Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1347
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kiranyaz, Serkan | - |
dc.contributor.author | Zabihi, Morteza | - |
dc.contributor.author | Rad, Ali Bahrami | - |
dc.contributor.author | İnce, Türker | - |
dc.contributor.author | Hamila, Ridha | - |
dc.contributor.author | Gabbouj, Moncef | - |
dc.date.accessioned | 2023-06-16T14:11:18Z | - |
dc.date.available | 2023-06-16T14:11:18Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0925-2312 | - |
dc.identifier.issn | 1872-8286 | - |
dc.identifier.uri | https://doi.org/10.1016/j.neucom.2020.05.063 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1347 | - |
dc.description.abstract | The heart sound signals (Phonocardiogram - PCG) enable the earliest monitoring to detect a potential cardiovascular pathology and have recently become a crucial tool as a diagnostic test in outpatient monitoring to assess heart hemodynamic status. The need for an automated and accurate anomaly detection method for PCG has thus become imminent. To determine the state-of-the-art PCG classification algorithm, 48 international teams competed in the PhysioNet (CinC) Challenge in 2016 over the largest benchmark dataset with 3126 records with the classification outputs, normal (N), abnormal (A) and unsure - too noisy (U). In this study, our aim is to push this frontier further; however, we focus deliberately on the anomaly detection problem while assuming a reasonably high Signal-to-Noise Ratio (SNR) on the records. By using 1D Convolutional Neural Networks trained with a novel data purification approach, we aim to achieve the highest detection performance and real-time processing ability with significantly lower delay and computational complexity. The experimental results over the high-quality subset of the same benchmark dataset show that the proposed approach achieves both objectives. Furthermore, our findings reveal the fact that further improvements indeed require a personalized (patient-specific) approach to avoid major drawbacks of a global PCG classification approach. (C) 2020 The Authors. Published by Elsevier B.V. | en_US |
dc.description.sponsorship | Qatar National Research Fund (QNRF) over the ongoing project [NPRP11S-0108-180228] | en_US |
dc.description.sponsorship | This work has been supported by Qatar National Research Fund (QNRF) over the ongoing project, NPRP11S-0108-180228. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Neurocomputıng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Phonocardiogram classification | en_US |
dc.subject | Convolutional Neural Networks | en_US |
dc.subject | Real-time heart sound monitoring | en_US |
dc.subject | Structural Damage Detection | en_US |
dc.subject | Deep | en_US |
dc.subject | Segmentation | en_US |
dc.subject | Recognition | en_US |
dc.subject | Wireless | en_US |
dc.title | Real-time phonocardiogram anomaly detection by adaptive 1D Convolutional Neural Networks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.neucom.2020.05.063 | - |
dc.identifier.scopus | 2-s2.0-85087283369 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Hamila, Ridha/0000-0002-6920-7371 | - |
dc.authorid | Gabbouj, Moncef/0000-0002-9788-2323 | - |
dc.authorid | kiranyaz, serkan/0000-0003-1551-3397 | - |
dc.authorwosid | Hamila, Ridha/ABI-2129-2020 | - |
dc.authorwosid | Gabbouj, Moncef/G-4293-2014 | - |
dc.authorwosid | Kiranyaz, Serkan/AAK-1416-2021 | - |
dc.authorscopusid | 7801632948 | - |
dc.authorscopusid | 54897751900 | - |
dc.authorscopusid | 56038615100 | - |
dc.authorscopusid | 56259806600 | - |
dc.authorscopusid | 6603562710 | - |
dc.authorscopusid | 7005332419 | - |
dc.identifier.volume | 411 | en_US |
dc.identifier.startpage | 291 | en_US |
dc.identifier.endpage | 301 | en_US |
dc.identifier.wos | WOS:000571895700010 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q2 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
39
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
31
checked on Nov 20, 2024
Page view(s)
222
checked on Nov 18, 2024
Download(s)
26
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.