Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1201
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOkur, Erdem-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2023-06-16T12:59:21Z-
dc.date.available2023-06-16T12:59:21Z-
dc.date.issued2018-
dc.identifier.issn0952-1976-
dc.identifier.issn1873-6769-
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2018.04.028-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1201-
dc.description.abstractSkin cancer is defined as the rapid growth of skin cells due to DNA damage that cannot be repaired. Melanoma is one of the deadliest types of skin cancer, which originates from melanocytes. While other skin cancer types have limited spreading capabilities, the danger of melanoma comes from its ability to spread (metastasize) rapidly. Fortunately, it can be detected by visual inspection of the skin surface, and it is 100% curable if identified in the early stages. However, detection by subjective visual inspection creates an important problem, due to investigators' different levels of experiences and education. Dermoscopy (dermatoscopy) has significantly increased the diagnostic accuracy of melanoma since late 90's. In addition, several systems have been proposed in order to assist investigators or to perform an automatic melanoma detection. This survey focuses on the algorithms for automated melanoma detection in dermoscopic images through an extensive analysis of the stages in methodologies proposed in the literature, and by examining related concepts and describing possible future directions through open problems in this domain of research.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEngıneerıng Applıcatıons of Artıfıcıal Intellıgenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMelanoma detectionen_US
dc.subjectSkin canceren_US
dc.subjectAutomated detectionen_US
dc.subjectDermoscopyen_US
dc.subjectImage processingen_US
dc.subjectMachine learningen_US
dc.subjectConvolutional Neural-Networksen_US
dc.subjectLesion Border Detectionen_US
dc.subjectDermoscopy Imagesen_US
dc.subjectSparse Representationsen_US
dc.subjectSkin-Lesionen_US
dc.subjectDiagnosisen_US
dc.subjectClassificationen_US
dc.subjectSegmentationen_US
dc.subjectLevelen_US
dc.subjectCompressionen_US
dc.titleA survey on automated melanoma detectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.engappai.2018.04.028-
dc.identifier.scopus2-s2.0-85047056100en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTurkan, Mehmet/0000-0002-9780-9249-
dc.authoridOkur, Erdem/0000-0003-1177-6149-
dc.authorwosidTurkan, Mehmet/AGQ-8084-2022-
dc.authorscopusid57195215602-
dc.authorscopusid14069326000-
dc.identifier.volume73en_US
dc.identifier.startpage50en_US
dc.identifier.endpage67en_US
dc.identifier.wosWOS:000437991100005en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
223.pdf
  Restricted Access
3.94 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

76
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

52
checked on Nov 20, 2024

Page view(s)

56
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.