Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1269
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOz, Ibrahim Onur-
dc.contributor.authorYelkenci, Tezer-
dc.contributor.authorMeral, Gorkem-
dc.date.accessioned2023-06-16T14:11:06Z-
dc.date.available2023-06-16T14:11:06Z-
dc.date.issued2021-
dc.identifier.issn1057-5219-
dc.identifier.issn1873-8079-
dc.identifier.urihttps://doi.org/10.1016/j.irfa.2021.101797-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1269-
dc.description.abstractThis study explores the proficiency of earnings components for detecting earnings and cash flows distress. The authors examine the deterioration of these two performance indicators for two aggregate and two disaggregate earnings models, each of which is subject to examination through different machine learning, non-parametric, and parametric methods. The results, obtained from firms in 22 countries, reveal that the current information content of earnings not only has explanatory power for future earnings and cash flows but also can support advance classifications of the two performance indicators as negative or positive. Each aggregate and disaggregate model offers distress classification ability, the disaggregation of earnings generates better, robust detection accuracies for cash flow distress, while aggregate earnings model provides improved classification for prospective earnings distress. The findings also suggest that machine learning estimation methods provide superior distress detection compared to a parametric method, despite its still decent performance.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInternatıonal Revıew of Fınancıal Analysısen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCash flowsen_US
dc.subjectEarningsen_US
dc.subjectDistress predictionen_US
dc.subjectMachine learningen_US
dc.subjectEstimation methodsen_US
dc.subjectWorking Capital Managementen_US
dc.subjectFinancial Distress Predictionen_US
dc.subjectOperating Cash Flowen_US
dc.subjectBankruptcy Predictionen_US
dc.subjectAccrualsen_US
dc.subjectClassificationen_US
dc.subjectProfitabilityen_US
dc.subjectAbilityen_US
dc.subjectRatiosen_US
dc.subjectModelsen_US
dc.titleThe role of earnings components and machine learning on the revelation of deteriorating firm performanceen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.irfa.2021.101797-
dc.identifier.scopus2-s2.0-85107158025en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid56455145900-
dc.authorscopusid56455368000-
dc.authorscopusid57224172659-
dc.identifier.volume77en_US
dc.identifier.wosWOS:000694972000002en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
297.pdf
  Restricted Access
602.76 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

36
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.