Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1273
Title: | On generators of the Hilbert ideal for cyclic groups in modular invariant theory | Authors: | Erkuş, DENİZ ERDEMİRCİ Madran, Ugur |
Keywords: | Modular invariant theory Polynomial invariants Noether number Hilbert ideal Vector Invariants Finite-Groups Prime-Order Representations Fields Rings |
Publisher: | Academic Press Inc Elsevier Science | Abstract: | Let G be a cyclic group of order p(2) and V be a faithful indecomposable representation of G over a field F of characteristic p. We show that the Hilbert ideal of the invariant ring is generated by polynomials of degree at most |G| whenever dim V <= 4p or dim V >= p(2) - 2p, proving a conjecture of Derksen and Kemper in this particular case. (C) 2014 Elsevier Inc. All rights reserved. | URI: | https://doi.org/10.1016/j.jalgebra.2014.10.002 https://hdl.handle.net/20.500.14365/1273 |
ISSN: | 0021-8693 1090-266X |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
302.pdf Restricted Access | 340.59 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Page view(s)
56
checked on Nov 18, 2024
Download(s)
4
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.