Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1273
Title: On generators of the Hilbert ideal for cyclic groups in modular invariant theory
Authors: Erkuş, DENİZ ERDEMİRCİ
Madran, Ugur
Keywords: Modular invariant theory
Polynomial invariants
Noether number
Hilbert ideal
Vector Invariants
Finite-Groups
Prime-Order
Representations
Fields
Rings
Publisher: Academic Press Inc Elsevier Science
Abstract: Let G be a cyclic group of order p(2) and V be a faithful indecomposable representation of G over a field F of characteristic p. We show that the Hilbert ideal of the invariant ring is generated by polynomials of degree at most |G| whenever dim V <= 4p or dim V >= p(2) - 2p, proving a conjecture of Derksen and Kemper in this particular case. (C) 2014 Elsevier Inc. All rights reserved.
URI: https://doi.org/10.1016/j.jalgebra.2014.10.002
https://hdl.handle.net/20.500.14365/1273
ISSN: 0021-8693
1090-266X
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
302.pdf
  Restricted Access
340.59 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

Page view(s)

56
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.