Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1168
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eryılmaz, Serkan | - |
dc.date.accessioned | 2023-06-16T12:59:13Z | - |
dc.date.available | 2023-06-16T12:59:13Z | - |
dc.date.issued | 2006 | - |
dc.identifier.issn | 0012-365X | - |
dc.identifier.uri | https://doi.org/10.1016/j.disc.2006.03.042 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1168 | - |
dc.description.abstract | Recently, Grabner et al. [Combinatorics of geometrically distributed random variables: run statistics, Theoret. Comput. Sci. 297 (2003) 261-270] and Louchard and Prodinger [Ascending runs of sequences of geometrically distributed random variables: a probabilistic analysis, Theoret. Comput. Sci. 304 (2003) 59-86] considered the run statistics of geometrically distributed independent random variables. They investigated the asymptotic properties of the number of runs and the longest run using the corresponding probability generating functions and a Markov chain approach. In this note, we reconsider the asymptotic properties of such statistics using another approach. Our approach of finding the asymptotic distributions is based on the construction of runs in a sequence of m-dependent random variables. This approach enables us to find the asymptotic distributions of many run statistics via the theorems established for m-dependent sequence of random variables. We also provide the asymptotic distribution of the total number of non-decreasing runs and the longest non-decreasing run. (c) 2006 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.ispartof | Dıscrete Mathematıcs | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | asymptotic distribution | en_US |
dc.subject | geometric random variables | en_US |
dc.subject | m-dependent random variables | en_US |
dc.subject | runs | en_US |
dc.subject | Probabilistic Analysis | en_US |
dc.subject | Longest Runs | en_US |
dc.subject | Combinatorics | en_US |
dc.title | A note on runs of geometrically distributed random variables | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2006.03.042 | - |
dc.identifier.scopus | 2-s2.0-33745949676 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Eryılmaz, Serkan/0000-0002-2108-1781 | - |
dc.authorwosid | Eryılmaz, Serkan/AAF-9349-2019 | - |
dc.authorscopusid | 8203625300 | - |
dc.identifier.volume | 306 | en_US |
dc.identifier.issue | 15 | en_US |
dc.identifier.startpage | 1765 | en_US |
dc.identifier.endpage | 1770 | en_US |
dc.identifier.wos | WOS:000239705100010 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q4 | - |
dc.identifier.wosquality | Q3 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Mathematics | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
186.pdf Restricted Access | 162.39 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
7
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
5
checked on Nov 20, 2024
Page view(s)
62
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.