Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1048
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzbilge Kahveci, Ebru-
dc.contributor.authorDemir, Ali-
dc.date.accessioned2023-06-16T12:58:52Z-
dc.date.available2023-06-16T12:58:52Z-
dc.date.issued2011-
dc.identifier.issn0096-3003-
dc.identifier.issn1873-5649-
dc.identifier.urihttps://doi.org/10.1016/j.amc.2011.01.080-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1048-
dc.description.abstractThis article presents a semigroup approach to the mathematical analysis of the inverse parameter problems of identifying the unknown parameters p(t) and q in the linear parabolic equation u(t)(x, t) = u(xx) + qu(x)(x, t) + p(t)u(x, t), with Dirichlet boundary conditions u(0, t) = psi(0), u(1, t) = psi(1). The main purpose of this paper is to investigate the distinguishability of the input-output mapping Phi[.] : P -> H-1,H- 2 [0, T], via semigroup theory. In this paper, it is shown that if the nullspace of the semigroup T(t) consists of only zero function, then the input-output mapping Phi[.] has the distinguishability property. It is also shown that the types of the boundary conditions and the region on which the problem is defined play an important role in the distinguishability property of the mapping. Moreover, under the light of the measured output data u(x)(0, t) = f(t) the unknown parameter p(t) at (x, t) = (0, 0) and the unknown coefficient q are determined via the input data. Furthermore, it is shown that measured output data f(t) can be determined analytically by an integral representation. Hence the input-output mapping Phi[.] : P -> H-1,H-2 [0, T] is given explicitly interms of the semigroup. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipScientific and Technical Research Council (TUBITAK) of Turkey; Izmir University of Economicsen_US
dc.description.sponsorshipThe research was supported in part by the Scientific and Technical Research Council (TUBITAK) of Turkey and Izmir University of Economics.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofApplıed Mathematıcs And Computatıonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSemigroup approachen_US
dc.subjectParameter identificationen_US
dc.subjectParabolic equationen_US
dc.subjectLinear Parabolic Equationen_US
dc.subjectDiffusion-Coefficienten_US
dc.subjectIdentificationen_US
dc.titleAnalysis of a semigroup approach in the inverse problem of identifying an unknown parametersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2011.01.080-
dc.identifier.scopus2-s2.0-80052273671en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridÖzbilge, Ebru/0000-0002-2998-8134-
dc.authorwosidDEMİR, Ali/F-5702-2018-
dc.authorscopusid15081438700-
dc.authorscopusid56988688100-
dc.identifier.volume218en_US
dc.identifier.issue3en_US
dc.identifier.startpage965en_US
dc.identifier.endpage969en_US
dc.identifier.wosWOS:000294298400059en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
54.pdf
  Restricted Access
172.04 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 20, 2024

Page view(s)

70
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.