Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1493
Title: | PRINCIPAL MATRIX SOLUTIONS AND VARIATION OF PARAMETERS FOR VOLTERRA INTEGRO-DYNAMIC EQUATIONS ON TIME SCALES | Authors: | Adıvar, Murat | Keywords: | Discrete-Systems Stability Perturbation Resolvent |
Publisher: | Cambridge Univ Press | Abstract: | We introduce the principal matrix solution Z(t, s) of the linear Volterra-type vector integro-dynamic equation x(Delta)(t) = A(t)x(t) + integral(t)(s) B(t, u)x(u)Delta u and prove that it is the unique matrix solution of Z(Delta t)(t, s) = A(t)Z(t, s) + integral(t)(s) B(t, u)Z(u, s)Delta u, Z(s, s) = I. We also show that the solution of x(Delta)(t) = A(t)x(t) + integral(t)(tau) B(t, u)x(u)Delta u + f(t), x(tau) = x(0) is unique and given by the variation of parameters formula x(t) = Z(t, tau)x(0) + integral(t)(tau) Z(t, sigma(s))f(s)Delta s. | URI: | https://doi.org/10.1017/S0017089511000073 https://hdl.handle.net/20.500.14365/1493 |
ISSN: | 0017-0895 1469-509X |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
21
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
13
checked on Nov 20, 2024
Page view(s)
48
checked on Nov 18, 2024
Download(s)
24
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.