Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1419
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFawzy, Diaa E.-
dc.contributor.authorArslan, Guvenc-
dc.date.accessioned2023-06-16T14:11:33Z-
dc.date.available2023-06-16T14:11:33Z-
dc.date.issued2015-
dc.identifier.urihttps://doi.org/10.1016/j.sbspro.2015.06.179-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1419-
dc.descriptionWorld Conference on Technology, Innovation and Entrepreneurship -- MAY 28-30, 2015 -- Istanbul, TURKEYen_US
dc.description.abstractThe current work is an attempt to predict building reactions to big earthquakes using real data collected from surveys carried out after the occurrence of earthquakes. With the development of building damage functions for big earthquakes in Turkey one can predict the damage levels as a function of earthquakes' intensity and the building parameters. Our model is based on neural networks techniques which allow for the non-linear correlations to be taken into account. We analyse data collected for damaged buildings after the following three big earthquakes: Afyon (2002; Mw - 6.0), Bingol (2003; Mw - 6.4) and Duzce (1999; Mw - 7.2). The current model includes some of the main important factors affecting the health of any structure, namely, age, number of stories, floor areas, and the column areas. Our method of damage prediction is based on several earthquakes and buildings with different damage levels. The obtained results show that there is a strong correlation between the strength of the earthquake, the basic building parameters and the damage level. The obtained building damage function is essential for future plans and regulations for new constructions and can be considered as an essential module for hazards mitigation systems. (C) 2015 The Authors. Published by Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofWorld Conference on Technology, Innovatıon And Entrepreneurshıpen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectearthquakesen_US
dc.subjectneural networksen_US
dc.subjectstructural health monitoringen_US
dc.subjectestimation methodsen_US
dc.titleDevelopment of Building Damage Functions for Big Earthquakes in Turkeyen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1016/j.sbspro.2015.06.179-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridArslan, Guvenc/0000-0002-4770-2689-
dc.authorwosidArslan, Guvenc/AAE-7061-2019-
dc.authorwosidFawzy, Diaa/AAI-9208-2021-
dc.identifier.startpage2290en_US
dc.identifier.endpage2297en_US
dc.identifier.wosWOS:000380509900279en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.01. Aerospace Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
463.pdf322.75 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

4
checked on Nov 20, 2024

Page view(s)

36
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.