Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1264
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOguz, Kaya-
dc.date.accessioned2023-06-16T14:11:06Z-
dc.date.available2023-06-16T14:11:06Z-
dc.date.issued2020-
dc.identifier.issn0020-0255-
dc.identifier.issn1872-6291-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2020.03.072-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1264-
dc.description.abstractThe Tartarus Problem is one of the candidate benchmark problems in evolutionary algorithms. We take advantage of the graphical processing unit (GPU) to improve the results of the software agents that use finite state machines (FSMs) for this benchmark. While doing so we also contribute to the study of the problem on several grounds. Similar to existing studies we use genetic algorithms to evolve FSMs, but unlike most of them we use adaptive operators for controlling the parameters of the algorithm. We show that the actual number of valid boards is not 297,040, but 74,760, because the agent is indifferent to the rotations of the board. We also show that the agent can only come across 383 different combinations, rather than 6561 that is used in the current literature. A final contribution is that we report the first true scores for the agents by testing them with all available 74,760 boards. Our best solution has a mean score of 8.5379 on all boards. (C) 2020 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformatıon Scıencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTartarus problemen_US
dc.subjectParallel genetic algorithmsen_US
dc.subjectGPGPUen_US
dc.subjectFinite state machinesen_US
dc.titleTrue scores for tartarus with adaptive GAs that evolve FSMs on GPUen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ins.2020.03.072-
dc.identifier.scopus2-s2.0-85082819706en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridOguz, Kaya/0000-0002-1860-9127-
dc.authorwosidOguz, Kaya/A-1812-2016-
dc.authorscopusid54902980200-
dc.identifier.volume525en_US
dc.identifier.startpage1en_US
dc.identifier.endpage15en_US
dc.identifier.wosWOS:000530096400001en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextreserved-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
292.pdf
  Restricted Access
1.73 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

64
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.