Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1080
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura, Ozlem Karabiber-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T12:58:56Z-
dc.date.available2023-06-16T12:58:56Z-
dc.date.issued2021-
dc.identifier.issn0208-5216-
dc.identifier.urihttps://doi.org/10.1016/j.bbe.2020.11.0020208-5216/-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1080-
dc.description.abstractDynamic mode decomposition (DMD) is a new matrix decomposition method proposed as an iterative solution to problems in fluid flow analysis. Recently, DMD algorithm has successfully been applied to the analysis of non-stationary signals such as neural recordings. In this study, we propose single-channel, and multi-channel EEG based DMD approaches for the analysis of epileptic EEG signals. We investigate the possibility of utilizing the DMD Spectrum for the classification of pre-seizure and seizure EEG segments. We introduce higher-order DMD spectral moments and DMD sub-band powers, and extract them as features for the classification of epileptic EEG signals. Experiments are conducted on multi-channel EEG signals collected from 16 epilepsy patients. Single-channel, and multichannel EEG based DMD approaches have been tested on epileptic EEG data recorded from only right, only left, and both brain hemisphere channels. Performance of various classifiers using the proposed DMD-Spectral based features are compared with that of traditional spectral features. Experimental results reveal that the higher order DMD spectral moments and DMD sub-band power features introduced in this study, outperform the analogous spectral features calculated from traditional power spectrum. (c) 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2019GAPM?, MF0003, 2019TDRFEBE0005]en_US
dc.description.sponsorshipThis paper was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project numbers: 2019GAPM?MF0003 and 2019TDRFEBE0005.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofBıocybernetıcs And Bıomedıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDynamic mode decomposition (DMD)en_US
dc.subjectElectroencephalogram (EEG)en_US
dc.subjectEpilepsyen_US
dc.subjectEpileptic seizure classificationen_US
dc.subjectMachine learningen_US
dc.subjectAutomatic Seizure Detectionen_US
dc.subjectWavelet Transformen_US
dc.subjectClassificationen_US
dc.subjectFeaturesen_US
dc.titleAnalysis of epileptic EEG signals by using dynamic mode decomposition and spectrumen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bbe.2020.11.0020208-5216/-
dc.identifier.scopus2-s2.0-85098109225en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.identifier.volume41en_US
dc.identifier.issue1en_US
dc.identifier.startpage28en_US
dc.identifier.endpage44en_US
dc.identifier.wosWOS:000643728600005en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
90.pdf
  Restricted Access
2.95 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Jul 7, 2023

WEB OF SCIENCETM
Citations

12
checked on Nov 20, 2024

Page view(s)

82
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.