Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1347
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorZabihi, Morteza-
dc.contributor.authorRad, Ali Bahrami-
dc.contributor.authorİnce, Türker-
dc.contributor.authorHamila, Ridha-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:11:18Z-
dc.date.available2023-06-16T14:11:18Z-
dc.date.issued2020-
dc.identifier.issn0925-2312-
dc.identifier.issn1872-8286-
dc.identifier.urihttps://doi.org/10.1016/j.neucom.2020.05.063-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1347-
dc.description.abstractThe heart sound signals (Phonocardiogram - PCG) enable the earliest monitoring to detect a potential cardiovascular pathology and have recently become a crucial tool as a diagnostic test in outpatient monitoring to assess heart hemodynamic status. The need for an automated and accurate anomaly detection method for PCG has thus become imminent. To determine the state-of-the-art PCG classification algorithm, 48 international teams competed in the PhysioNet (CinC) Challenge in 2016 over the largest benchmark dataset with 3126 records with the classification outputs, normal (N), abnormal (A) and unsure - too noisy (U). In this study, our aim is to push this frontier further; however, we focus deliberately on the anomaly detection problem while assuming a reasonably high Signal-to-Noise Ratio (SNR) on the records. By using 1D Convolutional Neural Networks trained with a novel data purification approach, we aim to achieve the highest detection performance and real-time processing ability with significantly lower delay and computational complexity. The experimental results over the high-quality subset of the same benchmark dataset show that the proposed approach achieves both objectives. Furthermore, our findings reveal the fact that further improvements indeed require a personalized (patient-specific) approach to avoid major drawbacks of a global PCG classification approach. (C) 2020 The Authors. Published by Elsevier B.V.en_US
dc.description.sponsorshipQatar National Research Fund (QNRF) over the ongoing project [NPRP11S-0108-180228]en_US
dc.description.sponsorshipThis work has been supported by Qatar National Research Fund (QNRF) over the ongoing project, NPRP11S-0108-180228.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofNeurocomputıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPhonocardiogram classificationen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectReal-time heart sound monitoringen_US
dc.subjectStructural Damage Detectionen_US
dc.subjectDeepen_US
dc.subjectSegmentationen_US
dc.subjectRecognitionen_US
dc.subjectWirelessen_US
dc.titleReal-time phonocardiogram anomaly detection by adaptive 1D Convolutional Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2020.05.063-
dc.identifier.scopus2-s2.0-85087283369en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridHamila, Ridha/0000-0002-6920-7371-
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidHamila, Ridha/ABI-2129-2020-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorscopusid7801632948-
dc.authorscopusid54897751900-
dc.authorscopusid56038615100-
dc.authorscopusid56259806600-
dc.authorscopusid6603562710-
dc.authorscopusid7005332419-
dc.identifier.volume411en_US
dc.identifier.startpage291en_US
dc.identifier.endpage301en_US
dc.identifier.wosWOS:000571895700010en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
384.pdf3.25 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

39
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

31
checked on Nov 20, 2024

Page view(s)

222
checked on Nov 18, 2024

Download(s)

26
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.