Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1073
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hnich, Brahim | - |
dc.contributor.author | Rossi, Roberto | - |
dc.contributor.author | Tarim, S. Armagan | - |
dc.contributor.author | Prestwich, Steven | - |
dc.date.accessioned | 2023-06-16T12:58:55Z | - |
dc.date.available | 2023-06-16T12:58:55Z | - |
dc.date.issued | 2012 | - |
dc.identifier.issn | 0004-3702 | - |
dc.identifier.uri | https://doi.org/10.1016/j.artint.2012.05.001 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1073 | - |
dc.description.abstract | Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling framework for problems under uncertainty. To solve them is a PSPACE task. The only complete solution approach to date - scenario-based stochastic constraint programming - compiles SCSPs clown into classical CSPs. This allows the reuse of classical constraint solvers to solve SCSPs, but at the cost of increased space requirements and weak constraint propagation. This paper tries to overcome these drawbacks by automatically synthesizing filtering algorithms for global chance constraints. These filtering algorithms are parameterized by propagators for the deterministic version of the chance constraints. This approach allows the reuse of existing propagators in current constraint solvers and it has the potential to enhance constraint propagation. Our results show that, for the test bed considered in this work, our approach is superior to scenario-based stochastic constraint programming. For these instances, our approach is more scalable, it produces more compact formulations, it is more efficient in terms of run time and more effective in terms of pruning for both stochastic constraint satisfaction and optimization problems. (C) 2012 Elsevier B.V. All rights reserved. | en_US |
dc.description.sponsorship | Hacettepe University (HU-BAB); Scientific and Technological Research Council of Turkey (TUBITAK) [110M500] | en_US |
dc.description.sponsorship | This work is an extended version of Hnich et al. (2009) [11]. S. Armagan Tarim is supported by Hacettepe University (HU-BAB) and the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 110M500. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.ispartof | Artıfıcıal Intellıgence | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Stochastic constraint programming | en_US |
dc.subject | Stochastic constraint satisfaction | en_US |
dc.subject | Global chance constraints | en_US |
dc.subject | Filtering algorithms | en_US |
dc.subject | Stochastic alldifferent | en_US |
dc.title | Filtering algorithms for global chance constraints | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.artint.2012.05.001 | - |
dc.identifier.scopus | 2-s2.0-84861355846 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Tarim, S. Armagan/0000-0001-5601-3968 | - |
dc.authorid | Rossi, Roberto/0000-0001-7247-1010 | - |
dc.authorid | Hnich, Brahim/0000-0001-8875-8390 | - |
dc.authorid | Prestwich, Steven/0000-0002-6218-9158 | - |
dc.authorwosid | Tarim, S. Armagan/B-4414-2010 | - |
dc.authorwosid | Rossi, Roberto/B-4397-2010 | - |
dc.authorscopusid | 6602458958 | - |
dc.authorscopusid | 35563636800 | - |
dc.authorscopusid | 6506794189 | - |
dc.authorscopusid | 7004234709 | - |
dc.identifier.volume | 189 | en_US |
dc.identifier.startpage | 69 | en_US |
dc.identifier.endpage | 94 | en_US |
dc.identifier.wos | WOS:000307612200004 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q1 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
13
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
11
checked on Nov 20, 2024
Page view(s)
74
checked on Nov 18, 2024
Download(s)
12
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.