Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHnich, Brahim-
dc.contributor.authorRossi, Roberto-
dc.contributor.authorTarim, S. Armagan-
dc.contributor.authorPrestwich, Steven-
dc.date.accessioned2023-06-16T12:58:55Z-
dc.date.available2023-06-16T12:58:55Z-
dc.date.issued2012-
dc.identifier.issn0004-3702-
dc.identifier.urihttps://doi.org/10.1016/j.artint.2012.05.001-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1073-
dc.description.abstractStochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling framework for problems under uncertainty. To solve them is a PSPACE task. The only complete solution approach to date - scenario-based stochastic constraint programming - compiles SCSPs clown into classical CSPs. This allows the reuse of classical constraint solvers to solve SCSPs, but at the cost of increased space requirements and weak constraint propagation. This paper tries to overcome these drawbacks by automatically synthesizing filtering algorithms for global chance constraints. These filtering algorithms are parameterized by propagators for the deterministic version of the chance constraints. This approach allows the reuse of existing propagators in current constraint solvers and it has the potential to enhance constraint propagation. Our results show that, for the test bed considered in this work, our approach is superior to scenario-based stochastic constraint programming. For these instances, our approach is more scalable, it produces more compact formulations, it is more efficient in terms of run time and more effective in terms of pruning for both stochastic constraint satisfaction and optimization problems. (C) 2012 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipHacettepe University (HU-BAB); Scientific and Technological Research Council of Turkey (TUBITAK) [110M500]en_US
dc.description.sponsorshipThis work is an extended version of Hnich et al. (2009) [11]. S. Armagan Tarim is supported by Hacettepe University (HU-BAB) and the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 110M500.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofArtıfıcıal Intellıgenceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStochastic constraint programmingen_US
dc.subjectStochastic constraint satisfactionen_US
dc.subjectGlobal chance constraintsen_US
dc.subjectFiltering algorithmsen_US
dc.subjectStochastic alldifferenten_US
dc.titleFiltering algorithms for global chance constraintsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.artint.2012.05.001-
dc.identifier.scopus2-s2.0-84861355846en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTarim, S. Armagan/0000-0001-5601-3968-
dc.authoridRossi, Roberto/0000-0001-7247-1010-
dc.authoridHnich, Brahim/0000-0001-8875-8390-
dc.authoridPrestwich, Steven/0000-0002-6218-9158-
dc.authorwosidTarim, S. Armagan/B-4414-2010-
dc.authorwosidRossi, Roberto/B-4397-2010-
dc.authorscopusid6602458958-
dc.authorscopusid35563636800-
dc.authorscopusid6506794189-
dc.authorscopusid7004234709-
dc.identifier.volume189en_US
dc.identifier.startpage69en_US
dc.identifier.endpage94en_US
dc.identifier.wosWOS:000307612200004en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
82.pdf521.58 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

11
checked on Nov 20, 2024

Page view(s)

74
checked on Nov 18, 2024

Download(s)

12
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.