= M

1
T
Θ(δT+(t0)) = M.

The following result is generalization of Corollary (3.2).

Corollary 4.2 The eigenvectors of the matrices R (t) and M are same.

Proof. For any eigenpairs {λi, vi}, i = 1, 2, ..., n of M , using Mvi = λivi one can

write that

lim
s→t

M
1
T
[Θ(σ(t))−Θ(s)]vi = lim

s→t
λ

1
T
[Θ(σ(t))−Θ(s)]

i vi.

This implies

R(t)vi = lim
s→t

(

λ
1
T
[Θ(σ(t))−Θ(s)]

i − 1

σ(t)− s

)

vi. (4.8)

Substituting γi(t) = lims→t

(

λ
1
T

[Θ(σ(t))−Θ(s)]

i −1

σ(t)−s

)

into (4.8) one can conclude that

R(t) has the eigenpairs {γi(t), vi}
n
i=1.

The following two results can be proven similar to the Lemma (3.3).
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Lemma 4.3 Let T be a time scale and P ∈ R (T∗,Rn×n) be a ∆−periodic matrix

valued function in shifts with period T , i.e.

P (t) = P
(
δT± (t)

)
δ∆T
± (t)

Then the solution of the dynamic matrix initial value problem

Y ∆ (t) = P (t)Y (t) , Y (t0) = Y0, (4.9)

is unique up to a period T in shifts. That is

ΦP (t, t0) = ΦP

(
δT+ (t) , δ

T
+ (t0)

)
(4.10)

for all t ∈ T∗.

Corollary 4.4 Let T be a time scale and P ∈ R (T∗,Rn×n) be a ∆−periodic

matrix valued function in shifts. Then

eP (t, t0) = eP
(
δT+ (t) , δ

T
+ (t0)

)
. (4.11)

Theorem 4.5 (Floquet decomposition) Let A be a matrix valued function that

is ∆-periodic in shifts with period T . The transition matrix for A can be given in

the form

ΦA (t, τ) = L (t) eR (t, τ)L
−1 (τ) , for all t, τ ∈ T∗, (4.12)

where R : T→ Cn×n is ∆-periodic function in shifts and L (t) ∈ C1
rd (T

∗,Rn×n)

is periodic in shifts with the period T .

Proof. Let the matrix function R is defined as in Theorem 4.1 with a constant

n× n matrix M := ΦA

(
δT+ (t0) , t0

)
. Then,

eR
(
δT+ (t0) , t0

)
= ΦA

(
δT+ (t0) , t0

)
,

and the Lyapunov transformation L (t) is defined as

L (t) := ΦA (t, t0) e
−1
R (t, t0) . (4.13)
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Obviously, L (t) ∈ C1
rd (T

∗,Rn×n) and L is invertible. The equality

ΦA (t, t0) = L (t) eR (t, t0) . (4.14)

along with (4.13) implies

ΦA (t0, t) = e−1R (t, t0)L
−1 (t)

= eR (t0, t)L
−1 (t) . (4.15)

Combining (4.14) and (4.15), one can obtain (4.12). The periodicity in shifts of

L is shown by using (4.10-4.11) as follows

L
(
δT+ (t)

)
= ΦA

(
δT+ (t) , t0

)
e−1R

(
δT+ (t) , t0

)

= ΦA

(
δT+ (t) , δ

T
+ (t0)

)
ΦA

(
δT+ (t0) , t0

)
eR
(
t0, δ

T
+ (t)

)

= ΦA

(
δT+ (t) , δ

T
+ (t0)

)
ΦA

(
δT+ (t0) , t0

)
eR
(
t0, δ

T
+ (t0)

)
eR
(
δT+ (t0) , δ

T
+ (t)

)

= ΦA

(
δT+ (t) , δ

T
+ (t0)

)
eR
(
δT+ (t0) , δ

T
+ (t)

)

= ΦA

(
δT+ (t) , δ

T
+ (t0)

)
e−1R

(
δT+ (t) , δ

T
+ (t0)

)

= ΦA (t, t0) e
−1
R (t, t0)

= L (t) .

The following result is the extension of Theorem (3.6) and [38, Theorem 3.7]

and it can be proved similar to [38, Theorem 3.7].

Theorem 4.6 Assume that the transition matrix ΦA of the unified Floquet system

(4.1) has the decomposition of the form ΦA (t, t0) = L (t) eR (t, t0). Then, x (t) =

ΦA (t, t0) x0 is a solution of (4.1) if and only if the linear dynamic equation

z∆ (t) = R (t) z (t) , z (t0) = x0.

has a solution of the form z (t) = L−1 (t) x (t).

Next, the necessary and sufficient condition for the existence of solution of
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Floquet system (4.1) which is periodic in shifts is given.

Theorem 4.7 The solution of the unified Floquet system (4.1) has a T -periodic

solution in shifts with an initial state x (t0) = x0 6= 0 if and only if at least one

of the eigenvalues of

eR
(
δT+ (t0) , t0

)
= ΦA

(
δT+ (t0) , t0

)

is 1.

Proof. Let x (t) be a solution of the periodic system (4.1) which is T -periodic in

shifts corresponding with the nonzero initial state x (t0) = x0. Then according to

Theorem 4.5, the Floquet decomposition of x can be written as

x (t) = ΦA (t, t0) x0 = L (t) eR (t, t0)L
−1 (t0) x0,

which also yields

x
(
δT+ (t)

)
= L

(
δT+ (t)

)
eR

(
δT+ (t) , t0

)
L−1 (t0) x0.

By T -periodicity of x and L in shifts, one can obtain

eR (t, t0)L
−1 (t0) x0 = eR

(
δT+ (t) , t0

)
L−1 (t0) x0,

and therefore,

eR (t, t0)L
−1 (t0) x0 = eR

(
δT+ (t) , δ

T
+ (t0)

)
eR

(
δT+ (t0) , t0

)
L−1 (t0) x0.

Since eR
(
δT+ (t) , δ

T
+ (t0)

)
= eR (t, t0) the last equality implies

eR (t, t0)L
−1 (t0) x0 = eR (t, t0) eR

(
δT+ (t0) , t0

)
L−1 (t0) x0

and thus

L−1 (t0) x0 = eR
(
δT+ (t0) , t0

)
L−1 (t0) x0.

Hence, the matrix eR
(
δT+ (t0) , t0

)
has an eigenvector L−1 (t0) x0 corresponding to
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the eigenvalue 1.

Conversely, assume that 1 is an eigenvalue of eR
(
δT+ (t0) , t0

)
with corresponding

eigenvector z0. This means z0 is real valued and nonzero. Using eR (t, t0) =

eR
(
δT+ (t) , δ

T
+ (t0)

)
, one can arrive at the following equality

z
(
δT+ (t)

)
= eR

(
δT+ (t) , t0

)
z0

= eR
(
δT+ (t) , δ

T
+ (t0)

)
eR

(
δT+ (t0) , t0

)
z0

= eR
(
δT+ (t) , δ

T
+ (t0)

)
z0

= eR (t, t0) z0

= z (t) ,

which shows that z (t) = eR (t, t0) z0 is T -periodic in shifts. Applying the Floquet

decomposition and setting x0 := L (t0) z0, the nontrivial solution x of (4.1) is

obtained as follows

x (t) = ΦA (t, t0) x0 = L (t) eR (t, t0)L
−1 (t0) x0 = L (t) eR (t, t0) z0 = L (t) z (t) ,

which is T -periodic in shifts since L and z are T -periodic in shifts. This completes

the proof.

Example 4.1. Suppose that T = ∪∞k=0

[
3±k, 2.3±k

]
∪ {0}. Then, T is 3-periodic

in shifts δ± (s, t) = s±1t. Setting A (t) = 1
t
I2×2, one may get

A (δ± (3, t)) δ
∆
± (3, t) = A (3t) 3 = A (t)

which shows that A is ∆-periodic in shifts with the period 3. Consider the system

x∆ (t) =

[
1
t

0

0 1
t

]
x (t) , x(1) = x0

whose transition matrix is given by

ΦA (t, 1) =

[
e1/t(t, 1) 0

0 e1/t(t, 1)

]
.
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Then

ΦA

(
δ3+ (1) , 1

)
= ΦA (3, 1) =

[
e1/t(3, 1) 0

0 e1/t(3, 1)

]
.

As in Theorem 4.1, one can write that

eR (3, 1) = ΦA (3, 1) =

[
e1/t(3, 1) 0

0 e1/t(3, 1)

]
= M.

On the other hand, by (4.6) and (4.7) one can obtain

eR (t, 1) = M
1
3
Θ(t)

=

{
M

1
3 [3m(t)−3m(t)/t] if t /∈ P (1)

Mm(t) if t ∈ P (1)
,

and

R (t) = lim
s→t

M
1
3
[Θ(σ(t))−Θ(s)] − I

σ (t)− s

=





2
t

(
M

1
3 [Θ(

3
2
t)−Θ(t)] − I

)
if σ (t) > t

[
1
3
Θ(t)

]∆
Log [M ] if σ (t) = t

,

where P (t) andm (t) are defined by (4.2) and (4.4), respectively. Then the matrix

function L (t) which is 3-periodic in shifts is given as

L (t) = ΦA (t, 1) e
−1
R (t, 1)

=

[
e1/t(t, 1) 0

0 e1/t(t, 1)

][
e1/t(3, 1) 0

0 e1/t(3, 1)

]− 1
3
Θ(t)

.

Example 4.2. Consider the time scale T = R that is periodic in shifts δ± (s, t) =

s±1t associated with the initial point t0 = 1. Let us define the matrix function

A (t) : T∗→ Rn×n as follows

A (t) =




1
t
sin

(
π ln |t|

ln 2

)
0

0 1
t
sin

(
π ln |t|

ln 2

)

 .
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Then A(t) is ∆-periodic in shifts with the period 4. The following system

x∆ (t) =

[
1
t
sin

(
π ln t

ln 2

)
0

0 1
t
sin

(
π ln t

ln 2

)
]
x (t) , x(1) = x0

has the transition matrix

ΦA (t, 1) =

[
eu(t)(t, 1) 0

0 eu(t)(t, 1)

]
,

where u(t) = 1
t
sin

(
π ln t

ln 2

)
. Moreover,

ΦA

(
δ4+ (1) , 1

)
= ΦA (4, 1) =

[
1 0

0 1

]
= M.

Thus, R(t) is 2 × 2 zero matrix, and hence, eR(t, 1) = I. Finally, the matrix

function L(t) which is 4-periodic in shifts is obtained as follows:

L(t) = ΦA (t, 1) e
−1
R (t, 1)

= ΦA (t, 1) .

4.2 Floquet theory based on new periodicity

concept: Nonhomogeneous case

Let us focus on the nonhomogeneous regressive time varying linear dynamic initial

value problem

x∆ (t) = A (t) x (t) + F (t) , x (t0) = x0, (4.16)

where A : T∗→ Rn×n, F ∈ R (T∗,Rn). Hereafter, both A and F are supposed to

be ∆-periodic in shifts with the period T . Similar to Lemma 3.8, one can prove

the following result.

Lemma 4.8 A solution x (t) of (3.14) is T -periodic in shifts if and only if

x
(
δT+ (t0)

)
= x (t0) for all t ∈ T∗.
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Theorem 4.9 The solution of (4.16)is T -periodic in shifts δ± for any inital point

t0, and corresponding initial state x (t0) = x0 if and only if the T -periodic homo-

geneous initial value problem

z∆ (t) = A (t) z (t) , z (t0) = z0, (4.17)

has not a T -periodic solution in shifts for any nonzero initial state z (t0) = z0.

Proof. In [13], the following representation for the solution of (4.16) is given

x (t) = X (t)X−1 (τ) x0 +

t∫

τ

X (t)X−1 (σ (s))F (s)∆s,

where X (t) is a fundamental matrix solution of the homogenous system (4.1)

with respect to initial condition x (τ) = x0. As it is done in [13], x (t) can be

expressed as

x (t) = ΦA (t, t0) x0 +

∫ t

t0

ΦA (t, σ (s))F (s)∆s.

By the previous lemma x (t) is T -periodic in shifts if and only if x
(
δT+ (t0)

)
=

x0 or equivalently

[
I − ΦA

(
δT+ (t0) , t0

)]
x0 =

δT+(t0)∫

t0

ΦA

(
δT+ (t0) , σ (s)

)
F (s)∆s. (4.18)

By guidance of Theorem 4.7, it should be shown that (4.16) has a solution with

respect to initial condition x (t0) = x0 if and only if eR
(
δT+ (t0) , t0

)
has no eigen-

values equal to 1.

Let eR
(
δT+ (η) , η

)
= ΦA

(
δT+ (η) , η

)
, for some η ∈ T∗, has no eigenvalues equal

to 1. That is,

det
[
I − ΦA

(
δT+ (η) , η

)]
6= 0.
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Invertibility and periodicity of ΦA imply

0 6= det
[
ΦA

(
δT+ (t0) , δ

T
+ (η)

) (
I − ΦA

(
δT+ (η) , η

))
ΦA (η, t0)

]

= det
[
ΦA

(
δT+ (t0) , δ

T
+ (η)

)
ΦA (η, t0)− ΦA

(
δT+ (t0) , t0

)]
. (4.19)

By periodicity of ΦA, the invertibility of
[
I − ΦA

(
δT+ (t0) , t0

)]
is equivalent to

(3.19) for any t0 ∈ T∗. Thus, (4.18) has a solution

x0 =
[
I − ΦA

(
δT+ (t0) , t0

)]−1
δT+(t0)∫

t0

ΦA

(
δT+ (t0) , σ (s)

)
F (s)∆s

for any t0 ∈ T∗ and for any ∆-periodic function F in shifts with period T .

Suppose that (4.18) has a solution for every t0 ∈ T∗ and every ∆-periodic

function F in shifts with period T . Let us define the set P− (t) as

P− (t) =
{
k ∈ Z : δ

(k)
− (T, t)

}
.

It is clear that, P− (t) = P−
(
δT+ (t)

)
. Additionally, let the function ξ be defined

by

ξ (t) :=
∏

s∈P−(t)∩[t0,t)

(
δ∆T
+ (s)

)−1

=
(
δ∆T
+ (δ− (T, t))

)−1
×

(
δ∆T
+

(
δ
(2)
− (T, t)

))−1
× . . .×

(
δ∆T
+

(
δ
(m−(t))
− (T, t)

))−1
,

where m− (t) = max
{
k ∈ Z : δ

(k)
− (T, t) ≥ t0

}
. By definition of ξ, one can write

ξ
(
δT+ (t)

)
=

∏

s∈P−(δT+(t))∩[t0,δT+(t))

(
δ∆T
+ (s)

)−1

=
∏

s∈P−(t)∩[t0,δT+(t))

(
δ∆T
+ (s)

)−1
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=
(
δ∆T
+ (t)

)−1 ∏

s∈P−(t)∩[t0,t)

(
δ∆T
+ (s)

)−1

=
(
δ∆T
+ (t)

)−1
ξ (t) ,

which shows that ξ is ∆-periodic in shifts with period T . For an arbitrary t0

and corresponding F0, define a regressive and ∆-periodic function F in shifts as

follows

F (t) := ΦA

(
σ (t) , δT+ (t0)

)
ξ (t)F0, t ∈

[
t0, δ

T
+ (t0)

)
∩ T. (4.20)

Then,
δT+(t0)∫

t0

ΦA

(
δT+ (t0) , σ (s)

)
F (s)∆s = F0

δT+(t0)∫

t0

ξ (s)∆s. (4.21)

Thus, (4.18) can be rewritten as follows

[
I − ΦA

(
δT+ (t0) , t0

)]
x0 =

δT+(t0)∫

t0

ξ (s)∆s. (4.22)

For any F which is defined in (4.20), and hence for any corresponding F0, (4.22)

has a solution for x0 by assumption. Thus,

det
[
I − ΦA

(
δT+ (t0) , t0

)]
6= 0.

Consequently, eR
(
δT+ (t0) , t0

)
= ΦA

(
δT+ (t0) , t0

)
has no eigenvalue 1. Then, one

can conclude by Theorem 4.7, (4.17) has no periodic solution in shifts.

4.3 Floquet Multipliers and Floquet exponents

of unified Floquet systems

This part of the thesis is devoted to Floquet multipliers and Floquet exponents

of systems periodic with respect to new periodicity perception on time scales.

Similar to the q-Floquet theory, let ΦA (t, t0) be the transition matrix and Φ (t)

the fundamental matrix at t = τ of the system (4.1). Then any fundamental
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matrix Ψ (t) can be represented as follows:

Ψ (t) = Φ (t)Ψ (τ) or Ψ (t) = ΦA (t, t0)Ψ (t0) . (4.23)

Additionally, for a nonzero initial vector x0 ∈ Rn, the monodromy operator M :

Rn → Rn is defined by

M (x0) := ΦA

(
δT+ (t0) , t0

)
x0 = Ψ

(
δT+ (t0)

)
Ψ−1 (t0) x0. (4.24)

In parallel to preceding chapter, the eigenvalues of monodromy operator M are

called Floquet (characteristic) multipliers of the system (4.1).

Similar to [38, Theorem 5.2 (i)], the following remark can be given:

Remark. The monodromy operator of the linear system (4.1) is invertible and

consequently, every Floquet (characteristic) multiplier is nonzero.

Theorem 4.10 The monodromy operator M corresponding to different funda-

mental matrices of the system (4.1) is unique.

Proof. Suppose that M1 and M2 are the monodromy operators corresponding to

fundamental matrices Ψ1 (t) and Ψ2 (t) , respectively. One can write the mon-

odromy operator M2 (x0) corresponding to Ψ2 (t) as

M2 (x0) = Ψ2

(
δT+ (t0)

)
Ψ−12 (t0) x0.

Using (4.23) yields

M2 (x0) = Ψ2

(
δT+ (t0)

)
Ψ−12 (t0) x0

= Ψ1

(
δT+ (t0)

)
Ψ2 (τ)Ψ

−1
2 (τ)Ψ−11 (t0) x0

= Ψ1

(
δT+ (t0)

)
Ψ−11 (t0) x0

= M1 (x0) .
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By using Theorem 4.5, (4.23) and (4.24), one can obtain

ΦA (t, t0) = Ψ1 (t)Ψ
−1
1 (t0) = L (t) eR (t, t0)L

−1 (t0) (4.25)

and

M (x0) = ΦA

(
δT+ (t0) , t0

)
x0 = Ψ1

(
δT+ (t0)

)
Ψ−11 (t0) x0. (4.26)

The following equation is obtained by combining (4.25) and (4.26)

ΦA

(
δT+ (t0) , t0

)
= Ψ1

(
δT+ (t0)

)
Ψ−11 (t0) = L

(
δT+ (t0)

)
eR

(
δT+ (t0) , t0

)
L−1

(
δT+ (t0)

)
.

By using the periodicity in shifts of L, the following equality

ΦA

(
δT+ (t0) , t0

)
= L (t0) eR

(
δT+ (t0) , t0

)
L−1 (t0) . (4.27)

is obtained. Hence, the Floquet multipliers of the unified Floquet system (4.1)

are the eigenvalues of the matrix eR
(
δT+ (t0) , t0

)
.

Definition 37. The Floquet exponent of the system (4.1) is the function γ (t)

satisfying the equation

eγ
(
δT+ (t0) , t0

)
= λ,

where λ is the Floquet multiplier of the system.

The next result can be proven similar to [38, Theorem 5.3].

Theorem 4.11 Let R (t) be a matrix function as in Theorem 3.1, with eigenval-

ues γ1 (t) , . . . , γn (t) repeated according to multiplicities. Then γk
1 (t) , . . . , γ

k
n (t)

are the eigenvalues of Rk (t) and eigenvalues of eR are eγ1 , . . . , eγn.

Theorem 4.12 The Floquet exponent γ of (4.1) with corresponding Floquet mul-

tiplier λ is not unique. That is, γ (t) ⊕
◦
ı 2πk
δT+(t0)−t0

is also a Floquet exponent for

(4.1) for all k ∈ Z.
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Proof. For all k ∈ Z, we have

e
γ⊕
◦
ı 2πk

δT+(t0)−t0

(
δT+ (t0) , t0

)
= eγ

(
δT+ (t0) , t0

)
e◦
ı 2πk

δT+(t0)−t0

(
δT+ (t0) , t0

)

= eγ
(
δT+ (t0) , t0

)
exp




δT+(t0)∫

t0

log
(
1 + µ (τ)

◦
ı 2πk
δT+(t0)−t0

)

µ (τ)
∆τ




= eγ
(
δT+ (t0) , t0

)
exp




δT+(t0)∫

t0

log
(
exp

(
i 2πkµ(τ)

δT+(t0)−t0

))

µ (τ)
∆τ




= eγ
(
δT+ (t0) , t0

)
exp




δT+(t0)∫

t0

i2πk

δT+ (t0)− t0
∆τ




= eγ
(
δT+ (t0) , t0

)
ei2πk

= eγ
(
δT+ (t0) , t0

)
,

which gives the desired result.

Lemma 4.13 Let T be a time scale that is p-periodic in shifts δ± associated with

the initial point t0 and k ∈ Z. If
δp+(t)−t

δp+(t0)−t0
∈ Z, then the functions e◦

ı 2πk

δ
p
+(t0)−t0

and

e
	
◦
ı 2πk

δ
p
+(t0)−t0

are p periodic in shifts.

Proof. If
δp+(t)−t

δp+(t0)−t0
∈ Z, then

e◦
ı 2πk

δ
p
+(t0)−t0

(δp+ (t) , t0) = exp




δp+(t)∫

t0

i2πk

δp+ (t0)− t0
∆τ




= exp




δp+(t)∫

t

i2πk

δp+ (t0)− t0
∆τ


 exp




t∫

t0

i2πk

δp+ (t0)− t0
∆τ




= exp

(
i2πk

δp+ (t)− t

δp+ (t0)− t0

)
exp




t∫

t0

i2πk

δp+ (t0)− t0
∆τ
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= exp




t∫

t0

i2πk

δp+ (t0)− t0
∆τ


 = e◦

ı 2πk

δ
p
+(t0)−t0

(t, t0)

which proves the periodicity of e◦
ı 2πk

δ
p
+(t0)−t0

. The periodicity of e
	
◦
ı 2πk

δ
p
+(t0)−t0

can be

proven by using the periodicity of e◦
ı 2πk

δ
p
+(t0)−t0

and the identity e	α = 1/eα.

Remark. Notice that the condition
δp+(t)−t

δp+(t0)−t0
∈ Z holds not only for all additive

periodic time scales but also for the many time scales that are periodic in shifts.

For example for the time scales 2Z and ∪∞k=0

[
3±k, 2.3±(k+1)

]
∪{0} periodic in shifts

δ± (s, t) = s±1t associated with the initial point t0 = 1, the condition
δp+(t)−t

δp+(t0)−t0
∈ Z

is always satisfied for p = 2 and p = 3, respectively.

Theorem 4.14 If the unified Floquet system (4.1) has a Floquet exponent γ (t),

then the corresponding transition matrix ΦA can be decomposed as

ΦA (t, t0) = L (t) eR (t, t0) ,

where γ (t) is an eigenvalue of R (t) .

Proof. Consider the Floquet decomposition ΦA (t, t0) = L̃ (t) eR̃ (t, t0) and let γ be

a Floquet exponent of (4.1) with corresponding Floquet multiplier λ. Moreover,

there is an eigenvalue γ̃ (t) of R̃ (t) so that eγ̃
(
δT+(t0), t0

)
= λ, where γ̃ (t) can be

defined as

γ̃ (t) := γ (t)⊕
◦
ı

2πk

δT+ (t0)− t0

by Theorem 4.12. Setting

R (t) := R̃ (t)	
◦
ı

2πk

δT+ (t0)− t0
I

and

L (t) := L̃ (t) e◦
ı 2πk

δT+(t0)−t0
I
(t, t0) ,

then one can write

R̃ (t) := R (t)⊕
◦
ı

2πk

δT+ (t0)− t0
I,
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and hence,

L (t) eR (t, t0) = L̃ (t) e◦
ı 2πk

δT+(t0)−t0
I
(t, t0) eR (t, t0) = L̃ (t) e◦

ı 2πk

δT+(t0)−t0
I⊕R

(t, t0) = L̃ (t) eR̃ (t, t0) .

This shows that ΦA (t, t0) = L (t) eR (t, t0) is an alternative Floquet decomposition

where γ (t) is an eigenvalue of R (t) .

Theorem 4.15 Let γ(t) be a Floquet exponent of the system (4.1) and λ be the

corresponding Floquet multiplier. Then, the unified Floquet system (4.1) has a

nontrivial solution of the form

x (t) = eγ (t, t0)κ (t) (4.28)

satisfying

x
(
δT+ (t)

)
= λx (t) ,

where κ is a T -periodic function in shifts.

Proof. Let ΦA (t, t0) be the transition matrix of (4.1) and ΦA (t, t0) =

L (t) eR (t, t0) is Floquet decomposition such that γ (t) is an eigenvalue of R (t).

There exists a nonzero vector u 6= 0 such that R (t) u = γ (t) u, and therefore,

eR (t, t0) u = eγ (t, t0) u. Then, the solution x (t) := ΦA (t, t0) u can be represented

as follows

x (t) = L (t) eR (t, t0) u = eγ (t, t0)L (t) u.

Setting κ (t) = L (t) u, the last equality implies (4.28). Thus, the first part of the

theorem is proven. The second part is proven by the following equality.

x
(
δT+ (t)

)
= eγ

(
δT+ (t) , t0

)
q
(
δT+ (t)

)

= eγ
(
δT+ (t) , δ

T
+ (t0)

)
eγ

(
δT+ (t0) , t0

)
q (t)

= eγ
(
δT+ (t0) , t0

)
eγ (t, t0)L (t) u

= eγ
(
δT+ (t0) , t0

)
x (t)

= λx (t) .
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Next result shows that two solutions of (4.1) according to two distinct Floquet

multipliers are linearly independent.

Theorem 4.16 Let λ1 and λ2 be the characteristic multipliers of the system (4.1)

and γ1 and γ2 are Floquet exponents such that

eγi(δ
T
+(t0), t0) = λi, i = 1, 2.

If λ1 6= λ2, then there exist T -periodic functions κ1 and κ2 in shifts such that

xi(t) = eγi(t, t0)κi(t), i = 1, 2

are linearly independent solutions of the system (4.1).

Proof. Let ΦA (t, t0) = L (t) eR (t, t0) and γ1 (t) be an eigenvalue of R (t) corre-

sponding to nonzero eigenvector v1. Since λ2 is an eigenvalue of ΦA

(
δT+ (t0) , t0

)
,

by Theorem 3.12 there is an eigenvalue γ (t) of R (t) satisfying

eγ
(
δT+ (t0) , t0

)
= λ2 = eγ2

(
δT+ (t0) , t0

)
.

Hence, for some k ∈ Z we have γ2(t) = γ (t) ⊕
◦
ı 2πk
δT+(t0)−t0

. Furthermore, λ1 6= λ2

implies that γ(t) 6= γ1 (t). If v2 is a nonzero eigenvector of R (t) corresponding to

eigenvalue γ(t), then the eigenvectors v1 and v2 are linearly independent. Similar

to the related part in the proof of Theorem 4.15, one can state the solutions of

the system (4.1) as follows:

x1 (t) = eγ1 (t, t0)L (t) v1 (4.29)

and

x2 (t) = eγ (t, t0)L (t) v2.

Since x1 (t0) = L(t0)v1 and x2 (t0) = L(t0)v2, the solutions x1 (t) and x2 (t) are

linearly independent. Moreover, the solution x2 can be rewritten in the following
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form

x2(t) = eγ2 (t, t0) eγ	γ2(t, t0)L(t)ν2

= eγ2 (t, t0) e	◦ı 2πk

δT+(t0)−t0

(t, t0)L(t)ν2. (4.30)

Letting κ1 (t) = L (t) v1 and κ2 (t) = e
	
◦
ı 2πk

δT+(t0)−t0

(t, t0)L(t)ν2 in (4.29) and (4.30),

respectively, we complete the proof.

4.4 Stability properties of unified Floquet sys-

tems

In this section, the unified Floquet theory established in previous sections is

employed to investigate the stability characteristics of the regressive periodic

system

x∆ (t) = A (t) x (t) , x (t0) = x0. (4.31)

By Theorem 4.1, the matrix R in the Floquet decomposition of ΦA is given by

R (t) = lim
s→t

ΦA

(
δT+ (t0) , t0

) 1
T
[Θ(σ(t))−Θ(s)]

− I

σ (t)− s
. (4.32)

Also, Theorem 4.6 concludes that the solution z(t) of the regressive system

z∆ (t) = R (t) z (t) , z (t0) = x0 (4.33)

can be expressed in terms of the solution x(t) of the system (4.31) as follows:

z(t) = L−1(t)x(t), where L(t) is the Lyapunov transformation given by (4.13).

In preparation for the main result, the following definitions and results which

can be found in [37] and [38] are presented for stability and asymptotical sta-

bility properties of the solution of (4.31). Furthermore, the exponential stability

definition is given according to [30].

Definition 38 (Stability). The unified Floquet system (4.31) is uniformly stable
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if there exists a constant α > 0 such that the following inequality

‖x(t)‖ ≤ α ‖x(t0)‖ , t ≥ t0

holds for any initial state and corresponding solution.

Theorem 4.17 Let ΦA be the transition matrix of the system (4.31).Then, (4.31)

is uniformly stable if and only if there exists a α > 0 such that the inequality

‖ΦA(t, t0)‖ ≤ α, t ≥ t0

satisfied.

Definition 39 (Asymptotical stability). In addition to uniform stability condi-

tion, if for any given c > 0 there exists a K > 0 such that the inequality

‖x(t)‖ ≤ c ‖x(t0)‖ , t ≥ t0 +K

holds, then the unified Floquet system (4.31) is uniformly asymptotically stable.

Definition 40 (Exponential stability). The unified Floquet system (4.31) is uni-

formly exponentially stable if there exist α, β > 0 such that the inequality

‖x(t)‖ ≤ ‖x(t0)‖αe	β(t, t0), t ≥ t0

holds for any initial state and corresponding solution.

Moreover, necessary and sufficient conditions for exponential stability can be

stated as the following:

Theorem 4.18 The system (4.31) is uniformly exponentially stable if and only

if there exist α, β > 0 with such that the inequality

‖ΦA(t, t0)‖ ≤ αe	β(t, t0), t ≥ t0

is satisfied for the transition matrix ΦA.
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Definition 41. ( [67] See also [38, Definition 7.1]) The scalar function γ : T∗ → C

is uniformly regressive if there exists a constant θ > 0 such that 0 < θ−1 ≤

|1 + µ (t) γ (t)| , for all t ∈ Tκ.

Lemma 4.19 Each eigenvalue of the matrix R (t) in (4.33) is uniformly regres-

sive.

Proof. Define Λ(t, s) by

Λ(t, s) := Θ (σ (t))−Θ(s) . (4.34)

As it is done in Corollary 4.2, let

γi (t) = lim
s→t

(

λ
1
T
Λ(t,s)

i − 1

σ (t)− s

)

, i = 1, 2, ..., k

be any of the k ≤ n distinct eigenvalues of R (t). Now, there are two cases:

1. If |λi| ≥ 1, then

|1 + µ (t) γi (t)| = lim
s→t

∣∣∣∣∣1 + µ (s)
λ

1
T
Λ(t,s)

i − 1

σ (t)− s

∣∣∣∣∣ = lim
s→t

∣∣∣λ
1
T
Λ(t,s)

i

∣∣∣ > 1.

2. If 0 ≤ |λi| < 1, then,

|1 + µ (t) γi (t)| = lim
s→t

∣∣∣∣∣1 + µ (s)
λ

1
T
Λ(t,s)

i − 1

σ (t)− s

∣∣∣∣∣ = lim
s→t

∣∣∣λ
1
T
Λ(t,s)

i

∣∣∣ ≥ |λi| .

Setting θ−1 := min{1, |λ1| , . . . , |λk|}, then one can obtain

0 < θ−1 < |1 + µ (t) γi (t)| .

Definition 42. [38, Definition 7.3] A matrix function H(t) is said to admit a dy-

namic eigenvector w (t), where w (t) is a ∆-differentiable nonzero vector function,
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if the following equality is satisfied

w∆ (t) = H (t)w (t)− ξ (t)wσ (t) , t ∈ Tk (4.35)

for corresponding dynamic eigenvalue ξ (t). Then the pair {ξ (t) , w (t)} is called

a dynamic eigenpair. Additionally, the mode vector χ for a function H(t) is given

by

χi := eξi (t, t0)wi (t) , (4.36)

where {ξi (t) , wi (t)} is associated dynamic eigenpair.

The following results can be proven similar to [38, Lemma 7.4, Theorem 7.5]:

Lemma 4.20 Any regressive matrix function H has n dynamic eigenpairs with

linearly independent eigenvectors. Moreover, if the dynamic eigenvectors form

the columns of a matrix function W (t), then W satisfies the matrix dynamic

eigenvalue problem

W∆ (t) = H (t)W (t)−W σ (t) Ξ (t) , where Ξ (t) := diag [ξ1 (t) , . . . , ξn (t)] .

(4.37)

where Ξ (t) := diag [ξ1 (t) , . . . , ξn (t)] .

Theorem 4.21 Solutions to the uniformly regressive (but not necessarily peri-

odic) time varying linear dynamic system (4.31) are:

1. stable if and only if there exists a γ > 0 such that every mode vector χi (t)

of A (t) satisfies ‖χi (t)‖ ≤ γ <∞, t > t0, for all 1 ≤ i ≤ n;

2. asymptotically stable if and only if, in addition to (1), ‖χi (t)‖ → 0, t > t0,

for all 1 ≤ i ≤ n,

3. exponentially stable if and only if there exists γ, λ > 0 such that ‖χi (t)‖ ≤

γe	λ (t, t0), t > t0, for all 1 ≤ i ≤ n.

Definition 43. For each k ∈ N0 the mappings hk : T
∗ × T∗ → R+, recursively
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defined by

h0(t, t0) :≡ 1, hk+1(t, t0) =

t∫

t0

(
lim
s→τ

Λ(τ, s)

σ(τ)− s

)
hk(τ, t0)∆τ for n ∈ N0, (4.38)

are called monomials, where Λ(t, s) is given by (4.34).

Remark. For an additive periodic time scale we always have Θ (t) = t− t0, and

hence, Λ(t, s) = σ(t)− s.

Lemma 4.22 Let T be a time scale which is unbounded above and γ (t) be an

eigenvalue of R(t). If there exists a constant H ≥ t0 such that

inf
t∈[H,∞)T

[
−

(
lim
s→t

(
Λ(t, s)

σ(t)− s

))−1
Reµ γ (t)

]
> 0 (4.39)

holds, then

lim
t→∞

hk (t, t0) eγ (t, t0) = 0, k ∈ N0. (4.40)

Proof. It suffices to show that limt→∞ hk (t, t0) eReµ γ(t) (t, t0) = 0 (see [47, Theo-

rem 7.4]). Let’s proceed by mathematical induction. For k = 0, it is known that

h0 (t, t0) = 1 and by [67], we have

lim
t→∞

eReµ γi(t) (t, t0) = 0 for t0 ∈ T.

Suppose that it is true for a fixed k ∈ N and consider the (k + 1)th step.

lim
t→∞

hk+1 (t, t0) eReµ γ(t) (t, t0)

= lim
t→∞




t∫

t0

lim
s→τ

(
Λ(τ, s)

σ(τ)− s

)
hk (τ, t0)∆τ


 e	Reµ γ(t) (t, t0)

−1

= lim
t→∞

[
lim
s→t

(
Λ(t, s)

σ(t)− s

)
hk (t, t0)

]
eReµ γ(t) (σ(t), t0)

−Reµ γ(t)

= lim
t→∞



lims→t

(
Λ(t,s)
σ(t)−s

)
hk (t, t0) eReµ γ(t) (σ(t), t0)

−Reµ γ(t)


 , (4.41)
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where (4.39) is used together with [24, Theorem 1.120] and [27, Theorem 3.4] to

obtain the second equality. The last term in (4.41) can be written as

lim
t→∞



lims→t

(
Λ(t,s)
σ(t)−s

)
hk (t, t0) eReµ γ(t) (σ(t), t0)

−Reµ γ(t)




= lim
t→∞



(1 + µ(t) Reµ γ(t))hk (t, t0) eReµ γ(t) (t, t0)

−
(
lims→t

(
Λ(t,s)
σ(t)−s

))−1
Reµ (γ (t))




≤ lim
t→∞




(1 + µ(t) Reµ γ(t))hk (t, t0) eReµ γ(t) (t, t0)

inft∈[H,∞)T

[
−

(
lims→t

(
Λ(t,s)
σ(t)−s

))−1
Reµ (γ (t))

]


 . (4.42)

Now, one may use (4.3) and (4.34) to get the inequality

1 + µ(t) Reµ γ(t) =

∣∣∣∣∣1 + µ(t) lim
s→t

(

λ
1
T
Λ(t,s) − 1

σ (t)− s

)∣
∣
∣
∣
∣
≤ max {1, |λ|}

which along with (4.42) implies

lim
t→∞

hk+1 (t, t0) eReµ γ(t) (t, t0) = 0

as desired.

Theorem 4.23 Let {γi (t)}
n
i=1 be the set of conventional eigenvalues of the matrix

R(t) given in (4.32) and {wi (t)}
n
i=1 be the set of corresponding linearly indepen-

dent dynamic eigenvectors as defined by Lemma 4.20. Then, {γi (t) , wi (t)}
n
i=1 is

a set of dynamic eigenpairs of R(t) with the property that for each 1 ≤ i ≤ n

there are positive constants Di > 0 such that

‖wi (t)‖ ≤ Di

mi−1∑

k=0

hk (t, t0) , (4.43)

holds where hk (t, t0), k = 0, 1, ...,mi − 1, are the monomials defined as in (4.38)

and mi is the dimension of the Jordan block which contains the ith eigenvalue,

for all 1 ≤ i ≤ n.
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Proof. By Lemma 4.20, it is obvious that, {γi (t) , wi (t)}
n
i=1 is the set of eigenpairs

of R (t). First, there exists an appropriate n× n constant, nonsingular matrix S

which transforms ΦA

(
δT+ (t0) , t0

)
to its Jordan canonical form given by

J := S−1ΦA

(
δT+ (t0) , t0

)
S

=










Jm1 (λ1)

Jm2 (λ2)
. . .

Jmd
(λd)










n×n

, (4.44)

where d ≤ n,
∑d

i=1 mi = n, λi are the eigenvalues of ΦA

(
δT+ (t0) , t0

)
. By utilizing

above determined matrix S, define the following:

K (t) := S−1R (t)S

= S−1



lim
s→t

ΦA

(
δT+ (t0) , t0

) 1
T
Λ(t,s)

− I

σ (t)− s



S

= lim
s→t

S−1ΦA

(
δT+ (t0) , t0

) 1
T
Λ(t,s)

S − I

σ (t)− s
.

This along with [38, Theorem A.6] yields

K (t) = lim
s→t

J
1
T
Λ(t,s) − I

σ (t)− s
.

Note that, K (t) has the block diagonal form

K (t) = diag [K1 (t) , . . . , Kd (t)]
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in which each Ki (t) given by

Ki (t) := lim
s→t

Ki (t) := lim
s→t



















λ
1
T

Λ(t,s)

i −1

σ(t)−s

1
T
Λ(t,s)λ

1
T

Λ(t,s)−1

i

(σ(t)−s)2!
. . .




n−2∏

k=0

[ 1T Λ(t,s)−k]


λ

1
T

Λ(t,s)−n+1

i

(n−1)!(σ(t)−s)

λ
1
T

Λ(t,s)

i −1

σ(t)−s
. . .




n−3∏

k=0

[ 1T Λ(t,s)−k]


λ

1
T

Λ(t,s)−n+2

i

(n−2)!(σ(t)−s)

. . .
...

λ
1
T

Λ(t,s)

i −1

σ(t)−s



















mi×mi

.

It should be mentioned that, since R (t) and K (t) are similar, they have the

same conventional eigenvalues

γi (t) = lim
s→t

(

λ
1
T
[Λ(t,s)]

i − 1

σ (t)− s

)

, i = 1, 2, ..., n,

with corresponding multiplicities. Moreover, if we set the dynamic eigenvalues

of K(t) to be same as conventional eigenvalues γi (t), then the corresponding

dynamic eigenvectors {ui (t)}
n
i=1 of K (t) can be given by ui (t) = S−1wi (t).

This claim can be proven by showing that {γi (t) , ui (t)}
n
i=1 is a set of dynamic

eigenpairs of K (t) . By Definition 42, one can write that

u∆
i (t) = S−1w∆

i (t)

= S−1R (t)wi (t)− S−1γi (t)w
σ
i (t)

= K (t)S−1wi (t)− γi (t)S
−1wσ

i (t)

= K (t) ui (t)− γi (t) u
σ
i (t) , (4.45)

for all 1 ≤ i ≤ n and this proves our claim. Now, it should be shown that ui (t)

satisfies (4.43). Since {γi (t) , ui (t)}
n
i=1 is the set of dynamic eigenpairs of K (t) , it

satisfies (4.45) for all 1 ≤ i ≤ n. By choosing the ith block of K (t) with dimension
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mi ×mi, we can construct the following linear dynamic system:

v∆ (t) = K̃i (t) v(t) = lim
s→t





















0
1
T
Λ(t,s)

(σ(t)−s)λi

( 1
T
Λ(t,s))( 1

T
Λ(t,s)−1)

(σ(t)−s)λi2!
. . .




n−2∏

k=0

[ 1T Λ(t,s)−k]




(n−1)!(σ(t)−s)λn−1
i

0
1
T
Λ(t,s)

(σ(t)−s)λi




n−3∏

k=0

[ 1T Λ(t,s)−k]




(n−2)!(σ(t)−s)λn−2
i

0
. . .

...
. . .

1
T
Λ(t,s)

(σ(t)−s)λi

0





















v(t),

(4.46)

where K̃i (t) (t) := Ki (t) 	 γi (t) I. There are mi linearly independent solutions

of (4.46). Let us denote these solutions by vi,j (t), where i corresponds to the i
th

block matrix Ki (t) and j = 1, . . . ,mi. For 1 ≤ i ≤ d, define li =
i−1∑

s=0

ms, with

m0 = 0. Then, the form of an arbitrary n× 1 column vector uli+j for i ≤ j ≤ m

can be given as

uli+j = [ 0, . . . , 0
︸ ︷︷ ︸

m1+...+mi−1

, vTi,j (t)
︸ ︷︷ ︸

mi

, 0, . . . , 0
︸ ︷︷ ︸

mi+1,...,md

]1×n. (4.47)

Considering the all vector solutions of (4.45), the solution of the n × n matrix

dynamic equation

U∆ (t) = K (t)U (t)− Uσ (t) Γ (t) ,

where Γ (t) := diag [γ1 (t) , . . . , γn (t)] , can be written as

U (t) :=
[

u1, . . . , um1 , . . . , u(
∑i−1

k=1 mk), . . . , u(
∑i

k=1 mk), . . . , u(
∑d

k=1 mk)−1, un

]
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=

































v1,1 v1,2 . . . v1,m1

v1,1
. . . v1,m1−1

. . .
...

v1,1










m1×m1

. . .









vd,1 vd,2 . . . vd,md

vd,1
. . . vd,md−1

. . .
...

vd,1










md×md
























n×n

.

The mi linearly independent solutions of (4.46) have the form

vi,1 (t) := [vi,mi
(t) , 0, . . . , 0]Tmi×1

,

vi,2 (t) := [vi,mi−1 (t) , vi,mi
(t) , 0, . . . , 0]Tmi×1

,

...

vi,mi
(t) := [vi,1 (t) , vi,2 (t) , . . . , vi,mi−1 (t) , vi,mi

(t)]Tmi×1
.

Then, we have the dynamic equations

v∆i,mi
(t) = 0,

v∆i,mi−1
(t) = lim

s→t

[Λ(t, s)]

T (σ(t)− s)λi

vi,mi
(t) ,

v∆i,mi−2
(t) = lim

s→t

(
1∏

k=0

[ 1
T
Λ(t, s)− k]

)

2(σ(t)− s)λ2
i

vi,mi
(t) + lim

s→t

Λ(t, s)

T (σ(t)− s)λi

vi,mi−1 (t) ,

...

v∆i,1(t) = lim
s→t

(
mi−2∏

k=0

[ 1
T
Λ(t, s)− k]

)

(mi − 1)!(σ(t)− s)λmi−1
i

vi,mi
(t)
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+ lim
s→t

(
mi−3∏

k=0

[ 1
T
Λ(t, s)− k]

)

(mi − 2)!(σ(t)− s)λmi−2
vi,mi−1 (t)+

. . .+ lim
s→t

(
1∏

k=0

[ 1
T
Λ(t, s)− k]

)

2(σ(t)− s)λ2
i

vi,3 (t) + lim
s→t

Λ(t, s)

T (σ(t)− s)λi

vi,2 (t) .

Moreover, we have the following solutions:

vi,mi
(t) = 1, vi,mi−1 (t) =

t∫

t0

lim
s→τ

Λ(τ, s)

T (σ(τ)− s)λi

vi,mi
(τ)∆τ,

vi,mi−2 (t) =

t∫

t0

lim
s→τ

(
1∏

k=0

[ 1
T
Λ(τ, s)− k]

)

2(σ(τ)− s)λ2
i

vi,mi
(τ)∆τ +

t∫

t0

lim
s→τ

Λ(τ, s)

T (σ(τ)− s)λi

vi,mi−1 (τ)∆τ,

...

vi,1(t) =

t∫

t0

lim
s→τ

(
mi−2∏

k=0

1
T
Λ(τ, s)− k]

)

(mi − 1)!(σ(τ)− s)λmi−1
i

vi,mi
(τ)∆τ

+

t∫

t0

lim
s→τ

(
mi−3∏

k=0

1
T
Λ(τ, s)− k]

)

(mi − 2)!(σ(τ)− s)λmi−2
i

vi,mi−1(τ)∆τ+

. . .+

t∫

t0

lim
s→τ

Λ(τ, s)

T (σ(τ)− s)λi

vi,2 (τ)∆τ.

Then we can show that each vi,j is bounded. There exist constants Bi,j, i =

1, . . . , d and j = 1, . . . ,mi, such that

|vi,mi
(t)| = 1 ≤ Bi,mi

h0 (t, t0) = Bi,mi
,
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|vi,mi−1 (t)| ≤

t∫

t0

∣
∣
∣
∣
lim
s→τ

(
Λ(τ, s)

T (σ(τ)− s)λi

)

vi,mi
(τ)

∣
∣
∣
∣
∆τ ≤

1

T |λi|

t∫

t0

lim
s→τ

(
Λ(τ, s)

σ(τ)− s

)

h0 (τ, t0)∆τ

≤
h1 (t, t0)

T |λi|
≤ Bi,mi−1h1 (t, t0) ,

|vi,mi−2 (t)| ≤

t∫

t0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

lim
s→τ

(
1∏

k=0

[ 1
T
Λ(τ, s)− k]

)

2(σ(τ)− s)λ2
i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

vi,mi
(τ)∆τ

+

t∫

t0

lim
s→τ

(
Λ(τ, s)

T (σ(τ)− s)λi

)

vi,mi−1 (τ)∆τ.

Since

0 ≤ Θ(σ (τ))−Θ(s) ≤ T as s→ τ,

we get ∣
∣
∣
∣

1

T
Λ(τ, s)− k

∣
∣
∣
∣
≤ k as s→ τ for k = 1, 2, ....

Then

|vi,mi−2 (t)| ≤
1

2Tλ2
i

t∫

t0

lim
s→τ

(
Λ(τ, s)

σ(τ)− s

)

h0 (τ, t0)∆τ

+
1

T 2λ2
i

t∫

t0

lim
s→τ

(
Λ(τ, s)

σ(τ)− s

)

h1 (τ, t0)∆τ

=
h1 (t, t0)

2Tλ2
i

+
h2 (t, t0)

T 2λ2
i

≤ Bi,mi−2

2∑

j=1

hj (t, t0)

...

|vi,1| ≤ Bi,1

mi−1∑

j=1

hj (t, t0) .
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Setting βi := maxj=1,...,mi
{Bi,j} for each 1 ≤ i ≤ d, we obtain

‖uli+j (t)‖ ≤ βi

mi−1∑

k=0

hk (t, t0)

for 1 ≤ i ≤ d and j = 1, 2, ...,mi. Since wi = Sui we have

‖wi (t)‖ = ‖Sui (t)‖ ≤ ‖S‖ βi

mi−1∑

k=0

hk (t, t0)

= Di

mi−1∑

k=0

hk (t, t0) ,

where Di := ‖S‖ βi, for all 1 ≤ i ≤ n. The proof is complete.

Theorem 4.24 (Unified Floquet stability theorem) Let T be a periodic time

scale in shifts that is unbounded above. We get the following stability results for

the solutions of the system (4.31) based on the eigenvalues {γi(t)}
n
i=1 of system

(4.33):

1. If there is a positive constant H such that

inf
t∈[H,∞)T

[

−

(

lim
s→t

(
Λ(t, s)

σ(t)− s

))−1

Reµ γi (t)

]

> 0 (4.48)

for all i = 1, . . . , n, then the system (4.31) is asymptotically stable. More-

over, if there are positive constants H and ε such that (4.48) and

− Reµ γi (t) > ε (4.49)

for all t ∈ [H,∞)T and all i = 1, . . . , n, then the system (4.31) is exponen-

tially stable.

2. If there is a positive constant H such that

inf
t∈[H,∞)T

[

−

(

lim
s→t

(
Λ(t, s)

σ(t)− s

))−1

Reµ γi (t)

]

≥ 0 (4.50)



Chapter 4. Extension of Floquet theory to time scales periodic in shifts δ± 91

for all i = 1, . . . , n, and if, for each characteristic exponent with

Reµ (γi (t)) = 0 for all t ∈ [H,∞)T,

the algebraic multiplicity equals the geometric multiplicity, then the system

(4.31) is stable; otherwise it is unstable.

3. If Reµ (γi (t)) > 0 for all t ∈ T and some i = 1, . . . , n, then the system

(4.31) is unstable.

Proof. Let eR (t, t0) be the transition matrix of the system (4.33) and R (t) be

defined as in (4.32). Given the conventional eigenvalues {γi (t)}
n
i=1 of R (t), we

can define the set of dynamic eigenpairs {γi (t) , wi (t)}
n
i=1 and from Theorem 4.23,

the dynamic eigenvector wi (t) satisfies (4.43). Moreover, let us define W (t) as

the following:

W (t) = eR (t, τ) e	Ξ (t, τ) (4.51)

and we have

eR (t, τ) = W (t)eΞ (t, τ) , (4.52)

where τ ∈ T and Ξ (t) is given as in Lemma 4.20. Employing (4.52), one can

write that

eR (τ, t0) = eΞ (τ, t0)W
−1(t0). (4.53)

By combining (4.52) and (4.53), the transition matrix of the system (4.33) can

be represented by

eR (t, t0) = W (t) eΞ (t, t0)W
−1 (t0) , (4.54)

where W (t) := [w1 (t) , w2 (t) , . . . , wn (t)]. Furthermore, the matrix W−1 (t0) can

be denoted as follows:

W−1 (t0) =










vT1 (t0)

vT2 (t0)
...

vTn (t0)










.



Chapter 4. Extension of Floquet theory to time scales periodic in shifts δ± 92

Since Ξ (t) is a diagonal matrix, we can write (4.54) as

eR (t, t0) =
n∑

i=1

eγi (t, t0)W (t)FiW
−1 (t0) , (4.55)

where Fi := δi,j is n× n matrix. Using vTi (t)wj (t) = δi,j for all t ∈ T, Fi can be

rewritten as follows:

Fi = W−1 (t) [0, . . . , 0, wi (t) , 0, . . . , 0] . (4.56)

By means of (4.55) and (4.56) we have

eR (t, t0) =
n∑

i=1

eγi (t, t0)wi (t) v
T
i (t0) =

n∑

i=1

χi (t) v
T
i (t0) ,

where χi (t) is mode vector of system (4.33).

Case 1 By (4.36), for each 1 ≤ i ≤ n, we can write that

‖χi (t)‖ ≤ Di

di−1∑

k=0

hk (t, t0) |eγi (t, t0)|

≤ Di

di−1∑

k=0

hk (t, t0) eReµ(γi )
(t, t0)

where Di is as in Theorem 4.23, di represents the dimension of the Jordan block

which contains ith eigenvalue of R (t).Using Lemma 4.22 we get

lim
t→∞

hk (t, t0) eReµ(γi )
(t, t0) = 0

for each 1 ≤ i ≤ n and all k = 1, 2, ..., di − 1. This along with Theorem 4.21

implies that the system (4.33) is asymptotically stable. By Theorem 4.6, since

the solutions of the systems in (4.31) and (4.33) are related by Lyapunov transfor-

mation, we can state that solution of the system (4.31) is asymptotically stable.
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For the second part, we first write

‖χi (t)‖ ≤ Di

di−1∑

k=0

hk (t, t0) |eγi (t, t0)|

≤ Di

di−1∑

k=0

hk (t, t0) eReµ(γi )⊕ε
(t, t0) e	ε (t, t0) . (4.57)

If (4.49) holds, then Reµ (γi)⊕ ε satisfies (4.39). Hence, by Lemma 4.22 the term

hk (t, t0) eReµ(γi )⊕ε
(t, t0) converges to zero as t → ∞. That is, there is an upper

bound Cε for the sum
di−1∑

k=0

hk (t, t0) eReµ(γi )⊕ε
(t, t0). This along with (4.57) yields

‖χi (t)‖ ≤ DiCεe	ε (t, t0) .

Thus,Theorem 4.21 implies that the system (4.33) is exponentially stable. Using

the above given argument the Floquet system (4.31) is exponentially stable.

Case 2 Assume that Reµ [γk (t)] = 0 for some 1 ≤ k ≤ n with equal algebraic

and geometric multiplicities corresponding to γk(t). Then the Jordan block of

γk(t) is 1× 1. Then,

lim
t→∞

‖χk (t)‖ ≤ lim
t→∞

Dk |eγk (t, t0)|

≤ lim
t→∞

DkeReµ(γk )
(t, t0)

= Dk.

By Theorem 4.21, the system (4.33) is stable. By Theorem 4.6, the solutions of

the systems in (4.31) and (4.33) are related by Lyapunov transformation. This

implies that the system (4.31) is stable.

Case 3 Suppose that Reµ(γi (t)) > 0 for some i = 1, . . . , n. Then, we have

lim
t→∞

‖eR (t, t0)‖ =∞,

and by the relationship between solutions of the systems in (4.31) and (4.33), one
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can write that

lim
t→∞

‖ΦA (t, t0)‖ =∞.

Therefore, the Floquet system (4.31) is unstable.

Remark. In the case when the time scale is additive periodic, Theorem 4.24

gives its additive counterpart [38, Theorem 7.9]. For an additive time scale the

graininess function µ(t) is bounded above by the period of the time scale. How-

ever, this is not true in general for the times scales that are periodic in shifts.

The highlight of Theorem 4.24 is to rule out strong restriction that obliges the

time scale to be additive periodic. Hence, unlike [38, Theorem 7.9] our stability

theorem (i.e. Theorem 4.24 ) is valid for q-difference systems.

Corollary 4.25 Let λi be a Floquet multiplier of the T -periodic linear dynamic

system (4.31) for i = 1, . . . , n. Then, we have

1. If |λi| < 1 for all i = 1, . . . , n., then the system (4.31) is exponentially

stable;

2. If |λi| ≤ 1 for all i = 1, . . . , n and if, for each |λi| = 1 for some i = 1, . . . , n,

the algebraic multiplicity equals to geometric multiplicity, then the system

(4.31) is stable, otherwise it is unstable.

3. |λi| > 1 for some i = 1, . . . , n, then the system (4.31) is unstable.



Chapter 5

Conclusion

In this thesis, Floquet theory of q-difference systems is established on qZ, q > 1

by using two periodicity notions on quantum calculus (see Chapter 2). At first

homogeneous case is analyzed and canonical Floquet decomposition is obtained

for the transition matrix of the q-Floquet system by employing Lyapunov trans-

formation and the solution of the matrix exponential equation (see Theorem 3.1

and Theorem 3.5). Then, necessary and sufficient conditions for the existence of

periodic solutions of homogeneous and nonhomogeneous systems are provided.

Unlike the existing literature (see [28], [32]), we define the periodic solution of

systems to be the one repeating its values at each forward and backward step

with a fixed period in parallel to the conventional periodicity perception. Thus,

the q-Floquet theory constructed in this thesis also serves an alternative approach

to [28] and [32]. In the remaining parts of q-Floquet theory, Floquet multipliers,

Floquet exponents and their properties are introduced and proved. Moreover,

stability properties of q-Floquet system is analyzed via Floquet exponents and

Floquet multipliers despite the unbounded step size (graininess) of qZ, q > 1. By

doing so, the gap on the stability characteristics of q-Floquet systems is fulfilled.

The generalization and extension of q-Floquet theory to more general domains,

which are called time scales periodic in shifts, is performed in Chapter 4. Shift

operators and the new periodicity concept on time scales are introduced (see

Chapter 2) and the extension of q-Floquet theory is established by employing
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periodicity notion by means of shift operators. The use of the new periodicity

concept on the unification of q-Floquet theory enables us to focus on time scales

which do not need to be additively periodic. As an alternative the existing lit-

erature, the extension of q-Floquet theory is valid on more time scales such as

qZ, ∪∞k=0

[
3±k, 2.3±k

]
∪ {0} and N1/2 which can not be covered by [37] and [38].

Moreover without assuming the bounded step size (graininess) of the time scale

dissimilar to [38], the stability properties of the Floquet system are analyzed for

the time scales unbounded from above.
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degree from İzmir University of Economics, Department of Mathematics in 2011.

In 2011, he started his Ph.D. with scholarship at İzmir University of Economics,
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