Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1181
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPedamallu, Chandra Sekhar-
dc.contributor.authorOzdamar, Linet-
dc.date.accessioned2023-06-16T12:59:16Z-
dc.date.available2023-06-16T12:59:16Z-
dc.date.issued2008-
dc.identifier.issn0377-2217-
dc.identifier.issn1872-6860-
dc.identifier.urihttps://doi.org/10.1016/j.ejor.2006.06.050-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1181-
dc.description.abstractConstrained Optimization Problems (COP) often take place in many practical applications such as kinematics, chemical process optimization, power systems and so on. These problems are challenging in terms of identifying feasible solutions when constraints are non-linear and non-convex. Therefore, finding the location of the global optimum in the non-convex COP is more difficult as compared to non-convex bound-constrained global optimization problems. This paper proposes a Hybrid Simulated Annealing method (HSA), for solving the general COP. HSA has features that address both feasibility and optimality issues and here, it is supported by a local search procedure, Feasible Sequential Quadratic Programming (FSQP). We develop two versions of HSA. The first version (HSAP) incorporates penalty methods for constraint handling and the second one (HSAD) eliminates the need for imposing penalties in the objective function by tracing feasible and infeasible solution sequences independently. Numerical experiments show that the second version is more reliable in the worst case performance. (C) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEuropean Journal of Operatıonal Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectconstrained optimizationen_US
dc.subjectglobal and local searchen_US
dc.subjectsimulated annealingen_US
dc.subjectfeasible sequential quadratic programmingen_US
dc.subjectGlobal Optimizationen_US
dc.subjectContinuous-Variablesen_US
dc.titleInvestigating a hybrid simulated annealing and local search algorithm for constrained optimizationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ejor.2006.06.050-
dc.identifier.scopus2-s2.0-34848860813en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOzdamar, Linet/0000-0002-9276-7502-
dc.authorwosidPedamallu, Chandra Sekhar/AAV-6745-2020-
dc.authorwosidPedamallu, Chandra Sekhar/AAV-6723-2020-
dc.authorscopusid15760612900-
dc.authorscopusid7004162696-
dc.identifier.volume185en_US
dc.identifier.issue3en_US
dc.identifier.startpage1230en_US
dc.identifier.endpage1245en_US
dc.identifier.wosWOS:000251070500022en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextreserved-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
crisitem.author.dept03.05. Logistics Management-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
201.pdf
  Restricted Access
436.82 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

56
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

42
checked on Nov 20, 2024

Page view(s)

52
checked on Nov 25, 2024

Download(s)

4
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.