Bairamov, I.Stepanov, A.2023-06-162023-06-1620100167-71521879-2103https://doi.org/10.1016/j.spl.2009.10.007https://hdl.handle.net/20.500.14365/1452Let (Z) over bar (1) = (X-1, Y-1)....(Z) over bar (n) = (X-n, Y-n) be independent and identically distributed random vectors with continuous distribution. Let K-n(a, b(1), b(2)) be the number of sample elements that belong to the open rectangle (X-max((n)) - a, X-max((n))) x (Y-max((n)) - b(1), Y-max((n)) + b(2)) - numbers of near-maxima in the bivariate case. in the present paper, we discuss asymptotic properties of K-n (a, b(1), b(2)) and K-n(infinity, 0, infinity). (C) 2009 Elsevier B.V. All rights reserved.eninfo:eu-repo/semantics/closedAccessInsurance ClaimRecordsSumNumbers of Near-Maxima for the Bivariate CaseArticle10.1016/j.spl.2009.10.0072-s2.0-72049130546