Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1309
Title: The structure of modular generalized invariants
Authors: Erkuş, DENİZ ERDEMİRCİ
Madran, Ugur
Publisher: Elsevier Science Bv
Abstract: Let G be a finite group with a faithful representation V over a field F of odd characteristic p, where the order of G is divisible by p. In this article, it is proved that the generalized invariant module of G coincides with the (polynomial) invariant ring of the representation under a necessary and sufficient group theoretical condition. Moreover, the structure of the generalized invariant module for any finite group is determined, providing a tool for computing this module. (C) 2016 Elsevier B.V. All rights reserved.
URI: https://doi.org/10.1016/j.jpaa.2016.01.003
https://hdl.handle.net/20.500.14365/1309
ISSN: 0022-4049
1873-1376
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
342.pdf
  Restricted Access
322.51 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

60
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.