Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1153
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUstun, Ozden-
dc.contributor.authorKasimbeyli̇, Refail-
dc.date.accessioned2023-06-16T12:59:10Z-
dc.date.available2023-06-16T12:59:10Z-
dc.date.issued2012-
dc.identifier.issn0305-0548-
dc.identifier.issn1873-765X-
dc.identifier.urihttps://doi.org/10.1016/j.cor.2010.09.008-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1153-
dc.description.abstractIn this paper a general mathematical model for portfolio selection problem is proposed. By considering a forecasting performance according to the distributional properties of residuals, we formulate an extended mean-variance-skewness model with 11 objective functions. Returns and return errors for each asset obtained using different forecasting techniques, are combined in optimal proportions so as to minimize the mean absolute forecast error. These proportions are then used in constructing six criteria related to the mean, variance and skewness of return forecasts of assets in the future and forecasting errors of returns of assets in the past. The obtained multi-objective model is scalarized by using the conic scalarization method which guarantees to find all non-dominated solutions by considering investor preferences in non-convex multi-objective problems. The obtained scalar problem is solved by utilizing F-MSG algorithm. The performance of the proposed approach is tested on a real case problem generated on the data derived from Istanbul Stock Exchange. The comparison is conducted with respect to different levels of investor preferences over return, variance, and skewness and obtained results are summarized. (C) 2010 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofComputers & Operatıons Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMultiple objective programmingen_US
dc.subjectRisk managementen_US
dc.subjectGlobal optimizationen_US
dc.subjectPortfolio optimizationen_US
dc.subjectConic scalarizationen_US
dc.subjectF-MSG algorithmen_US
dc.subjectModified Subgradient Algorithmen_US
dc.subjectVariance-Skewness Modelen_US
dc.subjectRisk-Managementen_US
dc.subjectScalarizationen_US
dc.subjectSelectionen_US
dc.titleCombined forecasts in portfolio optimization: A generalized approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cor.2010.09.008-
dc.identifier.scopus2-s2.0-80051786586en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKasimbeyli OR Gasimov, Refail OR Rafail/0000-0002-7339-9409-
dc.authorwosidKasimbeyli OR Gasimov, Refail OR Rafail/AAA-4049-2020-
dc.authorscopusid55911445000-
dc.authorscopusid35146065000-
dc.identifier.volume39en_US
dc.identifier.issue4en_US
dc.identifier.startpage805en_US
dc.identifier.endpage819en_US
dc.identifier.wosWOS:000295745100007en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
170.pdf
  Restricted Access
307.3 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

35
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

28
checked on Nov 20, 2024

Page view(s)

164
checked on Nov 18, 2024

Download(s)

8
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.