Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1055
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdıvar, Murat-
dc.contributor.authorKoyuncuoglu, Halis Can-
dc.contributor.authorRaffoul, Youssef N.-
dc.date.accessioned2023-06-16T12:58:53Z-
dc.date.available2023-06-16T12:58:53Z-
dc.date.issued2014-
dc.identifier.issn0096-3003-
dc.identifier.issn1873-5649-
dc.identifier.urihttps://doi.org/10.1016/j.amc.2014.05.062-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1055-
dc.description.abstractThis paper focuses on the existence of a periodic solution of the delay neutral nonlinear dynamic systems x(Delta)(t) = A(t)x(t) + Q(Delta)(t, x(delta (-) (s, t))) + G(t, x(t), x(delta (-) (s, t))). In our analysis, we utilize a new periodicity concept in terms of shifts operators, which allows us to extend the concept of periodicity to time scales where the additivity requirement t +/- T is an element of T for all t is an element of T and for a fixed T > 0, may not hold. More importantly, the new concept will easily handle time scales that are not periodic in the conventional way such as; (q(z)) over bar and boolean OR(infinity)(k-1) [3(+/- k), 2.3(+/- k)] boolean OR {0}. Hence, we will develop the tool that enables us to investigate the existence of periodic solutions of q-difference systems. Since we are dealing with systems, in order to convert our equation to an integral systems, we resort to the transition matrix of the homogeneous Floquet system y(Delta)(t) = A(t)y(t) and then make use of Krasnoselskii's fixed point theorem to obtain a fixed point. (C) 2014 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkeyen_US
dc.description.sponsorshipThis study is supported by The Scientific and Technological Research Council of Turkey.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofApplıed Mathematıcs And Computatıonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFixed pointen_US
dc.subjectFloquet theoryen_US
dc.subjectKrasnoselskiien_US
dc.subjectNeutral nonlinear dynamic systemen_US
dc.subjectPeriodicityen_US
dc.subjectShift operatorsen_US
dc.subjectEquationsen_US
dc.titleExistence of periodic solutions in shifts delta(+/-) for neutral nonlinear dynamic systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2014.05.062-
dc.identifier.scopus2-s2.0-84902683089en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridADIVAR, Murat/0000-0002-9707-2005-
dc.authorwosidADIVAR, Murat/N-3430-2018-
dc.authorscopusid55913381700-
dc.authorscopusid55815809700-
dc.authorscopusid6602902226-
dc.identifier.volume242en_US
dc.identifier.startpage328en_US
dc.identifier.endpage339en_US
dc.identifier.wosWOS:000340563000029en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Mathematics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
62.pdf
  Restricted Access
447.72 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 20, 2024

Page view(s)

96
checked on Nov 18, 2024

Download(s)

8
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.