Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1299
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBairamov, I.-
dc.contributor.authorBayramoglu, K.-
dc.date.accessioned2023-06-16T14:11:10Z-
dc.date.available2023-06-16T14:11:10Z-
dc.date.issued2013-
dc.identifier.issn0047-259X-
dc.identifier.urihttps://doi.org/10.1016/j.jmva.2011.03.001-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1299-
dc.description.abstractHuang and Kotz (1999) [17] considered a modification of the Farlie-Gumbel-Morgenstern (FGM) distribution, introducing additional parameters, and paved the way for many research papers on modifications of FGM distributions allowing high correlation. The first part of the present paper is a review of recent developments on bivariate Huang-Kotz FGM distributions and their extensions. In the second part a class of new bivariate distributions based on Baker's system of bivariate distributions is considered. It is shown that for a model of a given order, this class of distributions with fixed marginals which are based on pairs of order statistics constructed from the bivariate sample observations of dependent random variables allows higher correlation than Baker's system. It also follows that under certain conditions determined by Lin and Huang (2010) [21], the correlation for these systems converges to the maximum Frechet-Hoeffding upper bound as the sample size tends to infinity. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Incen_US
dc.relation.ispartofJournal of Multıvarıate Analysısen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHuang-Kotz FGM distributionsen_US
dc.subjectBaker's distributionen_US
dc.subjectCopulaen_US
dc.subjectExchangeable random variablesen_US
dc.subjectPositive quadrant dependenten_US
dc.subjectOrder statisticsen_US
dc.subjectGumbel-Morgenstern Distributionsen_US
dc.subjectOrder-Statisticsen_US
dc.subjectFixed Marginalsen_US
dc.subjectDependenceen_US
dc.subjectCopulasen_US
dc.subjectFamilyen_US
dc.subjectSymmetryen_US
dc.titleFrom the Huang-Kotz FGM distribution to Baker's bivariate distributionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmva.2011.03.001-
dc.identifier.scopus2-s2.0-84867706528en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridBayramoglu, Ismihan/0000-0002-8575-8405-
dc.authorwosidKavlak, Konul Bayramoglu/AAW-2317-2020-
dc.authorwosidBayramoglu, Ismihan/E-7721-2018-
dc.authorscopusid6602484525-
dc.authorscopusid37049839200-
dc.identifier.volume113en_US
dc.identifier.startpage106en_US
dc.identifier.endpage115en_US
dc.identifier.wosWOS:000310865300010en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept01. İzmir University of Economics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
330.pdf
  Restricted Access
248.31 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

19
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.