Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1300
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBairamov, Ismihan-
dc.contributor.authorKhaledi, Baha-Eldin-
dc.contributor.authorShaked, Moshe-
dc.date.accessioned2023-06-16T14:11:10Z-
dc.date.available2023-06-16T14:11:10Z-
dc.date.issued2014-
dc.identifier.issn0047-259X-
dc.identifier.urihttps://doi.org/10.1016/j.jmva.2013.10.013-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1300-
dc.description.abstractLet X-1:n <= X-2:n ... <= X-n:n be the order statistics from some sample, and let Y-[1 (:n]) Y-[2:n],..., Y-[n:n], be the corresponding concomitants. One purpose of this paper is to obtain results that stochastically compare, in various senses, the random vector (X-r:n, Y-[r:n]) to the random vector (Xr+1:n Y[r+1:n]), r = 1, 2,..., n - 1. Such comparisons are called one-sample comparisons. Next, let S-1:n <= S-2:n ... <= S-n:n be the order statistics constructed from another sample, and let T-[1:n], T-[2:n],...,T-[n:n] be the corresponding concomitants. Another purpose of this paper is to obtain results that stochastically compare, in various senses, the random vector (X-r:n, Y-[r:n]). with the random vector (S-r:n, T-[r:n]), r = 1, 2,..., n. Such comparisons are called two-sample comparisons. It is shown that some of the results in this paper strengthen previous results in the literature. Some applications in reliability theory are described. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipDepartment of Islamic Azad University, Kermanshah Branch, Kermanshah, Iran; NSA [H98230-12-1-0222]en_US
dc.description.sponsorshipWe thank Serkan Eryilmaz for useful comments on a previous version of the present paper. We are also grateful to two reviewers and an associate editor who read the original submission and proposed some modifications. The research of Baha-Eldin Khaledi is financially supported by Research Department of Islamic Azad University, Kermanshah Branch, Kermanshah, Iran. The research of Moshe Shaked is supported by NSA grant H98230-12-1-0222.en_US
dc.language.isoenen_US
dc.publisherElsevier Incen_US
dc.relation.ispartofJournal of Multıvarıate Analysısen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPositive quadrant dependence (PQD)en_US
dc.subjectMultivariate ordinary stochastic orderen_US
dc.subjectMultivariate hazard rate orderen_US
dc.subjectMultivariate likelihood ratio orderen_US
dc.subjectStochastic monotonicityen_US
dc.subjectr-out-of-n systemsen_US
dc.subjectTotal positivityen_US
dc.subjectDependenceen_US
dc.subjectDistributionsen_US
dc.titleStochastic comparisons of order statistics and their concomitantsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmva.2013.10.013-
dc.identifier.scopus2-s2.0-84887506024en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridBayramoglu, Ismihan/0000-0002-8575-8405-
dc.authoridKhaledi, Bahaedin/0000-0002-1294-9251-
dc.authorwosidBayramoglu, Ismihan/E-7721-2018-
dc.authorscopusid6602484525-
dc.authorscopusid6603195666-
dc.authorscopusid7003360261-
dc.identifier.volume124en_US
dc.identifier.startpage105en_US
dc.identifier.endpage115en_US
dc.identifier.wosWOS:000330599800009en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
crisitem.author.dept01. İzmir University of Economics-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
333.pdf421.64 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

44
checked on Nov 25, 2024

Download(s)

12
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.