Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1214
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kiranyaz, Serkan | - |
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Pulkkinen, Jenni | - |
dc.contributor.author | Gabbouj, Moncef | - |
dc.date.accessioned | 2023-06-16T12:59:25Z | - |
dc.date.available | 2023-06-16T12:59:25Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.issn | 1873-6793 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2010.09.010 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1214 | - |
dc.description.abstract | This paper presents a personalized long-term electrocardiogram (ECG) classification framework, which addresses the problem within a long-term ECG signal, known as Halter register, recorded from an individual patient. Due to the massive amount of ECG beats in a Halter register, visual inspection is quite difficult and cumbersome, if not impossible. Therefore, the proposed system helps professionals to quickly and accurately diagnose any latent heart disease by examining only the representative beats (the so-called master key-beats) each of which is automatically extracted from a time frame of homogeneous (similar) beats. We tested the system on a benchmark database where beats of each Halter register have been manually labeled by cardiologists. The selection of the right master key-beats is the key factor for achieving a highly accurate classification and thus we used exhaustive K-means clustering in order to find out (near-) optimal number of key-beats as well as the master key-beats. The classification process produced results that were consistent with the manual labels with over 99% average accuracy, which basically shows the efficiency and the robustness of the proposed system over massive data (feature) collections in high dimensions. (C) 2010 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Expert Systems Wıth Applıcatıons | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Personalized long-term ECG classification | en_US |
dc.subject | Exhaustive K-means clustering | en_US |
dc.subject | Holter registers | en_US |
dc.subject | Morphology | en_US |
dc.subject | Transform | en_US |
dc.subject | Heart | en_US |
dc.title | Personalized long-term ECG classification: A systematic approach | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.eswa.2010.09.010 | - |
dc.identifier.scopus | 2-s2.0-78650712943 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Gabbouj, Moncef/0000-0002-9788-2323 | - |
dc.authorid | Raitoharju, Jenni/0000-0003-4631-9298 | - |
dc.authorid | kiranyaz, serkan/0000-0003-1551-3397 | - |
dc.authorid | İnce, Türker/0000-0002-8495-8958 | - |
dc.authorwosid | Kiranyaz, Serkan/AAK-1416-2021 | - |
dc.authorwosid | Gabbouj, Moncef/G-4293-2014 | - |
dc.authorscopusid | 7801632948 | - |
dc.authorscopusid | 56259806600 | - |
dc.authorscopusid | 26665019900 | - |
dc.authorscopusid | 7005332419 | - |
dc.identifier.volume | 38 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 3220 | en_US |
dc.identifier.endpage | 3226 | en_US |
dc.identifier.wos | WOS:000286904600033 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q1 | - |
item.grantfulltext | reserved | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
237.pdf Restricted Access | 421.36 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
49
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
41
checked on Nov 20, 2024
Page view(s)
246
checked on Nov 18, 2024
Download(s)
4
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.