Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1428
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOktar, Yigit-
dc.contributor.authorTurkan, Mehmet-
dc.date.accessioned2023-06-16T14:11:35Z-
dc.date.available2023-06-16T14:11:35Z-
dc.date.issued2018-
dc.identifier.issn0165-1684-
dc.identifier.issn1872-7557-
dc.identifier.urihttps://doi.org/10.1016/j.sigpro.2018.02.010-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1428-
dc.description.abstractIn case of high dimensionality, a class of data clustering methods has been proposed as a solution that includes suitable subspace search to find inherent clusters. Sparsity-based clustering approaches include a twist in subspace approach as they incorporate a dimensionality expansion through the usage of an overcomplete dictionary representation. Thus, these approaches provide a broader search space to utilize subspace clustering at large. However, sparsity constraint alone does not enforce structured clusters. Through certain stricter constraints, data grouping is possible, which translates to a type of clustering depending on the types of constraints. The dual of the sparsity constraint, namely the dictionary, is another aspect of the whole sparsity-based clustering methods. Unlike off-the-shelf or fixed-waveform dictionaries, adaptive dictionaries can additionally be utilized to shape the state-model entity into a more adaptive form. Chained with structured sparsity, adaptive dictionaries force the state-model into well-formed clusters. Subspaces designated with structured sparsity can then be dissolved through recursion to acquire deep sparse structures that correspond to a taxonomy. As a final note, such procedure can further be extended to include various other machine learning perspectives. (C) 2018 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSıgnal Processıngen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClusteringen_US
dc.subjectSparse representationsen_US
dc.subjectStructured sparsityen_US
dc.subjectDeep sparse structuresen_US
dc.subjectEfficient Algorithmen_US
dc.subjectGeneral Frameworken_US
dc.subjectK-Svden_US
dc.subjectImageen_US
dc.subjectRepresentationsen_US
dc.subjectDictionaryen_US
dc.subjectModelen_US
dc.subjectIdentificationen_US
dc.subjectOutputen_US
dc.subjectNoiseen_US
dc.titleA review of sparsity-based clustering methodsen_US
dc.typeReview Articleen_US
dc.identifier.doi10.1016/j.sigpro.2018.02.010-
dc.identifier.scopus2-s2.0-85044653497en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridTurkan, Mehmet/0000-0002-9780-9249-
dc.authoridOktar, Yigit/0000-0002-8736-8013-
dc.authorwosidTurkan, Mehmet/AGQ-8084-2022-
dc.authorwosidOktar, Yigit/AAZ-2237-2020-
dc.authorscopusid56560191100-
dc.authorscopusid14069326000-
dc.identifier.volume148en_US
dc.identifier.startpage20en_US
dc.identifier.endpage30en_US
dc.identifier.wosWOS:000428824600003en_US
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeReview Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
473.pdf
  Restricted Access
1.59 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

32
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

29
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.