Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1089
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzdemir, Mehmet Akif-
dc.contributor.authorKisa, Deniz Hande-
dc.contributor.authorGuren, Onan-
dc.contributor.authorAkan, Aydin-
dc.date.accessioned2023-06-16T12:58:58Z-
dc.date.available2023-06-16T12:58:58Z-
dc.date.issued2022-
dc.identifier.issn1746-8094-
dc.identifier.issn1746-8108-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2022.103787-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1089-
dc.description.abstractHand gesture-based systems are one of the most effective technological advances and continue to develop with improvements in the field of human-computer interaction. Surface electromyography (sEMG) is utilized as a popular input data for gesture classification with elevated accuracy and advanced control capability. This paper presents a comparative hand gesture classification approach using time-frequency (TF) images of the spontaneous sEMG signals and the transfer learning method. 4-channel sEMG signals are collected from 30 subjects performing 7 specific hand gestures. After the required pre-processing, segmentation, and windowing steps, three TF analysis methods, namely Short-Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT), and Hilbert-Huang Transform (HHT), are applied to EMG signals to obtain TF images. Spectrograms from STFT, scalograms from CWT, and Hilbert-Huang spectra (HHS) from HHT obtained from multi-channel sEMG data are separately fused. TF images are then utilized to extract distinct features using seven state-of-the-art, pre-trained Convolutional Neural Network (CNN) architectures and classify seven hand gestures. Two different robust crossvalidation strategies are conducted to evaluate the proposed method; stratified k-fold cross-validation (SKCV) and leave-one-subject-out cross-validation (LOOCV). We also investigate the effect of window size and the combination of Intrinsic Mode Functions (IMFs) on classification performance. The results demonstrated that the HHT utilizing IMFs obtained by Empirical Mode Decomposition (EMD) provided improved TF resolution and better results than STFT and CWT in the classification of sEMG signals. Finally, the best average accuracies (93.75% for SKCV) and (94.41% for LOOCV) are obtained by the HHT method with the pre-trained ResNet-50 model.en_US
dc.description.sponsorshipIKCU Scientific Research Projects Coordination Unit [2021-O?, MF-0004, 2022-GAP-M?, MF-0001]; Scientific and Technological Research Council of Turkey (TUBITAK) [120E512]en_US
dc.description.sponsorshipAcknowledgements This work was supported by the IKCU Scientific Research Projects Coordination Unit [Grant Nos. 2021-O?DL-M?MF-0004, 2022-GAP-M?MF-0001] ; and the Scientific and Technological Research Council of Turkey (TUBITAK) [Grant No. 120E512] .en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofBıomedıcal Sıgnal Processıng And Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHand Gesture Classificationen_US
dc.subjectConvolutional Neural Networks (CNN)en_US
dc.subjectElectromyogram (EMG)en_US
dc.subjectSTFTen_US
dc.subjectCWTen_US
dc.subjectHilbert-Huang Transform (HHT)en_US
dc.subjectHilbert Spectrumen_US
dc.subjectEmgen_US
dc.subjectRecognitionen_US
dc.titleHand gesture classification using time-frequency images and transfer learning based on CNNen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bspc.2022.103787-
dc.identifier.scopus2-s2.0-85129730981en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOzdemir, Mehmet Akif/0000-0002-8758-113X-
dc.authorwosidOzdemir, Mehmet Akif/G-7952-2018-
dc.authorwosidGüren, Onan/HKF-6479-2023-
dc.authorscopusid57206479576-
dc.authorscopusid57221554803-
dc.authorscopusid56364720900-
dc.authorscopusid35617283100-
dc.identifier.volume77en_US
dc.identifier.wosWOS:000799610000003en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
99.pdf
  Restricted Access
6.04 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

51
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

39
checked on Nov 20, 2024

Page view(s)

136
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.