Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1216
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnce, Türker-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T12:59:25Z-
dc.date.available2023-06-16T12:59:25Z-
dc.date.issued2012-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2011.09.082-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1216-
dc.description.abstractIn this paper, a robust radial basis function (RBF) network based classifier is proposed for polarimetric synthetic aperture radar (SAR) images. The proposed feature extraction process utilizes the covariance matrix elements, the H/alpha/A decomposition based features combined with the backscattering power (span), and the gray level co-occurrence matrix (GLCM) based texture features, which are projected onto a lower dimensional feature space using principal components analysis. For the classifier training, both conventional backpropagation (BP) and multidimensional particle swarm optimization (MD-PSO) based dynamic clustering are explored. By combining complete polarimetric covariance matrix and eigenvalue decomposition based pixel values with textural information (contrast, correlation, energy, and homogeneity) in the feature set, and employing automated evolutionary RBF classifier for the pattern recognition unit, the overall classification performance is shown to be significantly improved. An experimental study is performed using the fully polarimetric San Francisco Bay and Flevoland data sets acquired by the NASA/Jet Propulsion Laboratory Airborne SAR (AIRSAR) at L-band to evaluate the performance of the proposed classifier. Classification results (in terms of confusion matrix, overall accuracy and classification map) compared with the major state of the art algorithms demonstrate the effectiveness of the proposed RBF network classifier. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems Wıth Applıcatıonsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPolarimetric synthetic aperture radaren_US
dc.subjectRadial basis function networken_US
dc.subjectParticle swarm optimizationen_US
dc.subjectUnsupervised Classificationen_US
dc.subjectMultifrequencyen_US
dc.subjectDecompositionen_US
dc.titleEvolutionary RBF classifier for polarimetric SAR imagesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2011.09.082-
dc.identifier.scopus2-s2.0-84855894016en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorscopusid56259806600-
dc.authorscopusid7801632948-
dc.authorscopusid7005332419-
dc.identifier.volume39en_US
dc.identifier.issue5en_US
dc.identifier.startpage4710en_US
dc.identifier.endpage4717en_US
dc.identifier.wosWOS:000301155300006en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
239.pdf
  Restricted Access
1.34 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

28
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

24
checked on Nov 20, 2024

Page view(s)

250
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.