Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1493
Title: PRINCIPAL MATRIX SOLUTIONS AND VARIATION OF PARAMETERS FOR VOLTERRA INTEGRO-DYNAMIC EQUATIONS ON TIME SCALES
Authors: Adıvar, Murat
Keywords: Discrete-Systems
Stability
Perturbation
Resolvent
Publisher: Cambridge Univ Press
Abstract: We introduce the principal matrix solution Z(t, s) of the linear Volterra-type vector integro-dynamic equation x(Delta)(t) = A(t)x(t) + integral(t)(s) B(t, u)x(u)Delta u and prove that it is the unique matrix solution of Z(Delta t)(t, s) = A(t)Z(t, s) + integral(t)(s) B(t, u)Z(u, s)Delta u, Z(s, s) = I. We also show that the solution of x(Delta)(t) = A(t)x(t) + integral(t)(tau) B(t, u)x(u)Delta u + f(t), x(tau) = x(0) is unique and given by the variation of parameters formula x(t) = Z(t, tau)x(0) + integral(t)(tau) Z(t, sigma(s))f(s)Delta s.
URI: https://doi.org/10.1017/S0017089511000073
https://hdl.handle.net/20.500.14365/1493
ISSN: 0017-0895
1469-509X
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1493.pdf148.6 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

21
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 20, 2024

Page view(s)

48
checked on Nov 18, 2024

Download(s)

24
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.