Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSolmaz, Mehmet E.-
dc.contributor.authorMutlu, Ali Y.-
dc.contributor.authorAlankus, Gazihan-
dc.contributor.authorKilic, Volkan-
dc.contributor.authorBayram, Abdullah-
dc.contributor.authorHorzum, Nesrin-
dc.date.accessioned2023-06-16T14:11:37Z-
dc.date.available2023-06-16T14:11:37Z-
dc.date.issued2018-
dc.identifier.issn0925-4005-
dc.identifier.urihttps://doi.org/10.1016/j.snb.2017.08.220-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1438-
dc.description.abstractA smartphone application based on machine learning classifier algorithms was developed for quantifying peroxide content on colorimetric test strips. The strip images were taken from five different Android based smartphones under seven different illumination conditions to train binary and multi-class classifiers and to extract the learning model. A custom app, ChemTrainer, was designed to capture, crop, and process the active region of the strip, and then to communicate with a remote server that contains the learning model through a Cloud hosted service. The application was able to detect the color change in peroxide strips with over 90% success rate for primary colors with inter-phone repeatability under versatile illumination. The utilization of a grey-world color constancy image processing algorithm positively affected the classification accuracy for binary classifiers. The developed app with a Cloud based learning model paves the way for better colorimetric detection for paper-based chemical assays. (C) 2017 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Saen_US
dc.relation.ispartofSensors And Actuators B-Chemıcalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSmartphoneen_US
dc.subjectColorimetryen_US
dc.subjectMachine learningen_US
dc.subjectAndroid applicationen_US
dc.subjectMobile-Phoneen_US
dc.subjectPlatformen_US
dc.subjectGlucoseen_US
dc.subjectCameraen_US
dc.titleQuantifying Colorimetric Tests Using a Smartphone App Based on Machine Learning Classifiersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.snb.2017.08.220-
dc.identifier.scopus2-s2.0-85029501053en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridHorzum, Nesrin/0000-0002-2782-0581-
dc.authoridKilic, Volkan/0000-0002-3164-1981-
dc.authoridBayram, Abdullah/0000-0002-6077-517X-
dc.authorwosidHorzum, Nesrin/AAB-3714-2020-
dc.authorwosidBayram, Abdullah/Z-3262-2019-
dc.authorwosidAlankuş, Gazihan/AAE-4840-2022-
dc.authorscopusid15766457800-
dc.authorscopusid35748939300-
dc.authorscopusid23007530500-
dc.authorscopusid57190293300-
dc.authorscopusid57191625363-
dc.authorscopusid37099855700-
dc.identifier.volume255en_US
dc.identifier.startpage1967en_US
dc.identifier.endpage1973en_US
dc.identifier.wosWOS:000414319900095en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept05.11. Mechatronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
484.pdf
  Restricted Access
1.39 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

104
checked on Dec 18, 2024

WEB OF SCIENCETM
Citations

90
checked on Dec 18, 2024

Page view(s)

86
checked on Dec 23, 2024

Download(s)

8
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.