Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1288
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUnluturk, Sevcan-
dc.contributor.authorPelvan, Merve-
dc.contributor.authorUnluturk, Mehmet S.-
dc.date.accessioned2023-06-16T14:11:09Z-
dc.date.available2023-06-16T14:11:09Z-
dc.date.issued2013-
dc.identifier.issn0889-1575-
dc.identifier.issn1096-0481-
dc.identifier.urihttps://doi.org/10.1016/j.jfca.2013.06.007-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1288-
dc.description.abstractThis paper utilized a neural network for texture image analysis to differentiate between milk, either raw or ultra high temperature (UHT) with antibiotic residues (e.g., penicillin G and ampicillin) and milk without antibiotic residues. The biocrystallization method was applied to obtain biocrystallogram images for milk samples spiked with penicillin G and ampicillin at different concentration levels. The biocrystallogram images were used as an input for a designed neural network called the image processing neural network (ImgProcNN). The visual differences in these images that were based on textural properties, including the distribution of crystals on the circular grass underlay, the thin or thick structure of the crystal needles, and the angles between the branches and the side needles, were used to discriminate the antibiotic-free milk samples from samples with antibiotic residues. The visual description and definition of these images have major disadvantages. In this study, the ImgProcNN was developed to overcome the shortcomings of these visual descriptions and definitions. Overall, the neural network achieved an average recognition performance between 86% and 100%. This high level of recognition suggests that the neural network used in this paper has potential as a method for discriminating raw and UHT milk samples contaminated with different antibiotics. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofJournal of Food Composıtıon And Analysısen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMilken_US
dc.subjectAntibiotic residuesen_US
dc.subjectPenicillin Gen_US
dc.subjectAmpicillinen_US
dc.subjectFood analysisen_US
dc.subjectFood safetyen_US
dc.subjectImage processingen_US
dc.subjectNeural networksen_US
dc.subjectBiocrystallizationen_US
dc.subjectVeterinary residuesen_US
dc.subjectFood regulation issuesen_US
dc.subjectFood trade issuesen_US
dc.subjectStandardizationen_US
dc.subjectValidationen_US
dc.titleThe discrimination of raw and UHT milk samples contaminated with penicillin G and ampicillin using image processing neural network and biocrystallization methodsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jfca.2013.06.007-
dc.identifier.scopus2-s2.0-84887247290en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridunluturk, sevcan/0000-0002-0501-4714-
dc.authorwosidunluturk, sevcan/AAG-4207-2019-
dc.authorscopusid15063695700-
dc.authorscopusid55920130200-
dc.authorscopusid6508114835-
dc.identifier.volume32en_US
dc.identifier.issue1en_US
dc.identifier.startpage12en_US
dc.identifier.endpage19en_US
dc.identifier.wosWOS:000328308300003en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
318.pdf
  Restricted Access
2.33 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

11
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

11
checked on Nov 20, 2024

Page view(s)

64
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.