Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1292
Title: Multirectangular characteristic invariants for power l-Kothe spaces of first type
Authors: Karapinar, Erdal
Keywords: multirectangular characteristic
power l-Kothe spaces
Linear topological invariants
Cartesian Products
Publisher: Academic Press Inc Elsevier Science
Abstract: Let l be a Banach sequence space with a monotone norm \\ center dot \\(l), in which the canonical system (e(i)) is a normalized unconditional basis. We consider the problem of quasi-diagonal isomorphism of first type power l-Kothe spaces E-l (lambda, a) (see (1) below). From [P.A. Chalov, V.P. Zahariuta, On quasi-diagonal isomorphism of generalized power spaces, in: Linear Topological Spaces and Complex Analysis, vol. 2, METU - TUBITAK, Ankara, 1995, pp. 35-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, First type power Kothe spaces and m-rectangular invariants, in: Linear Topological Spaces and Complex Analysis, vol. 3, METU - TUBITAK, Ankara, 1997, pp. 30-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, Multirectangular invariants for power Kothe spaces, J. Math. Anal. Appl. 297 (2004) 673-695] it is known that the system of all m-rectangle characteristics mu(m) (see (9) below) is a complete quasi-diagonal invariant on the class of all first type power Kothe spaces [V.P. Zahariuta, On isomorphisms and quasi-equivalence of bases of power Kothe spaces, Soviet Math. Dokl. 16 (1975) 411-414; V.P. Zahariuta, Linear topologic invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996) 237-289], if the relation of equivalency of systems (mu(X)(m)) and (mu((X) over tilde)(m)) is defined by some natural estimates with constants independent of m. Deriving the characteristic (beta) over tilde from the characteristic beta (see [V.P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, in: Matem. Analiz i ego Pril., vol. 2, Rostov Univ., Rostov-on-Don, 1970, pp. 3-13 (in Russian), in: Matem. Analiz i ego Pril., vol. 3, Rostov Univ., Rostov-on-Don, 1971, pp. 176-180 (in Russian); V.P. Zahariuta, Generalized Mityagin invariants and a continuum of mutually nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (1977) 24-30 (in Russian); V.P. Zahariuta, Compact operators and isomorphisms of Kothe spaces, in: Aktualnye Voprosy Matem. Analiza, vol. 46, Rostov Univ., Rostov-on-Don, 1978, pp. 62-71 (in Russian); P.A. Chalov, P.B. Djakov, V.P. Zahariuta, Compound invariants and embeddings of Cartesian products, Studia Math. 137 (1) (1999) 33-47; P.B. Djakov, M. Yurdakul, V.P. Zahariuta, Isomorphic classification of Cartesian products, Michigan Math. J. 43 (1996) 221-229; V.P. Zahariuta, Linear topologic invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996) 237-289], and using the S. Krein's interpolation method of analytic scale, we are able to generalize some results of [P.A. Chalov, V.P. Zahariuta, On quasi-diagonal isomorphism of generalized power spaces, in: Linear Topological Spaces and Complex Analysis, vol. 2, METU - TUBITAK, Ankara, 1995, pp. 35-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, First type power Kothe spaces and m-rectangular invariants, in: Linear Topological Spaces and Complex Analysis, vol. 3, METU - TUBITAK, Ankara, 1997, pp. 30-44; P.A. Chalov, T. Terzioglu, V.P. Zahariuta, Multirectangular invariants for power Kothe spaces, J. Math. Anal. Appl. 297 (2004) 673-695]. (C) 2007 Elsevier Inc. All rights reserved.
URI: https://doi.org/10.1016/j.jmaa.2007.01.049
https://hdl.handle.net/20.500.14365/1292
ISSN: 0022-247X
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
323.pdf
  Restricted Access
187.67 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

44
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.