Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1483
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorAvcı, Onur-
dc.contributor.authorAbdeljaber, Osama-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.contributor.authorInman, Daniel J.-
dc.date.accessioned2023-06-16T14:11:49Z-
dc.date.available2023-06-16T14:11:49Z-
dc.date.issued2021-
dc.identifier.issn0888-3270-
dc.identifier.issn1096-1216-
dc.identifier.urihttps://doi.org/10.1016/j.ymssp.2020.107398-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1483-
dc.description.abstractDuring the last decade, Convolutional Neural Networks (CNNs) have become the de facto standard for various Computer Vision and Machine Learning operations. CNNs are feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and subsampling layers. Deep 2D CNNs with many hidden layers and millions of parameters have the ability to learn complex objects and patterns providing that they can be trained on a massive size visual database with ground-truth labels. With a proper training, this unique ability makes them the primary tool for various engineering applications for 2D signals such as images and video frames. Yet, this may not be a viable option in numerous applications over 1D signals especially when the training data is scarce or application specific. To address this issue, 1D CNNs have recently been proposed and immediately achieved the state-of-the-art performance levels in several applications such as personalized biomedical data classification and early diagnosis, structural health monitoring, anomaly detection and identification in power electronics and electrical motor fault detection. Another major advantage is that a real-time and low-cost hardware implementation is feasible due to the simple and compact configuration of 1D CNNs that perform only 1D convolutions (scalar multiplications and additions). This paper presents a comprehensive review of the general architecture and principals of 1D CNNs along with their major engineering applications, especially focused on the recent progress in this field. Their state-of-the-art performance is highlighted concluding with their unique properties. The benchmark datasets and the principal 1D CNN software used in those applications are also publicly shared in a dedicated website. While there has not been a paper on the review of 1D CNNs and its applications in the literature, this paper fulfills this gap. (C) 2020 The Author(s). Published by Elsevier Ltd.en_US
dc.description.sponsorshipQatar National Research Fund (QNRF) [NPRP11S0108-180228]; Qatar National Libraryen_US
dc.description.sponsorshipThis work was supported by the Qatar National Research Fund (QNRF) through the ongoing project under Grant NPRP11S0108-180228. Open Access funding provided by the Qatar National Library.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Ltd- Elsevier Science Ltden_US
dc.relation.ispartofMechanıcal Systems And Sıgnal Processıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectMachine learningen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural networksen_US
dc.subjectStructural health monitoringen_US
dc.subjectCondition monitoringen_US
dc.subjectArrhythmia detection and identificationen_US
dc.subjectFault detectionen_US
dc.subjectStructural damage detectionen_US
dc.subjectBearing Fault-Diagnosisen_US
dc.subjectReceptive-Fieldsen_US
dc.subjectFunctional Architectureen_US
dc.subjectSpeech Recognitionen_US
dc.subjectPerceptronen_US
dc.subjectIdentificationen_US
dc.subjectDecompositionen_US
dc.subjectModelen_US
dc.title1D convolutional neural networks and applications: A surveyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ymssp.2020.107398-
dc.identifier.scopus2-s2.0-85095978325en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorscopusid7801632948-
dc.authorscopusid6701761980-
dc.authorscopusid56811553100-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.authorscopusid57216996344-
dc.identifier.volume151en_US
dc.identifier.wosWOS:000640530600029en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1483.pdf2.81 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1,396
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1,206
checked on Nov 20, 2024

Page view(s)

368
checked on Nov 18, 2024

Download(s)

120
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.