Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1325
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aslan, Sinem | - |
dc.contributor.author | Akgul, Ceyhun Burak | - |
dc.contributor.author | Sankur, Bulent | - |
dc.contributor.author | Tunali, E. Turhan | - |
dc.date.accessioned | 2023-06-16T14:11:14Z | - |
dc.date.available | 2023-06-16T14:11:14Z | - |
dc.date.issued | 2017 | - |
dc.identifier.issn | 1047-3203 | - |
dc.identifier.issn | 1095-9076 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jvcir.2017.09.009 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1325 | - |
dc.description.abstract | Good representative dictionaries is the most critical part of the BoVW: Bag of Visual Words scheme, used for such tasks as category identification. The paradigm of learning dictionaries from datasets is by far the most widely used approach and there exists a plethora of methods to this effect. Dictionary learning methods demand abundant data, and when the amount of training data is limited, the quality of dictionaries and consequently the performance of BoVW methods suffer. A much less explored path for creating visual dictionaries starts from the knowledge of primitives in appearance models and creates families of parametric shape models. In this work, we develop shape models starting from a small number of primitives and develop a visual dictionary using various nonlinear operations and nonlinear combinations. Compared with the existing model-driven schemes, our method is able to represent and characterize images in various image understanding applications with competitive, and often better performance. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.ispartof | Journal of Vısual Communıcatıon And Image Representatıon | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Model-driven | en_US |
dc.subject | Visual dictionary | en_US |
dc.subject | Bag of Visual Words | en_US |
dc.subject | Shape models | en_US |
dc.subject | Primitive image structures | en_US |
dc.subject | Image understanding | en_US |
dc.subject | Object recognition | en_US |
dc.subject | Scene classification | en_US |
dc.subject | Basic Image Features | en_US |
dc.subject | Mutual Information | en_US |
dc.subject | Classification | en_US |
dc.subject | Recognition | en_US |
dc.subject | Illumination | en_US |
dc.subject | Space | en_US |
dc.subject | Sift | en_US |
dc.title | Exploring visual dictionaries: A model driven perspective | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jvcir.2017.09.009 | - |
dc.identifier.scopus | 2-s2.0-85031722425 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Aslan, Sinem/0000-0003-0068-6551 | - |
dc.authorwosid | Tekalp, Murat/AAW-1060-2020 | - |
dc.authorwosid | Aslan, Sinem/C-3381-2008 | - |
dc.authorscopusid | 36658064200 | - |
dc.authorscopusid | 15062263300 | - |
dc.authorscopusid | 7003845878 | - |
dc.authorscopusid | 43262081300 | - |
dc.identifier.volume | 49 | en_US |
dc.identifier.startpage | 315 | en_US |
dc.identifier.endpage | 331 | en_US |
dc.identifier.wos | WOS:000416613800026 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q2 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | reserved | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
crisitem.author.dept | 05.05. Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
360.pdf Restricted Access | 2.16 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
5
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 20, 2024
Page view(s)
64
checked on Nov 25, 2024
Download(s)
6
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.