Erkuş, DENİZ ERDEMİRCİMadran, Ugur2023-06-162023-06-1620150021-86931090-266Xhttps://doi.org/10.1016/j.jalgebra.2014.10.002https://hdl.handle.net/20.500.14365/1273Let G be a cyclic group of order p(2) and V be a faithful indecomposable representation of G over a field F of characteristic p. We show that the Hilbert ideal of the invariant ring is generated by polynomials of degree at most |G| whenever dim V <= 4p or dim V >= p(2) - 2p, proving a conjecture of Derksen and Kemper in this particular case. (C) 2014 Elsevier Inc. All rights reserved.eninfo:eu-repo/semantics/closedAccessModular invariant theoryPolynomial invariantsNoether numberHilbert idealVector InvariantsFinite-GroupsPrime-OrderRepresentationsFieldsRingsOn Generators of the Hilbert Ideal for Cyclic Groups in Modular Invariant TheoryArticle10.1016/j.jalgebra.2014.10.0022-s2.0-84908570184