Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1295
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhasemi, Amir-
dc.contributor.authorAzzouz, Radhia-
dc.contributor.authorLaipple, Georg-
dc.contributor.authorKabak, Kamil Erkan-
dc.contributor.authorHeavey, Cathal-
dc.date.accessioned2023-06-16T14:11:10Z-
dc.date.available2023-06-16T14:11:10Z-
dc.date.issued2020-
dc.identifier.issn0278-6125-
dc.identifier.issn1878-6642-
dc.identifier.urihttps://doi.org/10.1016/j.jmsy.2019.11.012-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1295-
dc.description.abstractIn this paper, we advance the state of the art for capacity allocation and scheduling models in a semiconductor manufacturing front-end fab (SMFF). In SMFF, a photolithography process is typically considered as a bottleneck resource. Since SMFF operational planning is highly complex (re-entrant flows, high number of jobs, etc.), there is only limited research on assignment and scheduling models and their effectiveness in a photolitography toolset. We address this gap by: (1) proposing a new mixed integer linear programming (MILP) model for capacity allocation problem in a photolithography area (CAPPA) with maximum machine loads minimized, subject to machine process capability, machine dedication and maximum reticles sharing constraints, (2) solving the model using CPLEX and proofing its complexity, and (3) presenting an improved genetic algorithm (GA) named improved reference group GA (IRGGA) biased to solve CAPPA efficiently by improving the generation of the initial population. We further provide different experiments using real data sets extracted from a Bosch fab in Germany to analyze both proposed algorithm efficiency and solution sensitivity against changes in different conditional parameters.en_US
dc.description.sponsorshipElectronic Component Systems for European Leadership Joint Undertaking [737459]; European Union's Horizon 2020 research and innovation program; Science Foundation Ireland (SFI) [SFI 16/RC/3918]; European Regional Development Funden_US
dc.description.sponsorshipThis project named Productive 4.0 has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No. 737459. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and Germany, Austria, France, Czech Republic, Netherlands, Belgium, Spain, Greece, Sweden, Italy, Ireland, Poland, Hungary, Portugal, Denmark, Finland, Luxembourg, Norway, Turkey.; This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI 16/RC/3918, co-funded by the European Regional Development Fund.en_US
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofJournal of Manufacturıng Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSemiconductor manufacturingen_US
dc.subjectPhotolithographyen_US
dc.subjectCapacity allocationen_US
dc.subjectGenetic algorithmen_US
dc.subjectMixed integer programmingen_US
dc.subjectWafer Fabricationen_US
dc.subjectAssignmenten_US
dc.subjectAlgorithmen_US
dc.subjectDemanden_US
dc.subjectModelsen_US
dc.subjectSolveen_US
dc.subjectTimeen_US
dc.titleOptimizing capacity allocation in semiconductor manufacturing photolithography area - Case study: Robert Boschen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmsy.2019.11.012-
dc.identifier.scopus2-s2.0-85076542261en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGhasemi, Amir/0000-0003-4112-2381-
dc.authoridHeavey, Cathal/0000-0003-0853-6769-
dc.authoridkabak, kamil erkan/0000-0003-0350-0273-
dc.authoridghasemi, amir/0000-0002-5392-2856-
dc.authorwosidGhasemi, Amir/AGG-6807-2022-
dc.authorwosidHeavey, Cathal/F-6929-2017-
dc.authorwosidkabak, kamil erkan/C-4530-2011-
dc.authorscopusid57190121746-
dc.authorscopusid55668575900-
dc.authorscopusid57207582754-
dc.authorscopusid24587842500-
dc.authorscopusid6603835699-
dc.identifier.volume54en_US
dc.identifier.startpage123en_US
dc.identifier.endpage137en_US
dc.identifier.wosWOS:000521511500010en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
326.pdf
  Restricted Access
5.61 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

20
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

16
checked on Nov 20, 2024

Page view(s)

62
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.