Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1428
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oktar, Yigit | - |
dc.contributor.author | Turkan, Mehmet | - |
dc.date.accessioned | 2023-06-16T14:11:35Z | - |
dc.date.available | 2023-06-16T14:11:35Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 0165-1684 | - |
dc.identifier.issn | 1872-7557 | - |
dc.identifier.uri | https://doi.org/10.1016/j.sigpro.2018.02.010 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1428 | - |
dc.description.abstract | In case of high dimensionality, a class of data clustering methods has been proposed as a solution that includes suitable subspace search to find inherent clusters. Sparsity-based clustering approaches include a twist in subspace approach as they incorporate a dimensionality expansion through the usage of an overcomplete dictionary representation. Thus, these approaches provide a broader search space to utilize subspace clustering at large. However, sparsity constraint alone does not enforce structured clusters. Through certain stricter constraints, data grouping is possible, which translates to a type of clustering depending on the types of constraints. The dual of the sparsity constraint, namely the dictionary, is another aspect of the whole sparsity-based clustering methods. Unlike off-the-shelf or fixed-waveform dictionaries, adaptive dictionaries can additionally be utilized to shape the state-model entity into a more adaptive form. Chained with structured sparsity, adaptive dictionaries force the state-model into well-formed clusters. Subspaces designated with structured sparsity can then be dissolved through recursion to acquire deep sparse structures that correspond to a taxonomy. As a final note, such procedure can further be extended to include various other machine learning perspectives. (C) 2018 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Sıgnal Processıng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Clustering | en_US |
dc.subject | Sparse representations | en_US |
dc.subject | Structured sparsity | en_US |
dc.subject | Deep sparse structures | en_US |
dc.subject | Efficient Algorithm | en_US |
dc.subject | General Framework | en_US |
dc.subject | K-Svd | en_US |
dc.subject | Image | en_US |
dc.subject | Representations | en_US |
dc.subject | Dictionary | en_US |
dc.subject | Model | en_US |
dc.subject | Identification | en_US |
dc.subject | Output | en_US |
dc.subject | Noise | en_US |
dc.title | A review of sparsity-based clustering methods | en_US |
dc.type | Review Article | en_US |
dc.identifier.doi | 10.1016/j.sigpro.2018.02.010 | - |
dc.identifier.scopus | 2-s2.0-85044653497 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Turkan, Mehmet/0000-0002-9780-9249 | - |
dc.authorid | Oktar, Yigit/0000-0002-8736-8013 | - |
dc.authorwosid | Turkan, Mehmet/AGQ-8084-2022 | - |
dc.authorwosid | Oktar, Yigit/AAZ-2237-2020 | - |
dc.authorscopusid | 56560191100 | - |
dc.authorscopusid | 14069326000 | - |
dc.identifier.volume | 148 | en_US |
dc.identifier.startpage | 20 | en_US |
dc.identifier.endpage | 30 | en_US |
dc.identifier.wos | WOS:000428824600003 | en_US |
dc.relation.publicationcategory | Diğer | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q2 | - |
item.grantfulltext | reserved | - |
item.openairetype | Review Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
473.pdf Restricted Access | 1.59 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
32
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
29
checked on Nov 20, 2024
Page view(s)
78
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.