Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1172
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkan, Aydin-
dc.contributor.authorCura, Ozlem Karabiber-
dc.date.accessioned2023-06-16T12:59:14Z-
dc.date.available2023-06-16T12:59:14Z-
dc.date.issued2021-
dc.identifier.issn1051-2004-
dc.identifier.issn1095-4333-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2021.103216-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1172-
dc.description.abstractMost real-life signals exhibit non-stationary characteristics. Processing of such signals separately in the time-domain or in the frequency-domain does not provide sufficient information as their spectral properties change over time. Traditional methods such as the Fourier transform (FT) perform a transformation from time-domain to frequency-domain allowing a suitable spectral analysis but looses the spatial/temporal information of the signal components. Hence, it is not easy to observe a direct relationship between the time and frequency characteristics of the signal. This makes it difficult to extract useful information by using only time- or frequency-domain analysis for further processing purposes. To overcome this problem, joint time-frequency (TF) methods are developed and applied to the analysis and representation of non-stationary signals. In addition to revealing a time-dependent energy distribution information, TF methods have successfully been utilized in the estimation of some parameters related to the analyzed signals. In this paper, we briefly summarize the existing methods and present several state-of-the-art applications of TF methods in the classification of biomedical signals. We also point out some future perspectives for the processing of non-stationary signals in the joint TF domain. (C) 2021 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipIzmir Katip Celebi Univer-sity Scientific Research Projects Coordination Unit [2019-GAP-MuMF-0003, 2017-oNAP-MuMF-0002, 2019-TDR-FEBE-0005]en_US
dc.description.sponsorshipThis work was partially supported by Izmir Katip Celebi Univer-sity Scientific Research Projects Coordination Unit, Grant numbers: 2019-GAP-MuMF-0003, 2017-oNAP-MuMF-0002, 2019-TDR-FEBE-0005.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofDıgıtal Sıgnal Processıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTime-frequency analysis (TFA)en_US
dc.subjectTime-frequency distributions (TFD)en_US
dc.subjectNon-stationary signalsen_US
dc.subjectTime-frequency signal processingen_US
dc.subjectMachine learningen_US
dc.subjectDeep learningen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectEpileptic Seizure Detectionen_US
dc.subjectEeg Signalsen_US
dc.subjectNonstationary Signalsen_US
dc.subjectFeature-Extractionen_US
dc.subjectWavelet Transformen_US
dc.subjectSynchrosqueezing Transformen_US
dc.subjectGabor Expansionen_US
dc.subjectClassificationen_US
dc.subjectFeaturesen_US
dc.titleTime-frequency signal processing: Today and futureen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dsp.2021.103216-
dc.identifier.scopus2-s2.0-85113875953en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid35617283100-
dc.authorscopusid57195223021-
dc.identifier.volume119en_US
dc.identifier.wosWOS:000729993100008en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
191.pdf
  Restricted Access
4.27 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

34
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

33
checked on Nov 20, 2024

Page view(s)

126
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.